- 相關推薦
《比例的意義》教案(精選21篇)
作為一名教職工,時常會需要準備好教案,教案有利于教學水平的提高,有助于教研活動的開展。那么你有了解過教案嗎?下面是小編為大家收集的《比例的意義》教案,僅供參考,希望能夠幫助到大家。
《比例的意義》教案 篇1
教學目標:
1.使學生理解正比例的意義,會正確判斷成正比例的量。
2.使學生了解表示成正比例的量的圖像特征,并能根據(jù)圖像解決有關簡單問題。
教學重點:正比例的意義。
教學難點:正確判斷兩個量是否成正比例的關系。
教學過程:
一揭示課題
1.在現(xiàn)實生活中,我們常常遇到兩種相關聯(lián)的量的變化情況,其中一種量變化,另一種量也隨著變化,你以舉出一些這樣的例子嗎?
在教師的此導下,學生會舉出一些簡單的例子,如:
。1)班級人數(shù)多了,課桌椅的數(shù)量也變多了;人數(shù)少了,課桌椅也少了。
。2)送來的牛奶包數(shù)多了,牛奶的總質(zhì)量也多了;包數(shù)少了,總質(zhì)量也少了。
(3)上學時,去的速度快了,時間用少了;速度慢了,時間用多了。
。4)排隊時,每行人數(shù)少了,行數(shù)就多了;每行人數(shù)多了。行數(shù)就少了。
2.這種變化的量有什么規(guī)律?存在什么關系呢?今天,我們首先來學習成正比例的量。板書:成正比例的量
二探索新知
1.教學例1
。1)出示例題情境圖。
問:你看到了什么?
生:杯子是相同的。杯中水的高度不同,水的體積也不同,高度越高體積越大;高度越低,體積越小。
(2)出示表格。
高度/㎝24681012
體積/㎝350100150200250300
底面積/㎝2
問:你有什么發(fā)現(xiàn)?
學生不難發(fā)現(xiàn):杯子的底面積不變,是25㎝2。
板書:
教師:體積與高度的比值一定。
。2)說明正比例的意義。
、僭谶@一基礎上,教師明確說明正比例的意義。
因為杯子的底面積一定,所以水的體積隨著高度的變化而變化。水的高度增加,體積也相應增加,水的高度降低,體積也相應減少,而且水的體積和高度的比值一定。
板書出示:像這樣,兩種相關聯(lián)的量,一種量變化,另一種子量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值一定,這兩種理就叫做成正比例的量,它們的關系叫做正比例關系。
、趯W生讀一讀,說一說你是怎么理解正比例關系的'。
要求學生把握三個要素:
第一,兩種相關聯(lián)的量;
第二,其中一個量增加,另一個量也增加;一個量減少,另一個量也減少。
第三,兩個量的比值一定。
。3)用字母表示。
如果用字母X和Y表示兩種相關聯(lián)的量,用K表示它們的比值(一定),比例關系可以用正的式子表示:
。4)想一想:
師:生活中還有哪些成正比例的量?
學生舉例說明。如:
長方形的寬一定,面積和長成正比例。
每袋牛奶質(zhì)量一定,牛奶袋數(shù)和總質(zhì)量成正比例。
衣服的單價一不定期,購買衣服的數(shù)量和應付錢數(shù)成正比例。
地磚的面積一定,教室地板面積和地磚塊數(shù)成正比例。
2.教學例2。
。1)出示表格(見書)
(2)依據(jù)下表中的數(shù)據(jù)描點。(見書)
(3)從圖中你發(fā)現(xiàn)了什么?
這些點都在同一條直線上。
。4)看圖回答問題。
①如果杯中水的高度是7㎝,那么水的體積是多少?
生:175㎝3。
、隗w積是225㎝3的水,杯里水面高度是多少?
生:9㎝。
③杯中水的高度是14㎝,那么水的體積是多少?描出這一對應的點是否在直線上?
生:水的體積是350㎝3,相對應的點一定在這條直線上。
。5)你還能提出什么問題?有什么體會?
通過交流使學生了解成正比例量的圖像特往。
3.做一做。
過程要求:
(1)讀一讀表中的數(shù)據(jù),寫出幾組路程和時間的比,說一說比值表示什么?
比值表示每小時行駛多少千米。
。2)表中的路程和時間成正比例嗎?為什么?
成正比例。理由:
、俾烦屉S著時間的變化而變化;
、跁r間增加,路程也增加,時間減少,路程也隨著減少;
、鄯N程和時間的比值(速度)一定。
。3)在圖中描出表示路程和時間的點,并連接起來。有什么發(fā)現(xiàn)?所描的點在一條直線上。
(4)行駛120KM大約要用多少時間?
。5)你還能提出什么問題?
4.課堂小結
說一說成正比例關系的量的變化特征。
三鞏固練習
完成課文練習七第1~5題。
2、成反比例的量
教學內(nèi)容:成反比例的量
教學目標:
1.經(jīng)歷探索兩種相關聯(lián)的量的變化情況過程,發(fā)現(xiàn)規(guī)律,理解反比例的意義。
2.根據(jù)反比例的意義,正確判斷兩種量是否成反比例。
教學重點:反比例的意義。
教學難點:正確判斷兩種量是否成反比例。
教學過程:
一導入新課
1.讓學生說一說成正比例的兩種量的變化規(guī)律。
回答要點:
。1)兩種相關聯(lián)的量;
。2)一個量增加,另一個量也相應增加;一個量減少,另一個量也相應減少;
。3)兩個量的比值一定。
2.舉例說明。
如:每袋大米質(zhì)量相同,大米的袋數(shù)與總質(zhì)量成正比例。
理由:
。1)每袋大米質(zhì)量一定,大米的總質(zhì)量隨著袋數(shù)的變化而變化;
。2)大米的袋數(shù)增加,大米的總質(zhì)量也相應增加,大米的袋數(shù)
減少,大米的總質(zhì)量也相應減少;
(3)總質(zhì)量與袋數(shù)的比值一定。
所以,大米的袋數(shù)與總質(zhì)量成正比例。
板書:
3.揭示課題。
今天,我們一起來學習反比例。兩種量是什么樣的關系時,這兩種量成反比例呢?
板書課題:成反比例的量[ 內(nèi) 容 結 束 ]
《比例的意義》教案 篇2
教學內(nèi)容:
比例的意義和基本性質(zhì) (省義務教材第十二冊)
教學目標:
1、理解和掌握比例的意義和基本性質(zhì),認識比例的各部分的名稱,體會數(shù)學的規(guī)律美。
2、利用比例知識解決實際問題。
3、培養(yǎng)學生自主參與的意識、主動探究的精神,激發(fā)學生的審美愉悅。培養(yǎng)學生進行初步的觀察、分析、比較、判斷、概括的能力,發(fā)展學生思維。
教學過程:
一、 談話導入,創(chuàng)設情境:
出示CAI課件(一張微型照片)。你能看出這是杭州哪一個景點的照片?的確,照片太小了,那現(xiàn)在老師將這張照片按一定比例放大一些,。由此出現(xiàn)一張平湖秋月的風景照!菊T發(fā)審美注意】
我們的祖國方圓960萬平方公里,幅員遼闊卻能在一張小小的地圖上清晰可見各地位置。建筑設計師可將濱江四區(qū)的設計構想展示在一張紙上。這些,都要用到比例的知識,我們今天就來學習有關比例的一些知識。
二、 自主探究,學習新知
(一) 教學比例的意義
1、 8厘米
出示
6厘米
4厘米
3厘米
。1)根據(jù)表中給出的數(shù)量寫出有意義的比。
(2)哪些比是相關聯(lián)的?
。3)根據(jù)以往經(jīng)驗,可將相等的兩個比怎樣?(用等號連接)
教師并指出這些式子就是比例。
2、 讓學生任意寫出比例,并讓學生用自己的語言描述比例的意義。
3、 教師板書:表示兩個比相等的式子叫做比例。比例也可用分數(shù)形式表示。
4、 寫出比值是1/3的兩個比,并組成比例。
。ǘ 教學比例的基本性質(zhì)
1、 比例和比有什么區(qū)別?
2、 認識比例的各部分
(1)讓學生自己取。
。2)組成比例的四個數(shù)叫做比例的項,兩端的兩項叫做比例的
外項,中間的`兩項叫做比例的內(nèi)項。
板書: 8 : 6 = 4 : 3
內(nèi) 項
外 項
。3)讓學生找出自己舉的比例的內(nèi)外項。
。 )
12
2
。 )
=
。4)找出分數(shù)形式比例的內(nèi)外項位置又是怎樣的?
3、 出示 【啟迪學生思維,展開審美想象】
。1) 這個比例已知的是哪兩項,要求的又是哪兩項?學生試填。
。2) 學生反饋,教師板書。
。3) 你發(fā)現(xiàn)了什么?
(4) 指導學生概括出比例的基本性質(zhì),并板書:在比例里,兩個外項之積等于兩個內(nèi)項之積。
4、 用比例性質(zhì)驗證你所寫比例是否正確。
5、練習 8 : 12 = X : 45
0.5
X
20
32
=
求比例中的未知項,叫做解比例。
如何證明你的解是正確的?
(三) 小結:今天這堂課你有什么收獲?
三、 鞏固練習
1、下面哪幾組中的兩個比可以組成比例。
4
1
12 : 24 和18 : 36
0.4 : 和0.4 : 0.15
14 : 8 和7 : 4
5
2
2、根據(jù)18 x 2 = 9 x 4 寫出比例!倔w會到數(shù)學的邏輯美,規(guī)律美】
3、從1 、8、0.6、3、7五個數(shù)中
。1) 選出四個數(shù),組成比例。
(2) 任意選出3個數(shù),再配上另一個數(shù),組成比例。
。3) 用所學知識進行檢驗。
四、 實際應用
不久前,汪駿強家的菜地邊高高矗立起一個新鐵塔,這天午后,陽光明媚,鄰居家剛讀一年級的小明又拉著汪駿強來到鐵塔下,玩著玩著,小明問道:“強強哥哥,這鐵塔干嘛用?”“鐵塔嘛,架設高壓線用的,以后等電線架好了,可不能再來玩了,更不能攀登,高壓線可危險了!”“那這個鐵塔有多高壓呀?”
同學們,如果你是汪駿強,你準備怎么辦?
執(zhí)教者 方 艷
《比例的意義》教案 篇3
教學內(nèi)容:教材第42~44頁例4~例6,“練一練”,練習八第4—7題。
教學要求:
1.使學生認識反比例關系的意義,理解、掌握成反比例量的變化規(guī)律及其特征,能依據(jù)反比例的意義判斷兩種量成不成反比例關系。
2.進一步培養(yǎng)學生觀察、分析、綜合和概括等能力,讓學生掌握判斷兩種相關聯(lián)的量成不成反比例的方法,培養(yǎng)學生判斷、推理的能力。
教學重點:認識反比例關系的意義。
教學難點:掌握成反比例量的變化規(guī)律及其特征。
教學過程:
一、復習舊知
1.正比例關系的意義是什么?怎樣用字母表示這種關系?
判斷兩種相關聯(lián)量成不成正比例的關鍵是什么?
2.下面哪兩種量成正比例關系?為什么?
(1)時間一定,行駛的速度和路程。
(2)數(shù)量一定,單價和總價。
3.說一說工作效率、工作時間和工作總量之間的數(shù)量關系。(學生回答后老師板書)在什么條件下,其中兩種量成正比例?
4.引入新課。
如果工作總量一定,工作效率和工作時間之間會怎樣變化呢,變化又有什么規(guī)律呢?這兩種量又成什么關系呢?這就是今天要學習的反比例關系。(板書課題)
二、教學新課
1.教學例4。
出示例4。讓學生計算,在課本上填表,并觀察思考能發(fā)現(xiàn)什么?指名口答,老師板書填表。讓學生按學習正比例的方法觀察表里內(nèi)容,相互之間討論,發(fā)現(xiàn)了什么。
指名學生口答討論的結果,得出:
(1)每天運的噸數(shù)和需要的天數(shù)是兩種相關聯(lián)的量,(板書:兩種相關聯(lián)的量)需要的天數(shù)隨著每天運的噸數(shù)的變化而變化。
(2)每天運的噸數(shù)縮小,需要的天數(shù)反而擴大,每天運的噸數(shù)擴大,需要的天數(shù)反而縮小。
(3)可以看出它們的變化規(guī)律是:每天運的噸數(shù)和天數(shù)的積總是一定的。(板書:每天運的噸數(shù)和天數(shù)的積一定)因為每天運的噸數(shù)和天數(shù)的積都是240。提問:這里的240是什么數(shù)量?誰能說出這里的數(shù)量關系式?想一想,這個式子表示的是什么意思?(把上面的板書補充成:運的總噸數(shù)一定時,每天運的噸數(shù)和天數(shù)的積一定)
2.教學例5。
出示例5。
請同學們按照剛才學習例4的方法,自己學習例5,仔細想想你發(fā)現(xiàn)了些什么?學生觀察思考后,指名學生口答從表里發(fā)現(xiàn)了些什么,再提問:這兩種相關聯(lián)量變化的規(guī)律是什么?(板書:每袋重量和袋數(shù)的積一定)乘積8000是什么數(shù)量,這種數(shù)量關系用式子怎樣表示?[板書:每袋重量×袋數(shù)=糖果總重量(一定)]這個式子表示什么意思?(把上面板書補充成:糖果總重量一定時,每袋重量和袋數(shù)的積一定)
3.概括反比例的意義。
(1)綜合例4、例5的共同點。
提問:請你比較一下例4和例5,說一說,這兩個例題有什么共同的地方?
(2)概括反比例意義。
例4、例5里兩種相關聯(lián)的量,它們是什么關系的量呢?請同學們看第43頁倒數(shù)第二節(jié)。說明:像例4、例5里這樣兩種相關聯(lián)的量,一種量變化,另一種量也隨著變,變化時兩種量中相對應的兩個數(shù)的積一定。這樣兩種相關聯(lián)的量就叫做成反比例的量,它們之間的關系叫做反比例關系。迫問:兩種相關聯(lián)的量成不成反比例的關鍵是什么?(乘積是不是一定)提問:如果用x和y表示兩種相關聯(lián)的量,用k表示它們的乘積,那么上面這種關系式可以怎樣寫呢?【板書:x×y=k(一定)】指出:這個式子表示兩種相關聯(lián)的'量x和y,y隨著x的變化而變化,它們的乘積k是一定的。這時就說x和y成反比例關系。所以,兩種量成反比例關系,我們就用x×y=k(一定)來表示。
4.具體認識。
(1)提問:例4里有哪兩種相關聯(lián)的量?這兩種量成反比例關系嗎?為什么,
例5里的兩種量成反比例關系嗎?為什么?
(2)提問:看兩種相關聯(lián)的量成不成反比例,關鍵要看什么?
(3)做練習八第4題。
讓學生讀題思考。指名依次口答題里的問題。[結合板書;每天裝配的臺數(shù)×天數(shù)=一批計算機的總臺數(shù)(一定)]
(4)判斷。
現(xiàn)在回過來看開始寫的關系式:工作效率×工作時間=工作總量,當工作總量一定時,工作效率和工作時間成什么關系?為什么?指出:根據(jù)上面所說的反比例的意義,要知道兩個量成不成反比例關系,只要先看這兩種量是不是相關聯(lián)的量,再看兩種量變化時乘積是不是一定。如果兩種相關聯(lián)的量變化時乘積一定,它們就是成反比例的量,相互之間的關系就是反比例關系。
5.教學例6。
出示例6,學生讀題、思考。提問:怎樣判斷成不成反比例?哪位同學說說每本的頁數(shù)和裝訂的本數(shù)成不成反比例?為什么?【板書;每本的頁數(shù)×本數(shù)=紙的總頁數(shù)(一定)】請同學們看書上例6是怎樣判斷的,看看我們說得對不對。追問:判斷兩種量成不成反比例要怎樣想?其中關鍵是看什么?
三、鞏固練習
用剛才我們說的判斷方法來做幾道題。
1.做“練一練”第l題。
指名學生口答,說明理由。(可以寫出數(shù)量關系式看一看)
2.做“練一練”第2題。
指名口答,說說理由。思考時可以引導看數(shù)量關系式。
3.做練習八第5題。
讓學生先在書上判斷。指名口答,要求說出數(shù)量關系式判斷。
4.下題兩種相關聯(lián)量成不成反比例?為什么?
一根鐵絲,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。
5.做練習八第6題。
各人先在書上寫各成什么比例。指名口答,要求說明理由。
6.做練習八第7題。
先讓學生默讀題目。提問:題里有怎樣的關系式?(板書:圓柱底面積×高=體積)指名學生口答.
四、課堂小結
這節(jié)課學習的是什么內(nèi)容?反比例關系的意義是什么?用怎樣的式子表示x和y這兩種相關聯(lián)的量成反比例?判斷兩種量是不是成反比例,關鍵是什么?
五、課堂作業(yè)
練習八第7題。
《比例的意義》教案 篇4
教學內(nèi)容:
補充有關比例意義、基本性質(zhì)和解比例的練習
教學目標:
1、進一步理解和掌握比例的意義,能根據(jù)比例的意義判斷兩個比能否組成比例。
2、進一步理解和掌握比例的基本性質(zhì),能根據(jù)比例的基本性質(zhì)正確判斷兩個比能否組成比例,進一步掌握解比例的方法。
3、通過練習,讓學生在思考、交流中培養(yǎng)分析、概括能力,體會數(shù)學知識之間的聯(lián)系,感受數(shù)學學習的樂趣。
教學措施:
幫助學生系統(tǒng)整理前幾節(jié)課學習的數(shù)學知識;設計一些有針對性的練習;練習過程中注重分析學生練習情況,加強課堂上對學習困難生的.輔導。
教學準備:
上傳補充練習
教學過程:
一、整理知識
1、提問:前幾節(jié)課我們學習了比例的意義、基本性質(zhì)和解比例這三部分內(nèi)容。你有哪些收獲?請你和同桌交流一下。
2、學生同桌之間進行交流。
3、指名學生交流,教師相機板書,將知識點進行梳理和歸納。
4、揭示課題:運用比例的意義和比例的基本性質(zhì)可以解決一些數(shù)學問題。這節(jié)課我們繼續(xù)學習有關內(nèi)容。(板書課題)
二、基本練習
1、判斷。
。1)比例是一個等式。
。2)甲數(shù)和乙數(shù)的比值是2/3,如果甲、乙兩個數(shù)同時擴大3、5倍,它們的比值還是2/3。
。3)比例的兩個內(nèi)項減去兩個外項的積,差是0。
(4)任意兩個正方形的周長與邊長的比都可以組成比例。
(5)如果A╳9=B╳6(A、B均不為0),那么,A與B的比是3:2。
組織學生思考、交流,鼓勵學生完整地說出自己的分析推理過程。
2、根據(jù)下面的等式,寫出幾個不同的比例。
3╳40=8╳15
。1)現(xiàn)在已知的是一個等式,等式左、右兩邊的兩個數(shù)分別是寫出的比例中的什么?
。2)你能有序地寫出所有的比例,既不重復也不遺漏嗎?(學生獨立完成)(3)學生交流思考過程,教師及時講評:可以先把3和40作為比例的內(nèi)項,寫出四個比例;然后再把8和15作為內(nèi)項寫出另外四個比例。
3、判斷四個數(shù)10、5、5/4、20/21、8能否組成比例?
。1)要判斷四個數(shù)能否組成比例有哪些方法?(根據(jù)比例的意義或比例基本性質(zhì))
(2)你認為這里選擇哪種方法比較方便?
。3)指名學生交流后,學生寫出比例。
小結:如果給我們四個數(shù),要讓我們判斷能否組成比例,一般,我們可以運用比例的基本性質(zhì)來判斷比較簡便;痉椒ㄊ窍葘⑦@四個數(shù)從大到小排列,然后用最大數(shù)乘最小數(shù),中間兩數(shù)相乘,看看乘積是否相等,最后根據(jù)比例基本性質(zhì)來寫出不同的比例。
4、按要求組成比例。
。1)從2、10、4、5、9、5五個數(shù)中選出四個組成一個比例。
。2)從18的所有約數(shù)中選出四個組成一個比例。
。3)把8和9作兩個外項,比值是1/2的一個比例。
。4)給5、8、0、4三個數(shù)分別配上一個不同的數(shù),組成兩個不同的比例、
逐個出示題目,學生練習之前先要弄清題目要求。
學生完成后進行交流,要求說說自己的思考過程,教師及時評價。
教師要及時關注學生存在的問題及時輔導。
5、根據(jù)比例的基本性質(zhì),在括號里填上合適的數(shù)。
15:3=():1 2:0、5=12:()
0、3/4=()/32 7/9:()=1/2:3/5
()/12=3/18():4、5=0、4:9
先讓學生根據(jù)比例基本性質(zhì)來思考并求出括號中的數(shù),然后請學生交流思考過程。
三、解比例
25:7=X:35 514:35= 57:x 23:X= 12:14 X:15=13:56
2、根據(jù)下面的條件列出比例,并且解比例
a、96和X的比等于16和5的比。
b、45和X的比等于25和8的比。
c、兩個外項是24和18,兩個內(nèi)項是X和36 。
四、全課總結
通過本節(jié)課的學習,你又有哪些收獲?你還有什么問題沒有弄明白嗎?
五、布置作業(yè)
補充相應練習
《比例的意義》教案 篇5
教學目標
知識目標:理解比例的意義,掌握組成比例的關鍵條件。
能力目標:能正確的判斷兩個比能否組成比例。
情感目標:通過動手、動腦、觀察、計算、討論等方式,使學生自主獲取知識,全面參與教學活動。
重點解比例的意義,掌握組成比例的關鍵條件。
難點正確的判斷兩個比能否組成比例。
教學過程教學預設個性修改。
目標導學復習激趣目標導學自主合作匯報交流變式訓練。
創(chuàng)境激疑
一、創(chuàng)設情境,導入新課
師:同學們,每周一的早上我們學校都要舉行莊嚴的升國旗儀式,那么,你們對國旗都有哪些了解呢?(生自由回答)
師:同學們都說出了自己的'想法,說明你們都很熱愛我們的國家,希望你們以后一定要好好學習,做一個有用的人,把我們的國家建設的更加美好!五星紅旗是莊嚴而美麗的,并且它與我們數(shù)學也有著密切的聯(lián)系,這也就是我們今天所要研究的內(nèi)容:比例(板書課題:比例)
合作探究
二、新授(課件出示不同大小的國旗圖案)
師:畫面上出現(xiàn)了四幅不同大小的國旗,請同學們?nèi)芜x兩面國旗來算一算它們各自長與寬的比值是多少?然后觀察結果,你能發(fā)現(xiàn)什么?
。ò逖,觀察到比值相等,教師板書:兩個比相等)
師:那我們就可以將這兩個比用等號連接。(教師板書生匯報的兩個相等的比)
教師邊指著這組相等的比一邊說:好,像這樣表示兩個比相等的式子就叫做比例。(把定義補充完整)。這就是比例的意義(把課題板書完整)請同學們齊讀。
請同學們再默讀一遍比例的意義,思考:想要組成比例必須要具備哪些條件?(生回答,等式;有兩個相等的比)
。ń處熢購娬{(diào):一定是比值相等的兩個比才能組成比例。)
師:你還能從四面國旗中找出哪些比例?
。▽懺诰毩暠旧,然后匯報。教師板書)
師:我們在學習比的時候,可以把比寫成分數(shù)的形式,比如:60:40=60/40,那比例也能寫成分數(shù)的形式嗎?怎么寫?(口答)
師:我們剛才一直在強調(diào)比和比例的聯(lián)系,那么比就是比例嗎?
從形式上區(qū)分:比由兩個數(shù)組成;比例由四個數(shù)組成。
從意義上區(qū)分:比表示兩個數(shù)之間的倍數(shù)關系;比例表示兩個比相等的式子。
拓展應用下面哪些組的兩個比可以組成比例?如果能,在()打?qū)μ枴?/p>
10:2和35:42()0.6:0.2和):4和3:():和12:8()
總結小強3分鐘走了180米,小剛1小時走了3.6千米。小強說他們各自所走的路程和時間的比能組成比例,小剛說不能組成比例。請問:誰說的對?
作業(yè)布置做一做。
板書設計比例的意義
2.4:1.6=60:40=
2.4:1.6=60:40
。ɑ颍=
《比例的意義》教案 篇6
【學習目標】
1、經(jīng)歷抽象反比例函數(shù)概念的過程,體會反比例函數(shù)的含義,理解反比例函數(shù)的概念。
2、理解反比例函數(shù)的意義,根據(jù)題目條件會求對應量的值,能用待定系數(shù)法求反比例函數(shù)關系。
3、讓學生經(jīng)歷在實際問題中探索數(shù)量關系的過程,養(yǎng)成用數(shù)學思維方式解決實際問題的習慣,體會數(shù)學在解決實際問題中的作用。
【學習重點】
理解反比例函數(shù)的意義,確定反比例函數(shù)的解析式。
【學習難點】
反比例函數(shù)的解析式的`確定。
【學法指導】
自主、合作、探究
教學互動設計
【自主學習,基礎過關】
一、自主學習:
(一)復習鞏固
1.在一個變化的過程中,如果有兩個變量x和y,當x在其取值范圍內(nèi)任意取一個值時,y,則稱x為,y叫x的.
2.一次函數(shù)的解析式是:;當時,稱為正比例函數(shù).
3.一條直線經(jīng)過點(2,3)、(4,7),求該直線的解析式.
以上這種求函數(shù)解析式的方法叫:
(二)自主探究
提出問題:下列問題中,變量間的對應關?可用怎樣的函數(shù)關系式表示?
1.如圖K-3-8,已知反比例函數(shù)的圖象經(jīng)過三個點A(-4,-3),B(2m,y1),C(6m,y2),其中m>0.
(1)當y1-y2=4時,求m的值;
(2)過點B,C分別作x軸、y軸的垂線,兩垂線相交于點D,點P在x軸上,若△PBD的面積是8,請寫出點P的坐標(不需要寫解答過程).
26.1.2反比例函數(shù)的圖象和性質(zhì):課文練習
1.下面關于反比例函數(shù)y=-3x與y=3x的說法中,不正確的是( )
A.其中一個函數(shù)的圖象可由另一個函數(shù)的圖象沿x軸或y軸翻折“復印”得到[
B.它們的圖象都是軸對稱圖形
C.它們的圖象都是中心對稱圖形
D.當x>0時,兩個函數(shù)的函數(shù)值都隨自變量的增大而增大
《比例的意義》教案 篇7
教學目標
1、理解比例的意義,能運用比例的意義判斷兩個比能否組成比例,并會組比例。
2、探索國旗中蘊含的數(shù)學知識,滲透愛國主義教育,提高學生的認知能力。
3、體驗獲得成功的樂趣,建立學好數(shù)學的自信心。
教學重難點
教學重點:理解比例的意義。
教學難點:應用比例的意義判斷兩個比能否組成比例。
教學工具
ppt課件
教學過程
請同學們回憶一下上學期我們學過的比的知識,誰能說說:
1、什么叫做比?比的書寫形式有哪些?
2、什么叫做比值?
一、情境引入
同學們,每個星期一的早上我們學校都會舉行什么活動?我們一起說吧。
(生齊聲說:升旗儀式)
課件出示:升旗儀式的情景
你們對這個情景已經(jīng)非常熟悉了,你們對這面國旗的長和寬分別是多少了解嗎?
不了解是吧?那老師告訴大家:
課件出示并介紹:我們這面國旗的長是2.4米、寬是1.6米。
提問:你除了在升旗儀式上還在生活中的哪些地方加到過國旗呢?
指名回答(學校周一升旗時操場上的國旗、會議桌上的國旗、教室后面的國旗、)
在很多的場合像我們的教室、還有大型的慶典活動上我們都可以看到莊嚴的國旗。
那么你們知道這些國旗的尺寸大小嗎?追問:知道不知道?
那么下面呢我們看一下老師收集到的一些信息。
課件出示不同場合下的國旗
課件出示:不同場合下的國旗
提問:誰能用最簡短的語言描述一下這四面國旗分別出現(xiàn)在什么地方?并讀出它的長和寬(1)天安門廣場的國旗,長5米,寬10/3米。
(2)學校的國旗長2.4米,寬1.6米。
(3)教室里面的國旗長60厘米,寬40厘米。
(4)會議桌上的國旗長15厘米,寬10厘米。
那我們現(xiàn)在看到的這些國旗的大小都一樣嗎?
師小結:在不同的場合的國旗的大小是不一樣的。
追問:它們的形狀相同嗎?(相同)
盡管它們的大小不一樣,但形狀相同。我們看上去每面國旗在我們的眼中還是那么的莊嚴和美麗,那么的和諧和統(tǒng)一是嗎?那么到底按照怎么樣的標準才能制作出這種大小不同、形狀相同的國旗呢?其實每面國旗的里面是否也蘊含著我們的數(shù)學知識呢—比例!(板書課題:比例)下面我們就一起來研究這個問題。
二:探究新知
下面請同學們拿出練習本,聽清要求:
先寫出圖中國旗長與寬的比然后再求出它的比值。
學生自主計算,教師巡視。
提醒:同學們在計算時,一定要認真。注意計算結果的準確性。
哪個同學愿意和大家來分享你的成果?和大家勇敢的分享你的成果。指名回答
根據(jù)學生匯報并分類板書。
5:10/3=3/2
2.4::16=3/2
60:40=3/2
15:10=3/2
大家同意他的計算結果嗎?
師:請同學們觀察黑板上的計算結果,看看有什么發(fā)現(xiàn)。
指名回答
師小結:說的非常好,這是個很重大的發(fā)現(xiàn),這四面國旗它們的長與寬都有變化,但比值都是3/2 。其實呀不止這兩面紅旗長與寬的比是3:2,所有國旗長與寬的'比的比值都是3/2,這在國旗法中有明文規(guī)定的
板書:5:10/3 2.4:1.6
師:像這樣的兩個比,它們的比值相等的,也就說這兩個比相等,那么我們可以用什么符號把它們連接起來變成一個等式?
來大家一起把這個等式念一下(學生齊讀)5:10/3=2.4:1.6
提問:那么誰能根據(jù)這四個5:10/3=3/2
2.4:1.6=3/2
60:40=3/2
15:10=3/2
相等的比也像老師一樣寫一個等式呢?
指名回答并根據(jù)匯報板書
我們寫的這些等式數(shù)學上把它叫做比例。誰能根據(jù)自己的理解說說什么叫做比例?指名回答
老師明確:我們把表示兩個比相等的式子叫做比例。(重點強調(diào)比值相等)
大家齊讀兩遍,開始。
學生齊讀
這就是我們今天要學習的內(nèi)容—比例的意義
板書課題
提問:在讀了比例的意義以后,在這句話里你認為那些字非常重要呢?
指名回答
教師明確:兩個比相等并在這句話的字的下面標上黑點
表示兩個比相等的式子叫做比例。
2、深入理解比例的意義
那大家看一看:15∶3和60∶12能組成比例嗎?你是怎樣判斷的?對,15∶3的比值是5;60∶12的比值也是1.5,所以說15∶3和60∶12能組成比例。
那同學們,要判斷兩個比能不能組成比例,關鍵是看什么啊?對,判斷兩個比能不能組成比例,關鍵要看它們的比值是否相等。
追問并出示課件:那同學們,要判斷兩個比能不能組成比例,關鍵是看什么啊?
(指名回答)
大家同意嗎?
對學生的回答進行評價
追問:如果不相等的話,能組成比例嗎?
教學比例的另外一種寫法:同學們知道比還有另外一種寫法(分數(shù)的寫法)像2.4:1.6=15:10這個比例還可以寫成2.4/1.6=15/10,這是兩種不同的寫法!
(3)、合作探究:在四面國旗的長和寬的數(shù)據(jù)中,你還能找出哪些比可以組成比例??
請同學們在小組內(nèi)討論討論!看哪個小組的同學找的多,開始吧!
班內(nèi)交流:哪位同學說一說你們小組找出來哪些比例?
同學們真了不起,從這四面大小不同的國旗中,就組成了這么多不同的比例。比老師找的還多呢,請看屏幕
展示:2.4:1.6 = 60:40 (長:寬=長:寬)
1.6:2.4 = 40:60 (寬:長=寬:長)
2.4:60 =1.6:40 (長:長=寬:寬)
這里能組成的比例還有很多,同學們課下再找出其他的比例吧!
2、比和比例的區(qū)別?
(1)同學們,以前學了比,現(xiàn)在又學比例,那你覺得比和比例一樣嗎?現(xiàn)在老師有個問題需要同學們幫忙解決一下,請看屏幕,“比和比例有什么區(qū)別?”下面請同學們小組內(nèi)探討,一會兒告訴老師好嗎?好,開始吧!
(2)交流:誰愿意來說一說你們小組討論的結果?
(生答)
(3)展示:說的太好了,比由兩個數(shù)組成,是一個式子,表示兩個數(shù)相除。比例由四個數(shù)組成,是一個等式。它是表示兩個比相等的式子。,請看屏幕上的表格
三、智慧城堡
師小結:今天這節(jié)課同學們表現(xiàn)得特別好,我們一起去智慧城堡闖闖關同學們有沒有信心?
四、談收獲
這節(jié)課,大家都非常積極和認真,老師相信同學們的收獲肯定很多,那誰想來和大家分享一下你的收獲呢?
五、全課總結:
師小結:比例的知識在我們生活中的應用非常廣泛,法國著名的建筑物埃菲爾鐵塔,希臘雕像斷臂維納斯,還有閃爍的五角星,這些事物之所以能給我們美感,是因為它們的構造都和一個詞“黃金比例”有關。希望你們課后能從生活中找到更多的“比例”,發(fā)現(xiàn)更多的數(shù)學知識,到那時,相信你們能夠更深刻的感受到數(shù)學知識在我們的生活中真的是無時不在,無處不在。
課后小結
比例的知識在我們生活中的應用非常廣泛,法國著名的建筑物埃菲爾鐵塔,希臘雕像斷臂維納斯,還有閃爍的五角星,這些事物之所以能給我們美感,是因為它們的構造都和一個詞“黃金比例”有關。希望你們課后能從生活中找到更多的“比例”,發(fā)現(xiàn)更多的數(shù)學知識,到那時,相信你們能夠更深刻的感受到數(shù)學知識在我們的生活中真的是無時不在,無處不在。
《比例的意義》教案 篇8
教學目標:
1、 理解比例的意義,認識比例各部分名稱,初步了解比和比例的區(qū)別;理解比例的基本性質(zhì)。
2、 能根據(jù)比例的意義和基本性質(zhì),正確判斷兩個比能否組成比例。
3、 在自主探究、觀察比較中,培養(yǎng)學生分析、概括能力和勇于探索的精神。
4、 通過自主學習,讓學生經(jīng)經(jīng)歷探究的過程,體驗成功的快樂。
教學重、難點:
重點:理解比例的意義和基本性質(zhì),能正確判斷兩個比能否組成比例。
難點:自主探究比例的基本性質(zhì)。
教學準備:CAI課件
教學過程:
一、復習、導入
1、 談話:同學們,我們已經(jīng)學過了比的有關知識,說說你對比已經(jīng)有了哪些了解?(生答:比的意義、各部分名稱、基本性質(zhì)等。)
還記得怎樣求比值嗎?
2、 課件顯示:算出下面每組中兩個比的比值
、 3:5 18:30 ⑵ 0.4:0.2 1.8:0.9
、 5/8:1/4 7.5:3 ⑷ 2:8 9:27
[評析:從學生已有的知識經(jīng)驗入手,方便快捷,為新課做好準備。]
二、認識比例的意義
。ㄒ唬┱J識意義
1、 指名口答上題每組中兩個比的比值,課件依次顯示答案。
師問:口算完了,你們有什么發(fā)現(xiàn)嗎?(3組比值相等,1組不等)
2、是啊,生活中確實有很多像這樣的比值相等的例子,這種現(xiàn)象早就引起了人們的重視和研究。人們把比值相等的兩個比用等號連起來,寫成一種新的式子,如:3:5=18:30 。
。ㄕn件顯示:“3:5”與“18:30”先同時閃爍,接著兩個比下面的比值隱去,再用等號連接)
最后一組能用等號連接嗎?為什么?(課件顯示:最后一組數(shù)據(jù)隱去)
數(shù)學中規(guī)定,像這樣的一些式子就叫做比例。(板書:比例)
[評析:通過口算求比值,發(fā)現(xiàn)有3組比值相等,1組不等,自然流暢地引出比例。有效的課堂教學,就需要像這樣做好已有經(jīng)驗與新知識的銜接。]
3、今天這節(jié)課我們就一起來研究比例,你想研究哪些內(nèi)容呢?
。ㄉ穑合胙芯勘壤囊饬x,學比例有什么用?比例有什么特點……)
5、 那好,我們就先來研究比例的意義,到底什么是比例呢?觀察這些式子,你能說出什么叫比例嗎?
。ǜ鶕(jù)學生的回答,教師抓住關鍵點板書:兩個比 比值相等)
同學們說的比例的意義都正確,不過數(shù)學中還可以說得更簡潔些。
課件顯示:表示兩個比相等的式子叫做比例。
學生讀一讀,明確:有兩個比,且比值相等,就能組成比例;反之,如果是比例,就一定有兩個比,且比值相等。
[評析:比例的意義其實是一種規(guī)定,學生只要搞清它“是什么”,而不需要知道“為什么”。本環(huán)節(jié)讓學生先觀察,再用自己的話說說什么是比例,學生都能說出比例意義的關鍵所在——兩個比且比值相等,教師再精簡語句,得出概念,注重了對學生語言概括能力的培養(yǎng)。在總結得出概念之后,教師沒有嘎然而止,而是繼續(xù)引導學生讀一讀,從正反兩方面進一步認識比例,加深了學生對比例的內(nèi)涵的理解。]
。ǘ┚毩
1、 出示例1 根據(jù)下表,先分別寫出兩次買練習本的錢數(shù)和本數(shù)的.比,再判斷這兩個比能否組成比例。
第一次
第二次
買練習本的錢數(shù)(元)
1.2
2
買的本數(shù)
3
5
。1)學生獨立完成。
(2)集體交流,明確:根據(jù)比例的意義可以判斷兩個比能否組成比例。
2、完成練習紙第一題。
一輛汽車上午4小時行駛了200千米,下午3小時行駛了150千米。
、欧謩e寫出上、下午行駛的路程和時間的比,這兩個比能組成比例嗎?為什么?
、品謩e寫出上、下午行駛的路程的比和時間的比,這兩個比能組成比例嗎?為什么?
[評析:這兩道練習題既幫助學生鞏固了比例的意義,學會根據(jù)比例的意義判斷兩個比能否組成比例;又讓學生進一步體驗到比例在生活中的應用。練習1其實是對例題的巧妙補充。]
3、剛才我們先寫出了比,然后再寫出了比例,你覺得比和比例一樣嗎?有什么區(qū)別?
。ㄒ龑W生歸納出:比例由兩個比組成,有四個數(shù);比是一個比,有兩個數(shù))
4、教學比例各部分的名稱
。1) 課件出示: 3 : 5
前項 后項
。2) 課件出示:3 : 5 = 18 : 30
內(nèi)項
外項
(3) 如果把比例寫成分數(shù)的形式,你能指出它的內(nèi)、外項嗎?
課件出示:3/5=18/30
[評析:由練習題中先寫比、再寫比例,自然引出比和比例的的區(qū)別,再由比的各部分名稱到比例的各部分名稱,環(huán)環(huán)相扣、自然流暢、一氣呵成。]
5、小結、過渡:
剛才我們已經(jīng)研究了比例的意義、各部分名稱,也知道了比例在生活中有很多的應用,接下來我們一起來研究比例是否也有什么規(guī)律或者性質(zhì),有興趣嗎?
三、探究比例的基本性質(zhì)
1、課件先出示一組數(shù):3、5、10、6
再出示:運用這四個數(shù),你能組成幾個等式?(等號兩邊各兩個數(shù))
2、 獨立思考,并在作業(yè)本上寫一寫。
學生組成的等式可能有:10÷5=6÷3 或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……
根據(jù)學生回答板書: 3×10=5×6 3:5=6:10
3:6=5:10
5:3=10:6
6:3=10:5
3、 引導發(fā)現(xiàn)規(guī)律
(1)還有不同的乘法算式嗎?(沒有,交換因數(shù)的位置還是一樣)
乘法算式只能寫一個,比例卻寫了這么多,這些比例一樣嗎?(不同,因為比值各不相同)
。2)那么,這些比例式中,有沒有什么相同的特點或規(guī)律呢?仔細觀察,你能發(fā)現(xiàn)比例的性質(zhì)或規(guī)律嗎?
。3)學生先獨立思考,再小組交流,探究規(guī)律。
。ò鍟簝蓚外項的積等于兩個內(nèi)項的積。)
[評析:“運用這四個數(shù),你能組成幾個等式”,不同的學生寫出的算式各不相同,也會有多少之別,這里充分發(fā)揮交流的作用,讓每一個學生的思考都變成有用的教學資源?紤]到直接探究比例的基本性質(zhì)學生會有困難,教師作了適當?shù)囊龑,通過乘法算式和比例式的橫向聯(lián)系,讓學生在變中尋不變,從而探究出性質(zhì)。]
4、驗證:是不是任意一個比例都有這樣的規(guī)律?
、耪n件顯示復習題(4組),學生驗證。
、茖W生任意寫一個比例并驗證。
⑶完整板書:在比例里,兩個外項的積等于兩個內(nèi)項的積。這就是比例的基本性質(zhì)。
[評析:給學生提供大量的事例,要求他們多方面驗證,從個別推廣到一般,讓學生學會科學地、實事求是地研究問題。]
5、思考3/5=18/30是那些數(shù)的乘積相等。課件顯示:交叉相乘。
6、小結:剛才我們是怎樣發(fā)現(xiàn)比例的基本性質(zhì)的?(寫了一些比例式,觀察比較,發(fā)現(xiàn)規(guī)律,再驗證)
四、 綜合練習
完成練習紙2、3、4
附練習紙:2、下面每組中的兩個比能組成比例嗎?把組成的比例寫下來,并說說判斷的理由。
14 :21 和 6 :9
1.4 :2 和 5 :10
3、判斷下面哪一個比能與 1/5:4組成比例。
、5:4 ② 20:1
、1:20 ④5:1/4
4、在( )里填上合適的數(shù)。
1.5:3=( ):4
=
12:( )=( ):5
[評析:習題的安排旨在對比例的意義和基本性質(zhì)進行進一步的鞏固和應用,最后一道開放題答案不唯一,意在進一步讓學生體驗和感悟數(shù)學的“變”與“不變”的美妙與統(tǒng)一。]
五、全課總結(略)
《比例的意義》教案 篇9
教學目標:
1、使學生理解正比例的意義,能根據(jù)正比例的意義判斷是不是成正比例。
2、培養(yǎng)學生概括能力和分析判斷能力。
3、培養(yǎng)學生用發(fā)展變化的觀點來分析問題的能力。
教學重點:
成正比例的量的特征及其判斷方法。
教學難點:
理解兩個變量之間的比例關系,發(fā)現(xiàn)思考兩種相關聯(lián)的量的變化規(guī)律.
教 法:
啟發(fā)引導法
學 法:
自主探究法
教 具:
課件
教學過程:
一、定向?qū)W(5分)
1、已知路程和時間,求速度
2、已知總價和數(shù)量,求單價
3、已知工作總量和工作時間,求工作效率
4、導入課題
今天我們來學習成正比例的`量。
5、出示學習目標
1、理解正比例的意義。
2、能根據(jù)正比例的意義判斷兩種量是不是成正比例。
二、自主學習(8分)
自學內(nèi)容:書上45頁例1
自學時間:8分鐘
自學方法:讀書法、自學法
自學思考:
1、舉例說明什么是成正比例的量,成正比例的量要具備幾個條件?
2、正比例關系式是什么?
。1)兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值(也就是商)一定,這兩個量就叫做成正比例的量,它們的關系叫做正比例關系。例如底面積一定,體積和高成正比例。
(2)構成正比例關系的兩種量,必須具備三個條件:一是必須是兩種相關聯(lián)的量,二是一種量變化另一種量也隨著變化,三是比值(商)一定
(3)如果用x和y表示兩種相關聯(lián)的量,用k表示它們的比值(一定),正比例關系怎樣用字母表示出來?
y/x=k(一定)
。4)不計算,根據(jù)圖像判斷,如果杯中水的高度是7厘米,那么水的體積是175立方米?225立方厘米的水有9厘米。
2、歸類提升
引導學生小結成正比例的量的意義和關系式。
三、合作交流(5分)
第46頁正比例圖像
1、正比例圖像是什么樣子的?
2、完成46頁做一做
3、各組的b1同學上臺講解
四、質(zhì)疑探究(5分)
1、第49頁第1題
2、第49頁第2題
3、你還有什么問題?
五、小結檢測(8分)
1、什么是正比例關系?如何判斷是不是正比例關系?
2、檢測
1、49頁第3題。
六、堂清作業(yè)(9分)
練習九頁第4、5題。
板書設計:
成正比例的量
兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值(也就是商)一定,這兩個量就叫做成正比例的量,它們的關系叫做正比例關系。
關系式:
y/x=k
。ㄒ欢ǎ
《比例的意義》教案 篇10
教學目標:
1、學生根據(jù)具體情境教學,結合實例認識正比例,理解正比例的意義,正比例的意義教學設計。
2、能根據(jù)正比例的意義,判斷兩個相關聯(lián)的量是不是成正比例。
3、結合豐富的事例,認識正比例,體會數(shù)學源于生活,進一步提高學習興趣。教學重點:
結合豐富的事例,認識正比例。能根據(jù)正比例的意義,判斷兩個相關聯(lián)的量是不是成正比例。
教學難點:
能根據(jù)正比例的意義,判斷兩個相關聯(lián)的量是不是成正比例。
教學關鍵:
理解成正比例的兩個量的意義。
教學過程:
一、復習準備:
口答
1、已知路程和時間,怎樣求速度?
2、已知總價和數(shù)量,怎樣求單價?
3、已知工作總量和工作時間,怎樣求工作效率?
二、數(shù)學活動。在學活動的過程中,感受數(shù)學思考過程的條理性和數(shù)學結論的確定性,并樂于與人交流。
活動一:在情境中感受兩種相關聯(lián)的量之間的變化規(guī)律。
(一)情境一:
課件出示:
1、觀察圖,分別把正方形的周長與邊長,面積與邊長的變化情況填入表格中。請根據(jù)你的觀察,把數(shù)據(jù)填在表中。
2、填完表以后思考討論,教案《正比例的意義教學設計》。正方形的面積與邊長的變化是否有關系?它們的變化分別有怎樣的規(guī)律?規(guī)律相同嗎?說說從數(shù)據(jù)中發(fā)現(xiàn)了什么?
3、小結:正方形的周長和面積都隨邊長的增加而增加,在變化過程中,正方形的周長與邊長的比值一定都是一定的。
特點是:
、賰煞N相關聯(lián)的量
、谝环N量擴大(或縮小)另一種量也擴大(或縮小)
③兩種量中相對應的兩個量的比的比值是一定的。
4、正方形的面積與邊長的比是邊長,是一個不確定的值。
學生在小組內(nèi)練說發(fā)現(xiàn)的.規(guī)律,初步感知正比例的判定。
(二)情境二:
1、一種汽車行駛的速度為90千米/小時。汽車行駛的時間和路程如下:
2、請把下表填寫完整。3、從表中你發(fā)現(xiàn)了什么規(guī)律?說說你發(fā)現(xiàn)的規(guī)律:路程與時間的比值(速度)相同。
(三)情境三:1、一些人買一種蘋果,購買蘋果的質(zhì)量和應付的錢數(shù)如下。
2、把表填寫完整。3、從表中發(fā)現(xiàn)了什么規(guī)律?應付的錢數(shù)與質(zhì)量的比值(也就是單價)相同。
3、說說以上兩個例子有什么共同的特點。
小結:路程隨時間的變化而變化,路程與時間的比值相同;應付的錢數(shù)隨購買蘋果的質(zhì)量的變化而變化,應付的錢數(shù)與質(zhì)量的比值相同。
4、正比例關系:觀察思考成正比例的量有什么特征?
小結:
(1)兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。這就是我們今天要學習的內(nèi)容。
追問:判斷兩種相關聯(lián)的量成不成正比例的關鍵是什么?(比值是不是一定)
(2)字母表達關系式。
如果字母y和x分別表示兩種相關聯(lián)的量,用k表示它們的比值,正比例關系怎樣用字母表示出來?=k(一定)
(3)質(zhì)疑。
師:根據(jù)正比例的意義以及表示正比例關系的式子想一想:構成正比例關系的兩種量必須具備哪些條件?
三、鞏固練習
(一)想一想:請生用自己的語言說一說。與同桌交流,再集體匯報
1、正方形的周長與邊長成正比例嗎?面積與邊長呢?為什么?
2、根據(jù)小明和爸爸的年齡變化情況
把表填寫完整。父子的年齡成正比例嗎?為什么?
(二):練一練。教師適度點撥引導,強調(diào)正比例關系判斷的關鍵。先自己獨立完成,然后集體訂正,說理由。
1、判斷下面各題中的兩個量,是否成正比例,并說明理由。
(1)每袋大米的質(zhì)量一定,大米的總質(zhì)量和袋數(shù)。
(2)一個人的身高和年齡。
(3)寬不變,長方形的周長與長。
2、根據(jù)下表中平行四邊形的面積與高相對應的數(shù)值,判斷當?shù)资?厘米的時候,它們是是成正比例,并說明理由。
3、買郵票的枚數(shù)與應付的錢數(shù)成正比例嗎?填寫表格。先填寫表格,再說明理由
4、畫一畫,你會有新的發(fā)現(xiàn)。
彩帶每米4元,購買2米、3米…彩帶分別需要多少錢?
①填一填:(長度:米,價格:元)
、诋嬕划,把上表中長度和價錢對應的點描在坐標紙上,再順次連接起來?窗l(fā)現(xiàn)了什么?
板書:
正比例的意義
、賰煞N相關聯(lián)的量
、谝环N量擴大(或縮小)另一種量也擴大(或縮小)
③兩種量中相對應的兩個量的比的比值是一定的
路程÷時間=速度(一定)總價÷數(shù)量=單價(一定)
=k(一定)
《比例的意義》教案 篇11
教學要求:
1.使學生認識正比例關系的意義,理解、掌握成正比例量的變化規(guī)律及其特征,能依據(jù)正比例的意義判斷兩種相關聯(lián)的量成不成正比例關系。
2.進一步培養(yǎng)學生觀察、分析、綜合和概括等能力,讓學生掌握判斷兩種相關聯(lián)量成不成正比例關系的方法,培養(yǎng)學生判斷、推理的能力。
教學重點:
認識正比例關系的意義。
教學難點:
掌握成正比例量的變化規(guī)律及其特征。
教學過程:
一、復習鋪墊
1.說出下列每組數(shù)量之間的關系。
(1)速度時間路程
(2)單價數(shù)量總價
(3)工作效率工作時間工作總量
2.引入新課。
上面是已經(jīng)學過的一些常見數(shù)量關系,每組數(shù)量中,數(shù)量之間是有聯(lián)系的,存在著相依關系。當其中有一個量變化時,另一個量也隨著變化,而且這種變化是有規(guī)律的,這節(jié)課開始,我們就來研究和認識這種變化規(guī)律。今天,先認識正比例關系的意義。(板書課題)
二、自主探究:
1.教學例1。
出示例l。讓學生計算,在課本上填表,并思考能發(fā)現(xiàn)什么。指名口答,老師板書填表。讓學生觀察表里兩種量變化的數(shù)據(jù),思考:
(1)表里有哪兩種數(shù)量,這兩種數(shù)量是怎樣變化?
(2)長方形的面積隨著那種量的變化而變化的?你能看出它們變化的特點嗎?
。3)分別找出面積與款項對應的數(shù),面積與寬的比各是幾比幾?比值各是多少?
引導學生進行討論,得出:
(1)表里的兩種量是長方形的寬與面積(長與面積)。寬與面積(長與面積)是兩種相關聯(lián)的量,(板書:兩種相關聯(lián)的量)面積隨著寬(長)的變化而變化。
(2)寬(長)擴大,面積也擴大;寬(長)縮小,面積也縮小。
(3)可以看出它們的變化規(guī)律是:面積與寬(面積與長)比的比值總是一定的。(板書:面積和寬比的比值一定)因為面積和寬(面積與長)對應數(shù)值比的比值都是5(2)。提問:這里比值5(2)是什么數(shù)量?誰能說出它的數(shù)量關系式?板書:面積/寬=長(一定)面積/長=寬(一定)想一想,這個式子表示的是什么意思?(把上面板書補充成:長一定時,面積和寬比的比值一定寬一定時,面積和長比的比值一定)
2.教學例2。
出示例2。要求學生按剛才學習例1的方法學習例2,然后把你學習中的發(fā)現(xiàn)綜合起來告訴大家。學生觀察思考后,指名回答。然后再提問:這兩種相關聯(lián)量的變化規(guī)律是什么?你是怎樣發(fā)現(xiàn)的?你能用數(shù)量關系式表示出來嗎?誰來說說這個式子表示的意思?(把板書補充成單價一定時,總價和數(shù)量比的'比值一定)
3.概括正比例的意義。
(1)綜合例1、例2的共同點。
提問:請大家比較例l和例2,你發(fā)現(xiàn)這兩個例題有什么共同的地方?(①都有兩種相關聯(lián)的量;②都是一種量隨著另一種量變化;③兩種量里對應數(shù)值的比的比值一定)
(2)概括正比例關系的意義。
像例l、例2里這樣的兩種相關聯(lián)的量是怎樣的關系呢,請同學們看課本第95頁最后連個自然段。說明:根據(jù)剛才學習例1、例2時發(fā)現(xiàn)的規(guī)律,這里有兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比的比值一定,這兩種量就叫做成正比例的量,它們之間的關系叫做正比例關系。追問;兩種相關聯(lián)量成不成正比例的關鍵是什么?(比值是不是一定)提問:如果用x和y表示兩種相關聯(lián)的量,用k表示它們的比值,那么上面這種數(shù)量關系式可以怎樣寫呢?指出:這個式子表示兩種相關聯(lián)的量x和y,y隨著x的變化而變化,它們的比值k是一定的。這時就說x和y成正比例關系。所以,兩個量成正比例關系,我們就用式子=k(一定)來表示。
4.教學例3學生看書自學,小組討論,集體交流。
。1)數(shù)量與時間是不是兩種相關聯(lián)的量?
。2)數(shù)量與時間有什么關系?他們的比值是誰?比值是不是不變的?
(3)判斷數(shù)量與時間是不是成正比例?
5.完成97頁練一練。
三、鞏固練習
1.(1)提問:例l里有哪兩種相關聯(lián)的量?這兩種量成正比例關系嗎,為什么?例2里的兩種量是不是成正比例的量?為什么?提問:看兩種相關聯(lián)的量是不是成正比例,關鍵要看什么?
2.做練習十一第1題。
讓學生讀題思考。指名依次口答題里的問題。指出:根據(jù)上面所說的正比例的意義,要知道兩個量是不是成正比例關系,只要先看兩種量是不是相關聯(lián)的量,再看兩種量變化時比值是不是一定。如果兩種相關聯(lián)的量變化時比值一定,它們就是成正比例的量,相互之間成正比例關系。
3.下列題里有哪兩種相關聯(lián)的量?這兩種量成不成正比例?為什么?
一種蘋果,買5千克要10元。照這樣計算,買15千克要30元。
四、課堂小結
這節(jié)課學習了什么內(nèi)容?正比例關系的意義是什么?用怎樣的式子表示y和x這兩種相關聯(lián)的量成正比例?判斷兩種相關聯(lián)的量是不是成正比例,關鍵看什么?關鍵是列出關系式,看是不是比值一定。
五、家庭作業(yè)
練習十一第2~6題。
《比例的意義》教案 篇12
教學內(nèi)容:
《反比例的意義》是六年制小學數(shù)學(北師版)第十二冊第二單元中的內(nèi)容。是在學過“正比例的意義”的基礎上,讓學生理解反比例的意義,并會判斷兩個量是否成反比例關系,加深對比例的理解。
學生分析:
在此之前,他們學習了正比例的意義,對“相關聯(lián)的量”、“成正比例的兩個量的變化規(guī)律”、“如何判斷兩個量是否成正比例”已經(jīng)有了認識,這為學習《反比例的意義》奠定了基礎。
教學目標:
1、知識與技能目標:使學生認識成反比例的量,理解反比例的意義,并學會判斷兩種相關聯(lián)的量是否成反比例。進一步培養(yǎng)學生觀察、學析、綜合和概括等能力。初步滲透函數(shù)思想。
2、過程與方法:為學生營造一個經(jīng)歷知識產(chǎn)生過程的情境。
3、情感與態(tài)度目標:使學生在自主探索與合作交流中體驗成功的樂趣,進一步增強學好數(shù)學的信心。
教學重點:理解反比例的意義。
教學難點:兩種相關聯(lián)的量的變化規(guī)律。
教學準備:學生準備:復習正比例關系,預習本節(jié)內(nèi)容。
教師準備:投影片3張,每張有例題一個。
教學過程設計:
一、談話引入,激發(fā)興趣。
1、談話:通過最近一段時間的觀察,我發(fā)現(xiàn)同學們越來越聰明了,會學數(shù)學了,這是因為同學們掌握了一定的數(shù)學學習的基本方法。下面請回想一下,我們是怎樣學習成正比例的量的?這節(jié)課我們用同樣的學習方法來研究比例的另外一個規(guī)律。
2、導入:在實際生活中,存在著許多相關聯(lián)的量,這些相關聯(lián)的量之間有的是成正比例關系,有的成其他形式的關系,讓我們一起來探究下面的問題。
二、創(chuàng)設情景引新:
。ǔ鍪荆菏䝼小方塊)
師:同學們,這十二個小方塊有幾種排法?
(生答后,老師板書下表的排列過程)
每行個數(shù)1234612
行數(shù)1264321
師:請你觀察上表中每行個數(shù)與行數(shù)成正比例關系嗎?為什么?
生:……
師:這兩種量這間有關系嗎?有什么關系?這就是我們今天要研究的內(nèi)容。
。ǔ鍪菊n題:反比例的意義)
三、合作自學探知
1、學習例4。
。1)出示例4。
師:請同學們在小組內(nèi)互相交流,并圍繞這三個問題進行討論,再選出一位組員作代表進行匯報。
A、表中有哪兩種量?
B、怎樣隨著每小時加工的數(shù)量變化?
c、每兩個相對應的數(shù)的乘積各是多少?
學生討論……
生反饋:……
師:能不能舉出三個例子
生:1020=6002030=6003020=600……
師:這里的600是什么數(shù)量?你能說出這里的數(shù)量關系式嗎?
生:……
[板書出示:每小時加工數(shù)加工時間=零件總數(shù)(一定)]
2、自學例5:
。1)出示例5:
師:先請同學們按要求在書上填空,并說說是怎樣算的?根據(jù)什么?
生:……
師:模仿例4的'方法,提出三個問題自己學習例5(出示三個問題)
生:……
3、討論準備題:
。1)請你根據(jù)例4的方法,四人小組內(nèi)說一說。
(2)請你舉例說明表中每行個數(shù)與行數(shù)是什么關系?為什么?
四、比較感知特征
綜合例4、例5、準備題的共同點師:比較一下例4、例5和準備題,請同學們在小組中討論一下,互相說說這三個題目有什么共同的特征?
生:……
五、引導概括意義
1、概括反比例意義。
學生在說相同點時老師邊引導邊說明。當學生說出三個特征后,教師板書這三個特征。
師:請同學們根據(jù)我們上節(jié)課學的正比例的意義猜測一下,符合三個特征的二個量叫做成什么量?相互這間成什么關系?
生:……
師:請閱讀課本第十六頁,同桌互相說說怎樣的兩個量成反比例關系。
學生互相練習……
師:哪位同學來告訴大家,兩種量如果成反比例必須符合哪三個條件?
生:……
師:例4、例5和準備題中的兩種量成不成反比例?為什么?
生:……(學生回答后,老師及時糾正)
師:如果用x和y表示兩種相關聯(lián)的量,用k表示它們的乘積,那么上面這種關系式可以怎樣寫呢?
生:……[板書出示y=k(一定)]
2、教學例6。
。1)課件出示例6。
。▽W生讀題、思考)
師:怎樣判斷兩種量成不成反比例?
師:哪位同學說說,每天播種的公頃數(shù)和要用的天數(shù)是不是成反比例?為什么?
生:因為每天播種的公頃數(shù)要用的天數(shù)=播種的總公頃數(shù)(一定),所以每天播種的公頃數(shù)和要用的天數(shù)是成反比例的量。
六、小結:這節(jié)課同學們學到了哪些知識?運用了哪些學習方法?還有哪些不懂的問題?
[案例分析]:
通過聯(lián)系生活實際,學習成反比例的量,體會數(shù)學與生活的緊密聯(lián)系。不對研究的過程做詳細的引導和說明,只提供研究的素材和數(shù)據(jù),出示關鍵性的結論,充分發(fā)揮學生的主動性,以體現(xiàn)自主探究、合作交流的學習過程,獲得學習成功的體驗。通過引導學生觀察、分析、比較、歸納,形成良好的思維習慣和思維品質(zhì)。同時加深學生對數(shù)量關系的認識,滲透函數(shù)思想,為中學的數(shù)學學習做好知識準備。學習方式的轉變是新課改的顯著特征,就是把學習過程中的分析、發(fā)現(xiàn)、探究、創(chuàng)新等認識活動凸顯出來。在設計《反比例的意義》時,根據(jù)學生的知識水平,對教學內(nèi)容進行處理,克服教材的局限性,最大限度地拓寬探究學習的空間,提供自主學習的機會。
《比例的意義》教案 篇13
教學內(nèi)容:教材第99~102頁例1~例3。
教學要求:
1.使學生認識反比例關系的意義,理解、掌握成反比例量的變化規(guī)律及其特征,能依據(jù)反比例的意義判斷兩種量成不成反比例關系。
2.進一步培養(yǎng)學生觀察、分析、綜合和概括等能力,讓學生掌握判斷兩種相關聯(lián)的量成不成反比例的方法,培養(yǎng)學生判斷、推理的能力。
教學重點:認識反比例關系的意義。
教學難點:掌握成反比例量的變化規(guī)律及其特征。
教學過程:
一、鋪墊孕伏:
1.正比例關
系的意義是什么?怎樣用字母表示這種關系?
判斷兩種相關聯(lián)量成不成正比例的關鍵是什么?
2.下面哪兩種量成正比例關系?為什么?
(1)時間一定,行駛的速度和路程。
(2)數(shù)量一定,單價和總價。
3.說一說工作效率、工作時間和工作總量之間的數(shù)量關系。(學生回答后老師板書)在什么條件下,其中兩種量成正比例?
4.引入新課。
如果工作總量一定,工作效率和工作時間之間會怎樣變化呢,變化又有什么規(guī)律呢?這兩種量又成什么關系呢?這就是今天要學習的反比例關系。(板書課題)
二、自主探究:
1.教學例2。
出示例2某運輸公司要運一批300噸的貨物。讓學生計算并完成填表任務。
每天運的數(shù)量(噸)1020304050
所需的天數(shù)
在本上填表,并觀察思考能發(fā)現(xiàn)什么?指名口答,老師板書填表。讓學生按學習正比例的方法觀察表里內(nèi)容,相互之間討論,發(fā)現(xiàn)了什么。
指名學生口答討論的結果,得出:
(1)每天運的噸數(shù)和需要的天數(shù)是兩種相關聯(lián)的量,(板書:兩種相關聯(lián)的量)需要的天數(shù)隨著每天運的噸數(shù)的變化而變化。
(2)每天運的噸數(shù)縮小,需要的天數(shù)反而擴大,每天運的噸數(shù)擴大,需要的天數(shù)反而縮小。
(3)可以看出它們的變化規(guī)律是:每天運的噸數(shù)和天數(shù)的積總是一定的。(板書:每天運的噸數(shù)和天數(shù)的積一定)因為每天運的噸數(shù)和天數(shù)的積都是240。提問:這里的240是什么數(shù)量?誰能說出這里的數(shù)量關系式?想一想,這個式子表示的是什么意思?(把上面的板書補充成:運的總噸數(shù)一定時,每天運的噸數(shù)和天數(shù)的積一定)
2.教學例1
出示例1。
請同學們按照剛才學習例4的方法,自己學習例1,仔細想想你發(fā)現(xiàn)了些什么?學生觀察思考后,小組討論:長方形的面積比變,當長發(fā)生變化時,長方形的寬發(fā)生變化嗎?變化的規(guī)律是怎樣的?
3.概括反比例的'意義。
(1)綜合例1、例2的共同點。
提問:請你比較一下例1和例2,說一說,這兩個例題有什么共同的地方?
(2)概括反比例意義。
例1、例2里兩種相關聯(lián)的量,它們是什么關系的量呢?請同學們看第101頁1~3自然段。說明:像例1、例2里這樣兩種相關聯(lián)的量,一種量變化,另一種量也隨著變,變化時兩種量中相對應的兩個數(shù)的積一定。這樣兩種相關聯(lián)的量就叫做成反比例的量,它們之間的關系叫做反比例關系。迫問:兩種相關聯(lián)的量成不成反比例的關鍵是什么?(乘積是不是一定)提問:如果用x和y表示兩種相關聯(lián)的量,用k表示它們的乘積,那么上面這種關系式可以怎樣寫呢?(板書:xy=k(一定))指出:這個式子表示兩種相關聯(lián)的量x和y,y隨著x的變化而變化,它們的乘積k是一定的。這時就說x和y成反比例關系。所以,兩種量成反比例關系,我們就用xy=k(一定)來表示。
4.具體認識。
(1)提問:例1里有哪兩種相關聯(lián)的量?這兩種量成反比例關系嗎?為什么,
例2里的兩種量成反比例關系嗎?為什么?
(2)提問:看兩種相關聯(lián)的量成不成反比例,關鍵要看什么?
(3)判斷。
現(xiàn)在回過來看開始寫的關系式:工作效率工作時間=工作總量,當工作總量一定時,工作效率和工作時間成什么關系?為什么?指出:根據(jù)上面所說的反比例的意義,要知道兩個量成不成反比例關系,只要先看這兩種量是不是相關聯(lián)的量,再看兩種量變化時乘積是不是一定。如果兩種相關聯(lián)的量變化時乘積一定,它們就是成反比例的量,相互之間的關系就是反比例關系。
5.教學例3。
出示例3,看書自學,小組討論,集體交流。追問:判斷兩種量成不成反比例要怎樣想?其中關鍵是看什么?
三、鞏固練習
用剛才我們說的判斷方法來做幾道題。
1.做練一練。
指名學生口答,說明理由。(可以寫出數(shù)量關系式看一看)
2.下題兩種相關聯(lián)量成不成反比例?為什么?
一根鐵絲,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。
3.做練習十二第1題。
四、課堂小結
這節(jié)課學習的是什么內(nèi)容?反比例關系的意義是什么?用怎樣的式子表示x和y這兩種相關聯(lián)的量成反比例?判斷兩種量是不是成反比例,關鍵是什么?
五、課堂作業(yè)
練習十二第2~4題。
《比例的意義》教案 篇14
第一課時
教學內(nèi)容:P32~34 比例的意義和基本性質(zhì)
教學目的:1、使同學理解比例的意義和基本性質(zhì),能正確判斷兩個比是否能組成比例。
2、通過引導探究、概括歸納、討論、合作學習,培養(yǎng)同學籠統(tǒng)概括能力。
3、使同學初步感知事物間是相互聯(lián)系、變化發(fā)展的。
教學重點;比例的意義和基本性質(zhì)
教學難點:應用比的基本性質(zhì)判段兩個數(shù)能否成比例,并正確的組成比例。
教學過程:
一、回顧舊知,復習鋪墊
1、請同學們回憶一下上學期我們學過的比的知識,誰能說說什么叫做比?并舉例說明什么是比的前項、后項和比值。
教師把同學舉的例子板書出來,并注明比的各局部的名稱。
2、我們知道了比的前后項相除所得的商叫做比值,你們會求比值嗎?教師板書出下面幾組比,讓同學求出它們的比值。
12:16 : 4.5:2.7 10:6
同學求出各比的'比值后,再提問:哪兩個比的比值相等?
。4.5:2.7的比值和10:6的比值相等。)
教師說明:因為這兩個比的比值相等,所以這兩個比也是相等的,我們把它們用等號連起來。(板書:4.5:2.7=10:6)像這樣表示兩個比相等的式子叫做什么呢?這就是這節(jié)課我們要學習的內(nèi)容。(板書課題:比例的意義)
二、引導探究,學習新知
1、教學比例的意義。
。1)出示P32例1。
每面國旗的長和寬的比分別是多少?指名分別算出一面國旗長和寬的比。
5: 2.4:1.6 60:40 15:10
每面國旗長和寬的比值有什么關系?(都相等)
5: =2.4:1.6 60:40=15:10 2.4:1.6=60:40
象這樣表示兩個比相等的式子叫做比例。
比例也可以寫成: = =
。2)我們也學過不同的兩個量也可以組成一個比,如:
一輛汽車第一次2小時行駛80千米,第二次5小時行駛200千米。列表如下:
時間(時) 2 5
路程(千米) 80 200
指名同學讀題。
教師:這道題涉和到時間和路程兩個量的關系,我們用表格把它們表示出來。表格的第一欄表示時間,單位“時”,第二欄表示路程,單位“千米”。 這輛汽車第一次2小時行駛多少千米?第二次5小時行駛多少千米?(邊問 邊填寫表格。)
“你能根據(jù)這個表,分別寫出第一、二次所行駛的路程和時間的比嗎?”教師根據(jù)同學的回答,板書:
第一次所行駛的路程和時間的比是80:2
第二次所行駛的路程和時間的比是200:5
讓同學算出這兩個比的比值。指名同學回答,教師板書:80:2=40,200:5=40。讓同學觀察這兩個比的比值。再提問:你們發(fā)現(xiàn)了什么?”(這兩個比的比值都是40,這兩個比相等。)
教師說明:因為這兩個比相等,所以可以把它們用等號連起來組成比例。(板書:80:2=200:5)像這樣表示兩個比相等的式子叫做比例。
指著比例式4.5:2.7=10:6提問: “誰能說說什么叫做比例?”引導同學觀察是表示兩個比相等。然后板書:表示兩個比相等的式子叫做比例。并讓同學齊讀一遍。
“從比例的意義我們可以知道,比例是由幾個比組成的?這兩個比必需具備什么條件?因此判斷兩個比能不能組成比例,關鍵是看什么?假如不能一眼看出兩個比是不是相等的,怎么辦?”
根據(jù)同學的回答,教師小結:通過上面的學習,我們知道了比例是由兩個相等的比組成的。在判斷兩個比能不能組成比例時,關鍵是看這兩個比是不是相等。假如不能一眼看出兩個比是不是相等,可以先分別把兩個比化簡以后再看。例如判斷10:12和35: 42這兩個比能不能組成比例,先要算出 10: 12= ,35: 42= ,所以 10:12=35:42。(以上舉例邊說邊板書。)
。3)比較“比”和“比例”兩個概念。
教師:上學期我們學習了“比”,現(xiàn)在又知道了“比例”的意義,那么“比”和“比例”有什么區(qū)別呢?
引導同學從意義上、項數(shù)上進行對比,最后教師歸納:比是表示兩個數(shù)相除,有兩項;比例是一個等式,表示兩個比相等,有四項。
。4)鞏固練習。
、儆檬謩菖袛嘞旅婵ㄆ系膬蓚比能不能組成比例。(能,就用張開拇指和食指表示;不能就用兩手的食指交叉表示。)
6:3和12:6 35:7和45:9 20:5和16:8 0.8:0.4和0.3:0.6
同學判斷后,指名說出判斷的根據(jù)。
②做P33“做一做”。
讓同學看書,不抄題,直接把能組成比例的兩個比寫在練習本上,教師邊巡視邊批改,對做得不對的,讓他們說說是怎樣做的,看看自身做得對不對。
、劢o出2、3、4、6四個數(shù),讓同學組成不同的比例(不要求舉全)。
、躊36練習六的第1~2題。
對于能組成比例的四個數(shù),把能組成的比例寫出來。組成的比例只要能成立就可以。
第4小題,給出的四個數(shù)都是分數(shù),在寫比例式時,也要讓同學寫成分數(shù)形式。
《比例的意義》教案 篇15
教學目標:
1、使學生理解和掌握比例的意義和基本性質(zhì),認識比例各部分名稱,知道比和比例的區(qū)別,能應用比例的意義和比例的基本性質(zhì)判斷兩個比能否組成比例。
2、激發(fā)學生的學習興趣,培養(yǎng)學生初步的觀察、分析、比較、判斷、概括的能力,發(fā)展學生思維。
教學重點:
理解比例的意義基本性質(zhì)。
教學難點:
應用比例的意義和性質(zhì)判斷兩個比是否成比例。
教學過程
一、導入新課
1、什么叫比?
2、求出下面各比的比值(小黑板)
12:16 1/4:1/3 和9:12 4.5:2.7 10:6
二、教學新課
1、教學比例的意義
(1)出示例1:同學們能寫出多少個有意義的比?觀察這些比,哪此能用等號連接?把能用等號連接的比用等號連接起來。這些式子都是比例,你能用自己的.語言說一說什么是比例嗎?
。2)歸納比例的意義
(3)2:5和80:200能組成比例嗎?你是怎樣判斷的?
。4)完成第45頁“做一做”
2、教學比例的基本性質(zhì)
。1)在一個比例里,有四個數(shù),這四個數(shù)分別叫什么名字?
(2)請同們分別找出80:2=200:5和2分之80=5分之200的內(nèi)項和外項。
。3)你們?nèi)我庹乙粋比例,把它們的內(nèi)項和外項分別乘起來,雙可以發(fā)現(xiàn)什么?
。4)指導學生歸納后,在比例里,兩個外項的積等于兩個內(nèi)項的積。這就是比例的基本性質(zhì)。
。5)指導學生完成第一46頁“做一做”第1題。
三、鞏固練習
四、課堂小結
這節(jié)課你學到了哪些知識?
創(chuàng)意作業(yè):
有一房間,窗子的長是6分米,寬是4分米;門的長和寬分別是21分米和14分米,你能用已知的四個數(shù)組成多少個比例?比一比哪個同學組成的多。
《比例的意義》教案 篇16
教學目標
知識目標:理解比例的意義。
技能目標:能正確判斷兩個比是否能組成比例,培養(yǎng)學生抽象概括能力。
情感目標:使學生初步感知事物間是相互聯(lián)系、變化發(fā)展的。
教學重難點
重點:理解比例的意義。
難點:判斷兩個比能否組成比例。
教學工具
多媒體課件
教學過程
一、新課導入
請同學們回憶一下比的知識,比的前項、后項和比值。
二、教學過程
1.比例的意義
(1)出示P40例1
操場上和教室里兩面國旗的長和寬的比值有什么關系?
2.4∶1.6=3∶2
60∶40=3∶2
2.4∶1.6=60∶40
象這樣表示兩個比相等的'式子叫做比例。
比例也可以寫成:=
做一做
1、下面那組中的兩個比可以組成比例?把組成的比例寫出來。
(1)6∶10和9∶15 (2)20∶5和1∶4
(3) ∶和6∶4 (4)0.6∶0.2和∶
答:(1)6∶10=3∶5 9∶15=3∶5 (2)20∶5=4∶1 (3)6∶4=3∶2
(4)0.6∶0.2=3∶2 ∶ =3∶1
所以,只有第一組可以組成比例為6∶10=9∶15
2、用圖中4個數(shù)據(jù)可以組成多少比例?
答:2∶4=1.5∶3 4∶2=3∶1.5 3∶4=1.5∶2 4∶3=2∶1.5
全課小結
通過這節(jié)課,我們學到了什么知識?什么是比例?
拓展延伸
用8、12四個數(shù)分別作為比例的項,你能組成幾個比例?
課后小結
通過這節(jié)課,我們學到了什么知識?什么是比例?
課后習題
一、填空
1、( )叫做比例。
2、兩個比的( )相等,這兩個比就相等。
3、把6×8=24×2改寫成四個比例。
4、把7m=8n改寫成四個比例。
5、根據(jù)8×9=3×24,寫出比例( )
6、如果7a=6b,那么a:b=( ):( )。
7、如果9a=5b,那么b:a=( ):( )。
二、選擇
1、下面的比中能與3∶8組成比例的是( )。
A.3.5∶6 B.1.5∶4 C.6∶1.5
2、甲數(shù)除乙數(shù)的商是1.8,那么甲數(shù)與乙數(shù)的比是( )。
A.9:5 B.5:9 C.1:8
3、下面的數(shù)中,能與6、9、10組成比例的是( )。
A.7 B.5.4 C.1.5
板書
表示兩個比相等的式子叫做比例。
《比例的意義》教案 篇17
素質(zhì)教育目標
。ㄒ唬┲R教學點
1.使學生理解正比例的意義。
2.能根據(jù)正比例的意義判斷兩種量是不是成正比例。
(二)能力訓練點
1.培養(yǎng)學生用發(fā)展變化的觀點來分析問題的能力。
2.培養(yǎng)學生抽象概括能力和分析判斷能力。
。ㄈ┑掠凉B透點
1.通過引導學生用發(fā)展變化的觀點來分析問題,使學生進一步受到辯證唯物主義觀點的啟蒙教育。
2.進一步滲透函數(shù)思想。
教學重點:使學生理解正比例的意義。
教學難點:引導學生通過觀察、思考發(fā)現(xiàn)兩種相關聯(lián)的量的變化規(guī)律,即它們相對應的數(shù)的比值一定,從而概括出正比例關系的概念。
教具學具準備:投影儀、投影片、小黑板。
教學步驟
一、鋪墊孕伏
用投影逐一出示下列題目,請同學回答:
1.已知路程和時間,怎樣求速度?
2.已知總價和數(shù)量,怎樣求單價?
3.已知工作總量和工作時間,怎樣求工作效率?
二、探究新知
1.導入新課:這些都是我們已經(jīng)學過的常見的數(shù)量關系。這節(jié)課,我們繼續(xù)研究這些數(shù)量關系中的一些特征。
2.教學例1
。1)投影出示:一列火車1小時行駛60千米,2小時行駛120千米,3小時行駛180千米,4小時行駛240千米,5小時行駛300千米,6小時行駛360千米,7小時行駛420千米,8小時行駛480千米……
。2)出示下表,并根據(jù)上述內(nèi)容填表。
一列火車行駛的時間和所行的路程如下表
。3)邊填表邊思考:在填表過程中,你發(fā)現(xiàn)了什么?
學生交流時,使之明確。
、俦碇杏袝r間和路程兩種量。
、诋敃r間是1小時,路程則是60千米,時間是2小時,路程是120千米……時間變化,路程也隨著變化,時間擴大,路程隨著擴大;時間縮小,路程也隨著縮小。
教師點撥:
像這樣,時間變化,路程也隨著變化,我們就說,時間和路程是兩種相關聯(lián)的量。(板書:兩種相關聯(lián)的量)
、廴绻麑W生沒有問題,教師提示:請每位同學任選一組相對應的數(shù)據(jù),計算出路程與時間的比的比值。
教師問:根據(jù)計算,你發(fā)現(xiàn)了什么?
引導學生得出:相對應的兩個數(shù)的比值都是60或都一樣,固定不變等。
教師指出:相對應的兩個數(shù)的比的比值都一樣或固定不變,在數(shù)學上叫做“一定”。(板書:相對應的兩個數(shù)的比值一定)
、鼙戎60,實際就是火車的速度。用式子表示它們的關系就是:
。4)教師小結:
剛才同學們通過填表、交流,我們知道時間和路程是兩種相關聯(lián)的量,路程隨著時間的變化而變化。時間擴大,路程隨著擴大;時間縮小,路程也隨著縮小。它們擴大、縮小的規(guī)律是:路程和時間的比的比值總是一定的。
3.教學例2
。1)出示例2:在一間布店的柜臺上,有一張寫著某種花布的米數(shù)和總價的表。
(2)觀察上表,引導學生明確:
①表中有數(shù)量(米數(shù))和總價這兩種量,它們是兩種相關聯(lián)的量。
、诳們r隨米數(shù)的變化情況是:
米數(shù)擴大,總價隨著擴大;米數(shù)縮小,總價也隨著縮小。
、巯鄬目們r和米數(shù)的比的比值是一定的。
、鼙戎3.1,實際就是這種花布的單價。用式子表示它們的關系就是:
(3)師生小結:通過剛才的觀察和分析,我們知道總價和米數(shù)也是兩種什么樣的量?(兩種相關聯(lián)的量)為什么?(總價隨著米數(shù)的變化而變化。)怎樣變化?(米數(shù)擴大,總價隨著擴大;米數(shù)縮小,總價隨著縮小。)它們擴大、縮小的規(guī)律是怎樣的?(總價和米數(shù)的比的比值總是一定的。)
4.抽象概括正比例的意義。
(1)比較例1、例2,思考并討論,這兩個例子有什么共同點?
。2)學生初步交流時引導學生明確:
、倮1中有路程和時間兩種量;例2中有米數(shù)和總價兩種量。即它們都有兩種相關聯(lián)的量;
②例1中時間變化,路程就隨著變化;例2中米數(shù)變化,總價也隨著變化。
教師點撥:像這樣,我們就可以說:一種量變化,另一種量也隨著變化。(板書)
、劾1中路程與時間的比的比值一定:例2中總價與米數(shù)的比的比值一定。概括地講就是:兩種量中相對應的兩個數(shù)的比值(也就是商)一定。
。▽W生答不出來時,教師引導、點撥,并補充板書:兩種量中)
。3)引導學生抽象概括出兩例的共同點:
兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,這兩種量中相對應的兩個數(shù)的比值(也就是商)一定。
。4)教師指明:兩種相關聯(lián)的.量,一種變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。
。ㄑa充板書:如果這成正比例的量正比例關系)
這就是我們這節(jié)課學習的“正比例的意義”(板書課題)
(5)看書19、20頁的內(nèi)容,進一步理解正比例的意義。
。6)教師說明:在例1中,路程隨著時間的變化而變化,它們的比的比值(速度)保持一定,所以路程和時間是成正比例的量。
(7)想一想:在例2中,有哪兩種相關聯(lián)的量?它們是不是成正比例的量?為什么?
。8)教師提出:如果字母x和y表示兩種相關聯(lián)的量,用k表示它們的比值(一定),正比例關系怎樣用字母表示出來?
。9)教師提出:根據(jù)正比例的意義以及表示正比例關系的式子想一想:構成正比例關系的兩種量必須具備哪些條件?
5.教學例3
。1)出示例3:每袋面粉的重量一定,面粉的總重量和袋數(shù)是不是成正比例?
(2)根據(jù)正比例的意義,由學生討論解答。
。3)匯報判斷結果,并說明判斷的根據(jù)。
教師板書:
面粉的總重量和袋數(shù)是兩種相關聯(lián)的量。
所以面粉的總重量和袋數(shù)成正比例。
6.反饋練習
讓學生試做第21頁的做一做,并訂正。
三、鞏固發(fā)展
1.完成練習三第1題。
先想一想成正比例的量要滿足哪幾個條件?再算出各表相對應數(shù)的比的比值。如果相等,列關系式判斷。第(3)題不成比例,訂正時要學生說明為什么?
2.完成練習三第2題的(1)-(9)
先讓學生自己判斷,再訂正。
四、全課小結(師生共同進行)
通過這節(jié)課的學習,你都知道了什么?怎樣判斷兩種量是否成正比例?
《比例的意義》教案 篇18
一、教學目標
1.使學生理解并掌握反比例函數(shù)的概念
2.能判斷一個給定的函數(shù)是否為反比例函數(shù),并會用待定系數(shù)法求函數(shù)解析式
3.能根據(jù)實際問題中的條件確定反比例函數(shù)的解析式,體會函數(shù)的模型思想
二、重、難點
1.重點:理解反比例函數(shù)的概念,能根據(jù)已知條件寫出函數(shù)解析式
2.難點:理解反比例函數(shù)的概念
3.難點的突破方法:
。1)在引入反比例函數(shù)的概念時,可適當復習一下第11章的正比例函數(shù)、一次函數(shù)等相關知識,這樣以舊帶新,相互對比,能加深對反比例函數(shù)概念的理解
。2)注意引導學生對反比例函數(shù)概念的理解,看形式,等號左邊是函數(shù)y,等號右邊是一個分式,自變量x在分母上,且x的指數(shù)是1,分子是不為0的常數(shù)k;看自變量x的.取值范圍,由于x在分母上,故取x≠0的一切實數(shù);看函數(shù)y的取值范圍,因為k≠0,且x≠0,所以函數(shù)值y也不可能為0。講解時可對照正比例函數(shù)y=kx(k≠0),比較二者解析式的相同點和不同點。
。3)(k≠0)還可以寫成(k≠0)或xy=k(k≠0)的形式
三、例題的意圖分析
教材第46頁的思考題是為引入反比例函數(shù)的概念而設置的,目的是讓學生從實際問題出發(fā),探索其中的數(shù)量關系和變化規(guī)律,通過觀察、討論、歸納,最后得出反比例函數(shù)的概念,體會函數(shù)的模型思想。
教材第47頁的例1是一道用待定系數(shù)法求反比例函數(shù)解析式的題,此題的目的一是要加深學生對反比例函數(shù)概念的理解,掌握求函數(shù)解析式的方法;二是讓學生進一步體會函數(shù)所蘊含的“變化與對應”的思想,特別是函數(shù)與自變量之間的單值對應關系。
補充例1、例2都是常見的題型,能幫助學生更好地理解反比例函數(shù)的概念。補充例3是一道綜合題,此題是用待定系數(shù)法確定由兩個函數(shù)組合而成的新的函數(shù)關系式,有一定難度,但能提高學生分析、解決問題的能力。
四、課堂引入
1.回憶一下什么是正比例函數(shù)、一次函數(shù)?它們的一般形式是怎樣的?
2.體育課上,老師測試了百米賽跑,那么,時間與平均速度的關系是怎樣的?
五、例習題分析
例1.見教材P47
分析:因為y是x的反比例函數(shù),所以先設,再把x=2和y=6代入上式求出常數(shù)k,即利用了待定系數(shù)法確定函數(shù)解析式。
例1.(補充)下列等式中,哪些是反比例函數(shù)
。1)(2)(3)xy=21(4)(5)(6)(7)y=x-4
分析:根據(jù)反比例函數(shù)的定義,關鍵看上面各式能否改寫成(k為常數(shù),k≠0)的形式,這里(1)、(7)是整式,(4)的分母不是只單獨含x,(6)改寫后是,分子不是常數(shù),只有(2)、(3)、(5)能寫成定義的形式
例2.(補充)當m取什么值時,函數(shù)是反比例函數(shù)?
分析:反比例函數(shù)(k≠0)的另一種表達式是(k≠0),后一種寫法中x的次數(shù)是-1,因此m的取值必須滿足兩個條件,即m-2≠0且3-m2=-1,特別注意不要遺漏k≠0這一條件,也要防止出現(xiàn)3-m2=1的錯誤
《比例的意義》教案 篇19
教學目標:
1、 使學生理解并掌握比例的意義,認識比例的各部分名稱,探究比例的基本性質(zhì),學會應用比例的意義和基本性質(zhì)判斷兩個比是否能組成比例,并能正確的組成比例。
2、 培養(yǎng)學生的觀察能力、判斷能力。
教學重點:
比例的意義和基本性質(zhì)
學法:
自主、合作、探究
教學準備:
課件
教學過程:
一:創(chuàng)設情境,導入新課
1、 談話,播放課件,引出主題圖
師:這節(jié)課我們上一節(jié)數(shù)學課,這節(jié)數(shù)學課有很多有趣的知識等待著同學們?nèi)ヌ剿骱桶l(fā)現(xiàn)呢!同學們你們有信心接受挑戰(zhàn)嗎?
(播放視頻,生觀察,并說看到的內(nèi)容)
師:看到這些畫面你的心情怎么樣?(激動、興奮、驕傲、自豪……)
師:是啊,老師和你們一樣,每當聽到雄壯的國歌聲,看見鮮艷的五星紅旗,老師的心情也十分激動,國旗是我們偉大祖國的象征,是神圣的。
問:畫面上這幾面國旗有什么不同?(大小不一樣)
師:雖然這幾面國旗大小不一樣,但是長和寬的比值都是一樣的,這節(jié)課我們就來研究有關比例的知識。(板書:比例)
(課件出示主題圖,讓學生說出長和寬各是多少)
問:你能根據(jù)這些國旗的長和寬的尺寸,寫出長與寬的比,并求出比值嗎?請同學們先寫出學校內(nèi)兩面國旗長與寬的比,并求出比值。(生動手寫比、求比值)
二、引導探究,學習新知
1、比例的意義
(生匯報求比值的過程)
師:請同學們觀察你求出的學校內(nèi)兩面國旗的比值,你有什么發(fā)現(xiàn)?(這兩個比的.比值相等)
師:這兩個比的比值相等,我用“=”把這兩個比連起來,可以嗎?(可以)
師:從圖上四面國旗才尺寸中你還能找出哪些比求出比值,也寫成這樣的等式呢?請同學們自己動筆試一試(生動手寫比,求比值,寫等式,并匯報)
師:指學生匯報的等式小結,像這樣由比值相等的兩個比組成的等式就是比例,誰能概括出比例的意義?(板書課題,生匯報,是板書意義)
問:判斷兩個比是否能組成比例,關鍵看什么?(關鍵看它們的比值是否相等)
(小練習,課件出示)
2探究比例的基本性質(zhì)
(1)自學比例的名稱
師:小結通過剛才的學習,我們理解了比例的意義,那么在比例中各部分名稱是怎樣的,各部分名稱與各項在比例中的位置又有什么關系呢?打開書34頁,自學34也上半部分,比例各部分的名稱。(生自學名稱,匯報,師板書名稱)
(2)合作探究比例的基本性質(zhì)
師:同學們,你們知道嗎?在比例的內(nèi)項和外項之間還存在著一個有趣的特性呢!你們想去發(fā)現(xiàn)這個特性嗎?接下來就請同學們以小組為單位合作探究比例的基本性質(zhì)。(板書:比例的基本性質(zhì)) 課件出示小組合作學習提示,指名讀
各小組派一名代表匯報合作學習發(fā)現(xiàn)的規(guī)律。
師:是不是所有的比例都具有這樣的特性呢?分組驗證課前寫出的比例式。
師:問想一想,判斷兩個比能不能組成比例除了根據(jù)比例的意義去判斷外還可以根據(jù)什么去判斷?(生回答:根據(jù)比例的基本性質(zhì))
師:如果把比例改寫成分數(shù)形式是什么樣的?生回答。根據(jù)比例的基本性質(zhì),等號兩邊的分子和分母之間又有什么關系呢?生回答,師板書
三、鞏固練習(見課件)
四、匯報學習收獲
《比例的意義》教案 篇20
教學目標:
(1)通過計算、觀察、比較,讓學生概括、理解比例的意義和比例的基本性質(zhì)。
(2)認識比例的各部分名稱。
(3)學會用比例的意義或比例的基本性質(zhì),判斷兩個比能不能組成比例,并寫出比例。
教學重點難點:
理解比例的意義和基本性質(zhì),會用比例的意義和基本性質(zhì)判斷兩個比能不能組成比例,并寫出比例。
教具學具準備:
幻燈片、學習卡。
教學過程:
一、創(chuàng)設情景,引入新課。
出示三幅場景圖。
。1)圖上描述的是什么情景?這幾幅圖都與什么有關?
(2)這三面國旗有什么相同和不同的地方?(形狀相同,大小不同)
。3)你們有見過這樣的國旗嗎?或者這樣的?
我們的國旗,不論大小,之所以形狀相同,是因為它們都是按照一定的比例來制作的,從今天開始,我們將要學習有關比例的知識。板書課題
二、自主探究,明確意義
1、提問:你們知道每一幅圖中國旗的長和寬分別是多少嗎?
2、談話:在制作國旗的過程中存在著有趣的比。請同學們拿出第一張自主學習卡,算一算這三幅國旗的長、寬之比,求出比值,并同桌互相說一說你有什么發(fā)現(xiàn)?
3、學生匯報。
4、我們以操場上和教室里的國旗為例,2.4:1.6= ,60:40= ,這兩個比的比值相等,中間可以用等號連接起來,寫成2.4:1.6=60:40,因為比還可以寫成分數(shù)形式,所以還可以寫成=。
像這樣表示兩個比相等的式子叫做比例。(板書)
5、在上圖的三面國旗的尺寸中,還有哪些比可以組成比例?
6、深入探討:
。1)比例有幾個比組成?
(2)是不是任意兩個比都能組成比例?
。3)判斷兩個比能不能組成比例,關鍵要看什么?
7、完成“做一做”。
三、探究比例的基本性質(zhì)。
1、學習比例各部分的名稱。
教師:我們知道組成比的兩個數(shù)分別叫前項和后項,組成比例的四個數(shù)也有自己的名字,你們知道它們分別叫什么嗎?(課件出示)
。1)指名讀一讀有關知識。
。2)誰來介紹一下在2.4:1.6=60:40中,內(nèi)項和外項分別是誰?
隨著學生的回答教師出示:
2.4: 1.6 = 60: 40 (外項)(內(nèi)項)
└-內(nèi)項-┘ =
└------外項-------┘ (內(nèi)項)(外項)
(3)如果把比例寫成分數(shù)形式,你能找出它的內(nèi)項和外項嗎?
。4)任意選擇一個比例式,標出內(nèi)項、外項,同桌兩人互相檢查。
2、研究比例的基本性質(zhì)。
。1)活動探究,總結性質(zhì)。
談話:比有基本性質(zhì),比例表示兩個比相等的式子,也有它特有的性質(zhì),請同學們拿出2號自主學習卡,小組討論一下,寫一寫,算一算,解決以下問題。
、儆嬎阆旅姹壤袃蓚外項的積和兩個內(nèi)項的積,比較一下,你能發(fā)現(xiàn)什么?
2.4:1.6=60:40 =
、谀隳芘e一個例子,驗證你的發(fā)現(xiàn)嗎?
、勰隳艿贸鍪裁唇Y論?
、苣隳苡米帜副硎具@個性質(zhì)嗎?
。2)運用性質(zhì)。
①提問:學了比例的基本性質(zhì),你覺得運用它能解決什么問題?
、谶\用比例的基本性質(zhì),判斷下面哪組中的兩個比可以組成比例。
(1) 6:3和8:5 (2) 0.2:2.5 和 4:50
(3) :和 : (4) 1.2: 和 :5
四、鞏固練習。
1、填空
。1)在a:7=9:b中,( )是內(nèi)項,( )是外項,a×b=( )。
。2)一個比例的兩個內(nèi)項分別是3和8,則兩個外項的積是( ),兩個外項可能是( )和( )。
。3)在一個比例里,兩個外項互為倒數(shù),那么兩個內(nèi)項的積是( ),如果一個外項是 ,另一個外項是( )。
(4)在比例里,兩個內(nèi)項的積是18,其中一個外項是2,另一個外項是( )。
(5)如果5a=3b,那么, = , = 。
2、判斷。
。1)在比例中,兩個外項的積減去兩個內(nèi)項的積,差是0。( )
。2)18:30和3:5可以組成比例。( )
。3)如果4X=3Y,(X和Y均不為0),那么4:X=3:Y。( )
。4)因為3×10=5×6,所以3:5=10:6。( )
3、把下面的等式改寫成比例:(能寫幾個寫幾個)
16 × 3 = 4 × 12
四、總結歸納
1、這節(jié)課我們學習了什么知識?你有什么收獲?
2、判斷兩個比能不能組成比例,有幾種方法?
比例在生活中有著廣泛的應用,比如:警察可以根據(jù)腳印的長短判斷罪犯的大致身高,根據(jù)影子的長度可以算出一棵大樹的高度等,都與比例有關,我們只要認真學好比例,就一定能幫助我們了解其中的奧秘。
板書設計
比例的意義和基本性質(zhì)
表示兩個比相等的式子叫做比例。
2.4: 1.6 = 60: 40 (外項)(內(nèi)項)
└-內(nèi)項-┘ 或 =
└------外項-------┘ (外項)(內(nèi)項)
在比例里,兩個外項的積等于兩個內(nèi)項的積。
A:B=C → AD=BC
《比例的意義》教案15
教學內(nèi)容:教科書第19—21頁正比例的意義,練習六的1—3題。
教學目的:
1.使學生理解正比例的意義,能夠根據(jù)正比例的意義判斷兩種量是不是成正比例。
2.初步培養(yǎng)學生用事物相互聯(lián)系和發(fā)展變化的觀點來分析問題。
3.初步滲透函數(shù)思想。
教具準備:投影儀、投影片、小黑板。
教學過程():
一、復習
用,投影片逐一出示下面的題目,讓學生回答。
1.已知路程和時間,怎樣求速度?板書: =速度
2.已知總價和數(shù)量,怎樣求單價?板書: =單價
3.己知工作總量和工作時間,怎樣求工作效率?板書:
。焦ぷ餍
4,已知總產(chǎn)量和公頃數(shù),怎樣求公頃產(chǎn)量?板書: =公頃產(chǎn)量
二、導人新課
教師:這是我們過去學過的一些常見的數(shù)量關系。這節(jié)課我們進一步來研究這些數(shù)量關系中的一些特征,首先來研究這些數(shù)量之間的正比例關系。(板書課題:正比例的意義)
三、新課
1.教學例1。
用小黑板出示例1:一列火車行駛的'時間和所行的路程如下表:
提問:
“誰來講講例1的意思?”(火車1小時行駛60千米,2小時行駛120千米……)
“表中有哪幾種量?”
“當時間是1小時,路程是多少?當時間是2小時,路程又是多少?……”
“這說明時間這種量變化了,路程這種量怎么樣了?”(也變化了。)
教師說明:像這樣,一種量變化,另一種量也隨著變化,我們就說這兩種量是兩種相關聯(lián)的量。(板書:兩種相關聯(lián)的量)“時間和路程是兩種相關聯(lián)的量,路程是怎樣隨著時間變化而變化的呢?”
教師指著表格:我們從左往右觀察(邊講邊在表格上畫箭頭),時間擴大2倍,對應的路程也擴大2倍3時間擴大3倍,對應的路程也擴大3倍……從右往左觀察(邊講邊在表格上畫反方向的箭頭),時間縮小8倍,對應的路程也縮小8倍;時間縮小7倍,對應的路程也縮小7倍……時間縮小2倍,對應的路程也縮小2倍。通過觀察,我們發(fā)現(xiàn)路程是隨著時間的變化而變化的。時間擴大路程也擴大,時間縮小路程也縮小。它們擴大、縮小的規(guī)律是怎么樣的呢?
讓每一小組(8個小組)的同學選一組相對應的數(shù)據(jù),計算出它們的比值。教師板書出來: =60. =60, =60…… 讓學生雙察這些比和它們的比值,看有什么規(guī)律。教師板書:相對應的兩個數(shù)的比值(也就是商)一定。
然后教師指著 =60, =60 = 60……問:“比值60,實際上是火車的什么:你能將這些式子所表示的意義寫成一個關系式嗎?板書: =速度(—定)
教師小結:通過剛才的觀察和分析.我們知道路程和時間是兩種什么樣的量?(兩種相關聯(lián)的量。)路程和時間這兩種量的變化規(guī)律是什么呢?(路程和時間的比的比值(速度)總是一定的。)
2.教學例2。
出示例2:在一間布店的柜臺上,有一張寫著某種花布的米數(shù)和總價的表。
讓學生觀察上表,并回答下面的問題:
(1)表中有哪兩種量?
(2)米數(shù)擴大,總價怎樣?米數(shù)縮小,總價怎樣?
(3)相對應的總價和米數(shù)的比各是多少?比值是多少?
當學生回答完第二個問題后,教師板書: =3.1, =3.1, =3.1……
然后進一步問:
“這個比值實際上是什么?你能用一個關系式表.示它們的關系嗎?”板書: =單價(一定)
教師小結:通過剛才的思考和分析,我們知道總價和米數(shù)也是兩種相關聯(lián)的量,總價是隨著米數(shù)的變化而變化的,米數(shù)擴大,總價也隨著擴大;米數(shù)縮小,總價也隨著縮小。它們擴大、縮小的規(guī)律是:總價和米數(shù)的比的比值總是一定的。
3.抽象概括正比例的意義。
教師:請同學們比較一下剛才這兩個例題,回答下面的問題;
(1)都有幾種量?
(2)這兩種量有沒有關系?
(3)這兩種量的比值都是怎樣的?
教師小結:通過比較,我們看出上面兩個例題,有一些共同特點:都有兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,并且這兩種量中相對應的兩個數(shù)的比值(也就是商)一定。像這樣的兩種量我們就把它們叫做成正比例的量,它們的關系叫做正比例關系。(板書出教科書上第’20頁的倒數(shù)第二段。)
接著指著例1的表格說明:在例1中,路程隨著時間的變化而變化,它們的比值(速度)保持一定,所以路程和時間是成正比例的量。隨后讓學生想一想:在例2中,有哪兩種相關聯(lián)的量:它們是不是成正比例的量?為什么?
最后教師提出:如果我們用字母X,y表示兩種相關聯(lián)的量.用字母K表示它們的比值,你能將正比例關系用字母表示出來嗎?
學生回答后,教師板書: =K(一定)
4,教學例3。
出示例3:每袋面粉的重量一定,面粉的總重量和袋數(shù)是不是成正比例?
教師引導:
“面粉的總重量和袋數(shù)是不是相關聯(lián)的量?”·
“面粉的總重量和袋數(shù)有什么關系?它們的比的比值是什么?這個比值是否—定?”(板書: =每袋面粉的重量(一定))
“已知每袋面粉的重量一定,就是面粉的總重量和袋數(shù)的比的比值是一定的,所以面粉的總重量和袋數(shù)成正比例。”
5.鞏固練習。
讓學生試做第21頁“做一做”中的題目。其中(3)要求學生說明這個比值所表示的意義,學生說成是生產(chǎn)效率和每天生產(chǎn)的噸數(shù)都可以。
四、課堂練習
完成練習六的第1—3題。
第1題,做題前,讓學生想一想:成正比例的量要滿足哪幾個條件?然后讓學生算出各表中兩種相對應的數(shù)的比的比值,看看它們的比值是否相等。如果比值相等就可以列出關系式進行判斷。第(3)小題,要問一問學生為什么正方形的邊長和面積不成比例。(因為相對應的正方形的邊長和面積的比的比值不相等。)
第2題,先讓學生自己判斷,再訂正。其中(1)一(5)、(7)、(8)成正比例,(6)和(9)不成正比例。
第3題,可先讓同桌的同學互相舉例,然后再指名舉出成正比例的例子。
《比例的意義》教案 篇21
教學目標:
1、理解反比例的意義。
2、能根據(jù)反比例的意義,正確判斷兩種量是否成反比例。
3、培養(yǎng)學生的抽象概括能力和判斷推理能力。
教學重點:
引導學生理解反比例的意義。
教學難點:
利用反比例的意義,正確判斷兩種量是否成反比例。
教學過程:
一、復習鋪墊
1、成正比例的量有什么特征?
2、下表中的兩種量是不是成正比例?為什么?
二、自主探究
(一)教學例1
1.出示例1,提出觀察思考要求:
從表中你發(fā)現(xiàn)了什么?這個表同復習的表相比,有什么不同?
(1)表中的兩種量是每小時加工的數(shù)量和所需的加工時間。
教師板書:每小時加工數(shù)和加工時間
(2)每小時加工的數(shù)量擴大,所需的加工時間反而縮小;每小時加工的`數(shù)量縮小,所需的加工時間反而擴大。
教師追問:這是兩種相關聯(lián)的量嗎?為什么?
(3)每兩個相對應的數(shù)的乘積都是600.
2.這個600實際上就是什么?每小時加工數(shù)、加工時間和零件總數(shù),怎樣用式子表示它們之間的關系?
教師板書:零件總數(shù)
每小時加工數(shù)×加工時間=零件總數(shù)
3.小結
通過剛才的研究,我們知道,每小時加工數(shù)和加工時間是兩種相關聯(lián)的量,每小時加工數(shù)變化,加工時間也隨著變化,每小時加工數(shù)乘以加工時間等于零件總數(shù),這里的零件總數(shù)是一定的。
(二)教學例2
1.出示例2,根據(jù)題意,學生口述填表。
2.教師提問:
(1)表中有哪兩種量?是相關聯(lián)的量嗎?
教師板書:每本張數(shù)和裝訂本數(shù)
(2)裝訂的本數(shù)是怎樣隨著每本的張數(shù)變化的?
(3)表中的兩種量有什么變化規(guī)律?
(三)比較例1和例2,概括反比例的意義。
1.請你比較例1和例2,它們有什么相同點?
(1)都有兩種相關聯(lián)的量。
(2)都是一種量變化,另一種量也隨著變化。
(3)都是兩種量中相對應的兩個數(shù)的積一定。
2.教師小結
像這樣的兩種量,我們就把它們叫做成反比例的量,它們的關系叫做反比例關系。
3.如果用字母x和y表示兩種相關聯(lián)的量,用k表示它們的積一定,反比例關系可以用一個什么樣的式子表示?
教師板書:xy=k(一定)
三、課堂小結
1、這節(jié)課我們學習了成反比例的量,知道了什么樣的兩種量是成反比例的量,也學會了怎樣判斷兩種量是不是成反比例。在判斷時,同學們要按照反比例的意義,認真分析,做出正確的判斷。
2、通過今天的學習,正比例關系和反比例關系有什么相同點和不同點?
四、課堂練習
完成教材43頁做一做
五、課后作業(yè)
練習七6、7、8、9題。
六、板書設計
成反比例的量xy=k(一定)
每小時加工數(shù)×加工時間=零件總數(shù)(一定)
每本頁數(shù)×裝訂本數(shù)=紙的總頁數(shù)(一定)