成年女人色视频在线观看网站_一本久精品无码免费_亚洲成a人片在线观看无码专区_开心婷婷五月综合基地六月

高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間:2024-05-22 08:40:38 秀雯 總結(jié) 投訴 投稿

高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

  在平平淡淡的學(xué)習(xí)中,是不是聽到知識(shí)點(diǎn),就立刻清醒了?知識(shí)點(diǎn)就是學(xué)習(xí)的重點(diǎn)。想要一份整理好的知識(shí)點(diǎn)嗎?下面是小編精心整理的高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié),歡迎閱讀,希望大家能夠喜歡。

高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

  高考數(shù)學(xué)函數(shù)

  1. 函數(shù)的奇偶性

 。1)若f(x)是偶函數(shù),那么f(x)=f(-x) ;

 。2)若f(x)是奇函數(shù),0在其定義域內(nèi),則 f(0)=0(可用于求參數(shù));

 。3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或 (f(x)≠0);

  (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性;

  (5)奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

  2. 復(fù)合函數(shù)的有關(guān)問題

 。1)復(fù)合函數(shù)定義域求法:若已知 的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求 f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即 f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

 。2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

  3.函數(shù)圖像(或方程曲線的對(duì)稱性)

 。1)證明函數(shù)圖像的對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上;

 。2)證明圖像C1與C2的對(duì)稱性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在C2上,反之亦然;

 。3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

 。4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線C2方程為:f(2a-x,2b-y)=0;

 。5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱;

  (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x= 對(duì)稱;

  4.函數(shù)的周期性

 。1)y=f(x)對(duì)x∈R時(shí),f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>;0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

  (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為2︱a︱的周期函數(shù);

 。3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為4︱a︱的周期函數(shù);

  (4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱,則f(x)是周期為2 的周期函數(shù);

 。5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱,則函數(shù)y=f(x)是周期為2 的周期函數(shù);

 。6)y=f(x)對(duì)x∈R時(shí),f(x+a)=-f(x)(或f(x+a)= ,則y=f(x)是周期為2 的周期函數(shù);

  5.方程k=f(x)有解 k∈D(D為f(x)的值域);

  6.a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;

  7.(1) (a>;0,a≠1,b>;0,n∈R+); (2) l og a N= ( a>;0,a≠1,b>;0,b≠1);

 。3) l og a b的符號(hào)由口訣“同正異負(fù)”記憶; (4) a log a N= N ( a>;0,a≠1,N>;0 );

  8. 判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):(1)A中元素必須都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9. 能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

  10.對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論:(1)定義域上的單調(diào)函數(shù)必有反函數(shù);(2)奇函數(shù)的反函數(shù)也是奇函數(shù);(3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);(4)周期函數(shù)不存在反函數(shù);(5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;(5) y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A)。

  11.處理二次函數(shù)的問題勿忘數(shù)形結(jié)合;二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對(duì)稱軸與所給區(qū)間的相對(duì)位置關(guān)系;

  12. 依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類參數(shù)的范圍問題

  13. 恒成立問題的處理方法:(1)分離參數(shù)法;(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;

  集合

  一、集合有關(guān)概念

  1. 集合的含義

  2. 集合的中元素的三個(gè)特性:

  (1) 元素的確定性,(2) 元素的互異性,(3) 元素的無序性,3.集合的表示:{ … } 如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

  (1) 用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

  (2) 集合的表示方法:列舉法與描述法。

  ? 注意:常用數(shù)集及其記法:

  非負(fù)整數(shù)集(即自然數(shù)集) 記作:N

  正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R

  1) 列舉法:{a,b,c……}

  2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

  3) 語言描述法:例:{不是直角三角形的三角形}

  4) Venn圖:

  4、集合的分類:

  (1) 有限集 含有有限個(gè)元素的集合

  (2) 無限集 含有無限個(gè)元素的集合

  (3) 空集 不含任何元素的集合 例:{x|x2=-5}

  二、集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

  2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5)

  實(shí)例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”

  即:① 任何一個(gè)集合是它本身的子集。A?A

 、谡孀蛹:如果A?B,且A? B那就說集合A是集合B的真子集,記作A B(或B A)

 、廴绻 A?B, B?C ,那么 A?C

 、 如果A?B 同時(shí) B?A 那么A=B

  3. 不含任何元素的集合叫做空集,記為

  規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

  有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集

  三、集合的運(yùn)算

  運(yùn)算類型 交 集 并 集 補(bǔ) 集

  定 義 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.

  由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:A B(讀作‘A并B’),即A B ={x|x A,或x B}).

  設(shè)S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

  數(shù)列

  1.數(shù)列的定義、分類與通項(xiàng)公式

  (1)數(shù)列的定義:

 、贁(shù)列:按照一定順序排列的一列數(shù).

  ②數(shù)列的項(xiàng):數(shù)列中的每一個(gè)數(shù).

  (2)數(shù)列的分類:

  分類標(biāo)準(zhǔn)類型滿足條件

  項(xiàng)數(shù)有窮數(shù)列項(xiàng)數(shù)有限

  無窮數(shù)列項(xiàng)數(shù)無限

  項(xiàng)與項(xiàng)間的大小關(guān)系遞增數(shù)列an+1>an其中n∈N.

  遞減數(shù)列an+1

  常數(shù)列an+1=an

  (3)數(shù)列的通項(xiàng)公式:

  如果數(shù)列{an}的第n項(xiàng)與序號(hào)n之間的關(guān)系可以用一個(gè)式子來表示,那么這個(gè)公式叫做這個(gè)數(shù)列的通項(xiàng)公式.

  2.數(shù)列的遞推公式

  如果已知數(shù)列{an}的首項(xiàng)(或前幾項(xiàng)),且任一項(xiàng)an與它的前一項(xiàng)an-1(n≥2)(或前幾項(xiàng))間的關(guān)系可用一個(gè)公式來表示,那么這個(gè)公式叫數(shù)列的遞推公式.

  3.對(duì)數(shù)列概念的理解

  (1)數(shù)列是按一定“順序”排列的一列數(shù),一個(gè)數(shù)列不僅與構(gòu)成它的“數(shù)”有關(guān),而且還與這些“數(shù)”的排列順序有關(guān),這有別于集合中元素的無序性.因此,若組成兩個(gè)數(shù)列的數(shù)相同而排列次序不同,那么它們就是不同的兩個(gè)數(shù)列.

  (2)數(shù)列中的數(shù)可以重復(fù)出現(xiàn),而集合中的元素不能重復(fù)出現(xiàn),這也是數(shù)列與數(shù)集的區(qū)別.

  4.數(shù)列的函數(shù)特征

  數(shù)列是一個(gè)定義域?yàn)檎麛?shù)集N.(或它的有限子集{1,2,3,…,n})的特殊函數(shù),數(shù)列的通項(xiàng)公式也就是相應(yīng)的函數(shù)解析式,即f(n)=an(n∈N.).

  圓與圓的位置關(guān)系的判斷方法

  一、設(shè)兩個(gè)圓的半徑為R和r,圓心距為d。

  則有以下五種關(guān)系:

  1、d>R+r兩圓外離;兩圓的圓心距離之和大于兩圓的半徑之和。

  2、d=R+r兩圓外切;兩圓的圓心距離之和等于兩圓的半徑之和。

  3、d=R—r兩圓內(nèi)切;兩圓的圓心距離之和等于兩圓的半徑之差。

  4、d

  5、d

  二、圓和圓的位置關(guān)系,還可用有無公共點(diǎn)來判斷:

  1、無公共點(diǎn),一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含。

  2、有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切。

  3、有兩個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。

  求函數(shù)奇偶性的常見錯(cuò)誤

  錯(cuò)因分析:求函數(shù)奇偶性的常見錯(cuò)誤有求錯(cuò)函數(shù)定義域或是忽視函數(shù)定義域,對(duì)函數(shù)具有奇偶性的前提條件不清,對(duì)分段函數(shù)奇偶性判斷方法不當(dāng)?shù)。判斷函?shù)的奇偶性,首先要考慮函數(shù)的定義域,一個(gè)函數(shù)具備奇偶性的必要條件是這個(gè)函數(shù)的定義域區(qū)間關(guān)于原點(diǎn)對(duì)稱,如果不具備這個(gè)條件,函數(shù)一定是非奇非偶的函數(shù)。在定義域區(qū)間關(guān)于原點(diǎn)對(duì)稱的前提下,再根據(jù)奇偶函數(shù)的定義進(jìn)行判斷,在用定義進(jìn)行判斷時(shí)要注意自變量在定義域區(qū)間內(nèi)的任意性。

  抽象函數(shù)中推理不嚴(yán)密致誤

  錯(cuò)因分析:很多抽象函數(shù)問題都是以抽象出某一類函數(shù)的共同“特征”而設(shè)計(jì)出來的,在解決問題時(shí),可以通過類比這類函數(shù)中一些具體函數(shù)的性質(zhì)去解決抽象函數(shù)的性質(zhì)。解答抽象函數(shù)問題要注意特殊賦值法的應(yīng)用,通過特殊賦值可以找到函數(shù)的不變性質(zhì),這個(gè)不變性質(zhì)往往是進(jìn)一步解決問題的突破口。抽象函數(shù)性質(zhì)的證明是一種代數(shù)推理,和幾何推理證明一樣,要注意推理的嚴(yán)謹(jǐn)性,每一步推理都要有充分的條件,不可漏掉一些條件,更不要臆造條件,推理過程要層次分明,書寫規(guī)范。

  函數(shù)零點(diǎn)定理使用不當(dāng)致誤

  錯(cuò)因分析:如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也是方程f(c)=0的根,這個(gè)結(jié)論我們一般稱之為函數(shù)的零點(diǎn)定理。函數(shù)的零點(diǎn)有“變號(hào)零點(diǎn)”和“不變號(hào)零點(diǎn)”,對(duì)于“不變號(hào)零點(diǎn)”,函數(shù)的零點(diǎn)定理是“無能為力”的,在解決函數(shù)的零點(diǎn)時(shí)要注意這個(gè)問題。

  混淆兩類切線致誤

  錯(cuò)因分析:曲線上一點(diǎn)處的切線是指以該點(diǎn)為切點(diǎn)的曲線的切線,這樣的切線只有一條;曲線的過一個(gè)點(diǎn)的切線是指過這個(gè)點(diǎn)的曲線的所有切線,這個(gè)點(diǎn)如果在曲線上當(dāng)然包括曲線在該點(diǎn)處的切線,曲線的過一個(gè)點(diǎn)的切線可能不止一條。因此求解曲線的切線問題時(shí),首先要區(qū)分是什么類型的切線。

  混淆導(dǎo)數(shù)與單調(diào)性的關(guān)系致誤

  錯(cuò)因分析:對(duì)于一個(gè)函數(shù)在某個(gè)區(qū)間上是增函數(shù),如果認(rèn)為函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大于0,就會(huì)出錯(cuò)。研究函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的關(guān)系時(shí)一定要注意:一個(gè)函數(shù)的導(dǎo)函數(shù)在某個(gè)區(qū)間上單調(diào)遞增(減)的充要條件是這個(gè)函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大(小)于等于0,且導(dǎo)函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。

  導(dǎo)數(shù)與極值關(guān)系不清致誤

  錯(cuò)因分析:在使用導(dǎo)數(shù)求函數(shù)極值時(shí),很容易出現(xiàn)的錯(cuò)誤就是求出使導(dǎo)函數(shù)等于0的點(diǎn),而沒有對(duì)這些點(diǎn)左右兩側(cè)導(dǎo)函數(shù)的符號(hào)進(jìn)行判斷,誤以為使導(dǎo)函數(shù)等于0的點(diǎn)就是函數(shù)的極值點(diǎn)。出現(xiàn)這些錯(cuò)誤的原因是對(duì)導(dǎo)數(shù)與極值關(guān)系不清?蓪(dǎo)函數(shù)在一個(gè)點(diǎn)處的導(dǎo)函數(shù)值為零只是這個(gè)函數(shù)在此點(diǎn)處取到極值的必要條件,在此提醒廣大考生在使用導(dǎo)數(shù)求函數(shù)極值時(shí)一定要注意對(duì)極值點(diǎn)進(jìn)行檢驗(yàn)。

  用錯(cuò)基本公式致誤

  錯(cuò)因分析:等差數(shù)列的首項(xiàng)為a1、公差為d,則其通項(xiàng)公式an=a1+(n-1)d,前n項(xiàng)和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比數(shù)列的首項(xiàng)為a1、公比為q,則其通項(xiàng)公式an=a1pn-1,當(dāng)公比q≠1時(shí),前n項(xiàng)和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),當(dāng)公比q=1時(shí),前n項(xiàng)和公式Sn=na1。在數(shù)列的基礎(chǔ)性試題中,等差數(shù)列、等比數(shù)列的這幾個(gè)公式是解題的根本,用錯(cuò)了公式,解題就失去了方向。

  an,Sn關(guān)系不清致誤

  錯(cuò)因分析:在數(shù)列問題中,數(shù)列的通項(xiàng)an與其前n項(xiàng)和Sn之間存在關(guān)系:這個(gè)關(guān)系是對(duì)任意數(shù)列都成立的,但要注意的是這個(gè)關(guān)系式是分段的,在n=1和n≥2時(shí)這個(gè)關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯(cuò)的一個(gè)地方,在使用這個(gè)關(guān)系式時(shí)要牢牢記住其“分段”的特點(diǎn)。當(dāng)題目中給出了數(shù)列{an}的an與Sn之間的關(guān)系時(shí),這兩者之間可以進(jìn)行相互轉(zhuǎn)換,知道了an的具體表達(dá)式可以通過數(shù)列求和的方法求出Sn,知道了Sn可以求出an,解題時(shí)要注意體會(huì)這種轉(zhuǎn)換的相互性。

  對(duì)等差、等比數(shù)列的性質(zhì)理解錯(cuò)誤

  錯(cuò)因分析:等差數(shù)列的前n項(xiàng)和在公差不為0時(shí)是關(guān)于n的常數(shù)項(xiàng)為0的二次函數(shù)。一般地,有結(jié)論“若數(shù)列{an}的前N項(xiàng)和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差數(shù)列。解決這類題目的一個(gè)基本出發(fā)點(diǎn)就是考慮問題要全面,把各種可能性都考慮進(jìn)去,認(rèn)為正確的命題給以證明,認(rèn)為不正確的命題舉出反例予以駁斥。在等比數(shù)列中公比等于-1時(shí)是一個(gè)很特殊的情況,在解決有關(guān)問題時(shí)要注意這個(gè)特殊情況。

  遺忘空集致誤

  錯(cuò)因分析:由于空集是任何非空集合的真子集,因此,對(duì)于集合B高三經(jīng)典糾錯(cuò)筆記:數(shù)學(xué)A,就有B=A,φ≠B高三經(jīng)典糾錯(cuò)筆記:數(shù)學(xué)A,B≠φ,三種情況,在解題中如果思維不夠縝密就有可能忽視了 B≠φ這種情況,導(dǎo)致解題結(jié)果錯(cuò)誤。尤其是在解含有參數(shù)的集合問題時(shí),更要充分注意當(dāng)參數(shù)在某個(gè)范圍內(nèi)取值時(shí)所給的集合可能是空集這種情況?占且粋(gè)特殊的集合,由于思維定式的原因,考生往往會(huì)在解題中遺忘了這個(gè)集合,導(dǎo)致解題錯(cuò)誤或是解題不全面。

  忽視集合元素的三性致誤

  錯(cuò)因分析:集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對(duì)解題的影響最大,特別是帶有字母參數(shù)的集合,實(shí)際上就隱含著對(duì)字母參數(shù)的一些要求。在解題時(shí)也可以先確定字母參數(shù)的范圍后,再具體解決問題。

  四種命題的結(jié)構(gòu)不明致誤

  錯(cuò)因分析:如果原命題是“若 A則B”,則這個(gè)命題的逆命題是“若B則A”,否命題是“若┐A則┐B”,逆否命題是“若┐B則┐A”。這里面有兩組等價(jià)的命題,即“原命題和它的逆否命題等價(jià),否命題與逆命題等價(jià)”。在解答由一個(gè)命題寫出該命題的其他形式的命題時(shí),一定要明確四種命題的結(jié)構(gòu)以及它們之間的等價(jià)關(guān)系。另外,在否定一個(gè)命題時(shí),要注意全稱命題的否定是特稱命題,特稱命題的否定是全稱命題。如對(duì)“a,b都是偶數(shù)”的否定應(yīng)該是“a,b不都是偶數(shù)”,而不應(yīng)該是“a ,b都是奇數(shù)”。

  充分必要條件顛倒致誤

  錯(cuò)因分析:對(duì)于兩個(gè)條件A,B,如果A=>B成立,則A是B的充分條件,B是A的必要條件;如果B=>A成立,則A是B的必要條件,B是A的充分條件;如果A<=>B,則A,B互為充分必要條件。解題時(shí)最容易出錯(cuò)的就是顛倒了充分性與必要性,所以在解決這類問題時(shí)一定要根據(jù)充要條件的概念作出準(zhǔn)確的判斷。

  邏輯聯(lián)結(jié)詞理解不準(zhǔn)致誤

  錯(cuò)因分析:在判斷含邏輯聯(lián)結(jié)詞的命題時(shí)很容易因?yàn)槔斫獠粶?zhǔn)確而出現(xiàn)錯(cuò)誤,在這里我們給出一些常用的判斷方法,希望對(duì)大家有所幫助:p∨q真<=>p真或q真,命題p∨q假<=>p假且q假(概括為一真即真);命題p∧q真<=>p真且q真,p∧q假<=>p假或q假(概括為一假即假);┐p真<=>p假,┐p假<=>p真(概括為一真一假)。

  求函數(shù)定義域忽視細(xì)節(jié)致誤

  錯(cuò)因分析:函數(shù)的定義域是使函數(shù)有意義的自變量的取值范圍,因此要求定義域就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數(shù)的定義域。在求一般函數(shù)定義域時(shí)要注意下面幾點(diǎn):(1)分母不為0;(2)偶次被開放式非負(fù);(3)真數(shù)大于0;(4)0的0次冪沒有意義。函數(shù)的定義域是非空的數(shù)集,在解決函數(shù)定義域時(shí)不要忘記了這點(diǎn)。對(duì)于復(fù)合函數(shù),要注意外層函數(shù)的定義域是由內(nèi)層函數(shù)的值域決定的。

  帶有絕對(duì)值的函數(shù)單調(diào)性判斷錯(cuò)誤

  錯(cuò)因分析:帶有絕對(duì)值的函數(shù)實(shí)質(zhì)上就是分段函數(shù),對(duì)于分段函數(shù)的單調(diào)性,有兩種基本的判斷方法:一是在各個(gè)段上根據(jù)函數(shù)的解析式所表示的函數(shù)的單調(diào)性求出單調(diào)區(qū)間,最后對(duì)各個(gè)段上的單調(diào)區(qū)間進(jìn)行整合;二是畫出這個(gè)分段函數(shù)的圖象,結(jié)合函數(shù)圖象、性質(zhì)進(jìn)行直觀的判斷。研究函數(shù)問題離不開函數(shù)圖象,函數(shù)圖象反應(yīng)了函數(shù)的所有性質(zhì),在研究函數(shù)問題時(shí)要時(shí)時(shí)刻刻想到函數(shù)的圖象,學(xué)會(huì)從函數(shù)圖象上去分析問題,尋找解決問題的方案。對(duì)于函數(shù)的幾個(gè)不同的單調(diào)遞增(減)區(qū)間,千萬記住不要使用并集,只要指明這幾個(gè)區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。

  高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

  由于空集是任何非空集合的真子集,因此B=?時(shí)也滿足B?A。解含有參數(shù)的集合問題時(shí),要特別注意當(dāng)參數(shù)在某個(gè)范圍內(nèi)取值時(shí)所給的集合可能是空集這種情況。

  忽視集合元素的三性致誤

  集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對(duì)解題的影響最大,特別是帶有字母參數(shù)的集合,實(shí)際上就隱含著對(duì)字母參數(shù)的一些要求。

  混淆命題的否定與否命題

  命題的“否定”與命題的“否命題”是兩個(gè)不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對(duì)“若p,則q”形式的命題而言,既要否定條件也要否定結(jié)論。

  充分條件、必要條件顛倒致誤

  對(duì)于兩個(gè)條件A,B,如果A?B成立,則A是B的充分條件,B是A的必要條件;如果B?A成立,則A是B的必要條件,B是A的充分條件;如果A?B,則A,B互為充分必要條件。解題時(shí)最容易出錯(cuò)的就是顛倒了充分性與必要性,所以在解決這類問題時(shí)一定要根據(jù)充分條件和必要條件的概念作出準(zhǔn)確的判斷。

  “或”“且”“非”理解不準(zhǔn)致誤

  命題p∨q真?p真或q真,命題p∨q假?p假且q假(概括為一真即真);命題p∧q真?p真且q真,命題p∧q假?p假或q假(概括為一假即假);綈p真?p假,綈p假?p真(概括為一真一假)。求參數(shù)取值范圍的題目,也可以把“或”“且”“非”與集合的“并”“交”“補(bǔ)”對(duì)應(yīng)起來進(jìn)行理解,通過集合的運(yùn)算求解。

  函數(shù)的單調(diào)區(qū)間理解不準(zhǔn)致誤

  在研究函數(shù)問題時(shí)要時(shí)時(shí)刻刻想到“函數(shù)的圖像”,學(xué)會(huì)從函數(shù)圖像上去分析問題、尋找解決問題的方法。對(duì)于函數(shù)的幾個(gè)不同的單調(diào)遞增(減)區(qū)間,切忌使用并集,只要指明這幾個(gè)區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。

  判斷函數(shù)奇偶性忽略定義域致誤

  判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個(gè)函數(shù)具備奇偶性的必要條件是這個(gè)函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱,如果不具備這個(gè)條件,函數(shù)一定是非奇非偶函數(shù)。

  函數(shù)零點(diǎn)定理使用不當(dāng)致誤

  如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖像是一條連續(xù)的曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),但f(a)f(b)>0時(shí),不能否定函數(shù)y=f(x)在(a,b)內(nèi)有零點(diǎn)。函數(shù)的零點(diǎn)有“變號(hào)零點(diǎn)”和“不變號(hào)零點(diǎn)”,對(duì)于“不變號(hào)零點(diǎn)”函數(shù)的零點(diǎn)定理是“無能為力”的,在解決函數(shù)的零點(diǎn)問題時(shí)要注意這個(gè)問題。

  三角函數(shù)的單調(diào)性判斷致誤

  對(duì)于函數(shù)y=Asin(ωx+φ)的單調(diào)性,當(dāng)ω>0時(shí),由于內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞增的,所以該函數(shù)的單調(diào)性和y=sin x的單調(diào)性相同,故可完全按照函數(shù)y=sin x的單調(diào)區(qū)間解決;但當(dāng)ω<0時(shí),內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞減的,此時(shí)該函數(shù)的單調(diào)性和函數(shù)y=sinx的單調(diào)性相反,就不能再按照函數(shù)y=sinx的單調(diào)性解決,一般是根據(jù)三角函數(shù)的奇偶性將內(nèi)層函數(shù)的系數(shù)變?yōu)檎龜?shù)后再加以解決。對(duì)于帶有絕對(duì)值的三角函數(shù)應(yīng)該根據(jù)圖像,從直觀上進(jìn)行判斷。

  忽視零向量致誤

  零向量是向量中最特殊的向量,規(guī)定零向量的長(zhǎng)度為0,其方向是任意的,零向量與任意向量都共線。它在向量中的位置正如實(shí)數(shù)中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會(huì)出錯(cuò),考生應(yīng)給予足夠的重視。

  向量夾角范圍不清致誤

  解題時(shí)要全面考慮問題。數(shù)學(xué)試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時(shí)把這些因素考慮到,是解題成功的關(guān)鍵,如當(dāng)a·b<0時(shí),a與b的夾角不一定為鈍角,要注意θ=π的情況。

  an與Sn關(guān)系不清致誤

  在數(shù)列問題中,數(shù)列的通項(xiàng)an與其前n項(xiàng)和Sn之間存在下列關(guān)系:an=S1,n=1,Sn-Sn-1,n≥2。這個(gè)關(guān)系對(duì)任意數(shù)列都是成立的,但要注意的是這個(gè)關(guān)系式是分段的,在n=1和n≥2時(shí)這個(gè)關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯(cuò)的一個(gè)地方,在使用這個(gè)關(guān)系式時(shí)要牢牢記住其“分段”的特點(diǎn)。

  對(duì)數(shù)列的定義、性質(zhì)理解錯(cuò)誤

  等差數(shù)列的前n項(xiàng)和在公差不為零時(shí)是關(guān)于n的常數(shù)項(xiàng)為零的二次函數(shù);一般地,有結(jié)論“若數(shù)列{an}的前n項(xiàng)和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈Nx)是等差數(shù)列。

  數(shù)列中的最值錯(cuò)誤

  數(shù)列問題中其通項(xiàng)公式、前n項(xiàng)和公式都是關(guān)于正整數(shù)n的函數(shù),要善于從函數(shù)的觀點(diǎn)認(rèn)識(shí)和理解數(shù)列問題。數(shù)列的通項(xiàng)an與前n項(xiàng)和Sn的關(guān)系是高考的命題重點(diǎn),解題時(shí)要注意把n=1和n≥2分開討論,再看能不能統(tǒng)一。在關(guān)于正整數(shù)n的二次函數(shù)中其取最值的點(diǎn)要根據(jù)正整數(shù)距離二次函數(shù)的對(duì)稱軸的遠(yuǎn)近而定。

  錯(cuò)位相減求和項(xiàng)處理不當(dāng)致誤

  錯(cuò)位相減求和法的適用條件:數(shù)列是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列對(duì)應(yīng)項(xiàng)的乘積所組成的,求其前n項(xiàng)和;痉椒ㄊ窃O(shè)這個(gè)和式為Sn,在這個(gè)和式兩端同時(shí)乘以等比數(shù)列的公比得到另一個(gè)和式,這兩個(gè)和式錯(cuò)一位相減,就把問題轉(zhuǎn)化為以求一個(gè)等比數(shù)列的前n項(xiàng)和或前n-1項(xiàng)和為主的求和問題.這里最容易出現(xiàn)問題的就是錯(cuò)位相減后對(duì)剩余項(xiàng)的處理。

  不等式性質(zhì)應(yīng)用不當(dāng)致誤

  在使用不等式的基本性質(zhì)進(jìn)行推理論證時(shí)一定要準(zhǔn)確,特別是不等式兩端同時(shí)乘以或同時(shí)除以一個(gè)數(shù)式、兩個(gè)不等式相乘、一個(gè)不等式兩端同時(shí)n次方時(shí),一定要注意使其能夠這樣做的條件,如果忽視了不等式性質(zhì)成立的前提條件就會(huì)出現(xiàn)錯(cuò)誤。

  忽視基本不等式應(yīng)用條件致誤

  利用基本不等式a+b≥2ab以及變式ab≤a+b22等求函數(shù)的最值時(shí),務(wù)必注意a,b為正數(shù)(或a,b非負(fù)),ab或a+b其中之一應(yīng)是定值,特別要注意等號(hào)成立的條件。對(duì)形如y=ax+bx(a,b>0)的函數(shù),在應(yīng)用基本不等式求函數(shù)最值時(shí),一定要注意ax,bx的符號(hào),必要時(shí)要進(jìn)行分類討論,另外要注意自變量x的取值范圍,在此范圍內(nèi)等號(hào)能否取到。

  關(guān)于高考數(shù)學(xué)知識(shí)點(diǎn)

  一、集合與函數(shù)

  1.進(jìn)行集合的交、并、補(bǔ)運(yùn)算時(shí),不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進(jìn)行求解。

  2.在應(yīng)用條件時(shí),易A忽略是空集的情況

  3.你會(huì)用補(bǔ)集的思想解決有關(guān)問題嗎?

  4.簡(jiǎn)單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?

  5.你知道“否命題”與“命題的否定形式”的區(qū)別。

  6.求解與函數(shù)有關(guān)的問題易忽略定義域優(yōu)先的原則。

  7.判斷函數(shù)奇偶性時(shí),易忽略檢驗(yàn)函數(shù)定義域是否關(guān)于原點(diǎn)對(duì)稱。

  8.求一個(gè)函數(shù)的解析式和一個(gè)函數(shù)的反函數(shù)時(shí),易忽略標(biāo)注該函數(shù)的定義域。

  9.原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個(gè)函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào)。例如:。

  10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值, 作差, 判正負(fù))和導(dǎo)數(shù)法

  11. 求函數(shù)單調(diào)性時(shí),易錯(cuò)誤地在多個(gè)單調(diào)區(qū)間之間添加符號(hào)“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示。

  12.求函數(shù)的值域必須先求函數(shù)的定義域。

  13.如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?①比較函數(shù)值的大。虎诮獬橄蠛瘮(shù)不等式;③求參數(shù)的范圍(恒成立問題).這幾種基本應(yīng)用你掌握了嗎?

  14.解對(duì)數(shù)函數(shù)問題時(shí),你注意到真數(shù)與底數(shù)的限制條件了嗎?

  (真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論

  15.三個(gè)二次(哪三個(gè)二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值?

  16.用換元法解題時(shí)易忽略換元前后的等價(jià)性,易忽略參數(shù)的范圍。

  17.“實(shí)系數(shù)一元二次方程有實(shí)數(shù)解”轉(zhuǎn)化時(shí),你是否注意到:當(dāng)時(shí),“方程有解”不能轉(zhuǎn)化為。若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項(xiàng)系數(shù)可能為的零的情形?

  二、不等式

  1.利用均值不等式求最值時(shí),你是否注意到:“一正;二定;三等”.

  2.絕對(duì)值不等式的解法及其幾何意義是什么?

  3.解分式不等式應(yīng)注意什么問題?用“根軸法”解整式(分式)不等式的注意事項(xiàng)是什么?

  4.解含參數(shù)不等式的通法是“定義域?yàn)榍疤,函?shù)的單調(diào)性為基礎(chǔ),分類討論是關(guān)鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”.

  5. 在求不等式的解集、定義域及值域時(shí),其結(jié)果一定要用集合或區(qū)間表示;不能用不等式表示。

  6. 兩個(gè)不等式相乘時(shí),必須注意同向同正時(shí)才能相乘,即同向同正可乘;同時(shí)要注意“同號(hào)可倒”即a>b>0,a

  三、數(shù)列

  1.解決一些等比數(shù)列的前項(xiàng)和問題,你注意到要對(duì)公比及兩種情況進(jìn)行討論了嗎?

  2.在“已知,求”的問題中,你在利用公式時(shí)注意到了嗎?(時(shí),應(yīng)有)需要驗(yàn)證,有些題目通項(xiàng)是分段函數(shù)。

  3.你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無窮數(shù)列的概念嗎?你知道無窮數(shù)列的前項(xiàng)和與所有項(xiàng)的和的不同嗎?什么樣的無窮等比數(shù)列的所有項(xiàng)的和必定存在?

  4.數(shù)列單調(diào)性問題能否等同于對(duì)應(yīng)函數(shù)的單調(diào)性問題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。)

  5.應(yīng)用數(shù)學(xué)歸納法一要注意步驟齊全,二要注意從到過程中,先假設(shè)時(shí)成立,再結(jié)合一些數(shù)學(xué)方法用來證明時(shí)也成立。

  四、三角函數(shù)

  1.正角、負(fù)角、零角、象限角的概念你清楚嗎,若角的終邊在坐標(biāo)軸上,那它歸哪個(gè)象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?

  2.三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎?

  3. 在解三角問題時(shí),你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?

  4. 你還記得三角化簡(jiǎn)的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角。 異角化同角,異名化同名,高次化低次)

  5. 反正弦、反余弦、反正切函數(shù)的取值范圍分別是

  6.你還記得某些特殊角的三角函數(shù)值嗎?

  7.掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì)。你會(huì)寫三角函數(shù)的單調(diào)區(qū)間嗎?會(huì)寫簡(jiǎn)單的三角不等式的解集嗎?(要注意數(shù)形結(jié)合與書寫規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過怎樣的變換得到嗎?

  五、平面向量

  1..數(shù)0有區(qū)別,的模為數(shù)0,它不是沒有方向,而是方向不定。可以看成與任意向量平行,但與任意向量都不垂直。

  2..數(shù)量積與兩個(gè)實(shí)數(shù)乘積的區(qū)別:

  在實(shí)數(shù)中:若,且ab=0,則b=0,但在向量的數(shù)量積中,若,且,不能推出。

  已知實(shí)數(shù),且,則a=c,但在向量的數(shù)量積中沒有。

  在實(shí)數(shù)中有,但是在向量的數(shù)量積中,這是因?yàn)樽筮吺桥c共線的向量,而右邊是與共線的向量。

  3.是向量與平行的充分而不必要條件,是向量和向量夾角為鈍角的必要而不充分條件。

  六、解析幾何

  1.在用點(diǎn)斜式、斜截式求直線的方程時(shí),你是否注意到不存在的情況?

  2.用到角公式時(shí),易將直線l1、l2的斜率k1、k2的順序弄顛倒。

  3.直線的傾斜角、到的角、與的夾角的取值范圍依次是。

  4. 定比分點(diǎn)的坐標(biāo)公式是什么?(起點(diǎn),中點(diǎn),分點(diǎn)以及值可要搞清),在利用定比分點(diǎn)解題時(shí),你注意到了嗎?

  5. 對(duì)不重合的兩條直線

  (建議在解題時(shí),討論后利用斜率和截距)

  6. 直線在兩坐標(biāo)軸上的截距相等,直線方程可以理解為,但不要忘記當(dāng)時(shí),直線在兩坐標(biāo)軸上的截距都是0,亦為截距相等。

  7.解決線性規(guī)劃問題的基本步驟是什么?請(qǐng)你注意解題格式和完整的文字表達(dá)。(①設(shè)出變量,寫出目標(biāo)函數(shù)②寫出線性約束條件③畫出可行域④作出目標(biāo)函數(shù)對(duì)應(yīng)的系列平行線,找到并求出最優(yōu)解⑦應(yīng)用題一定要有答。)

  8.三種圓錐曲線的定義、圖形、標(biāo)準(zhǔn)方程、幾何性質(zhì),橢圓與雙曲線中的兩個(gè)特征三角形你掌握了嗎?

  9.圓、和橢圓的參數(shù)方程是怎樣的?常用參數(shù)方程的方法解決哪一些問題?

  10.利用圓錐曲線第二定義解題時(shí),你是否注意到定義中的定比前后項(xiàng)的順序?如何利用第二定義推出圓錐曲線的焦半徑公式?如何應(yīng)用焦半徑公式?

  11. 通徑是拋物線的所有焦點(diǎn)弦中最短的弦。(想一想在雙曲線中的結(jié)論?)

  12. 在用圓錐曲線與直線聯(lián)立求解時(shí),消元后得到的方程中要注意:二次項(xiàng)的系數(shù)是否為零?橢圓,雙曲線二次項(xiàng)系數(shù)為零時(shí)直線與其只有一個(gè)交點(diǎn),判別式的限制。(求交點(diǎn),弦長(zhǎng),中點(diǎn),斜率,對(duì)稱,存在性問題都在下進(jìn)行).

  13.解析幾何問題的求解中,平面幾何知識(shí)利用了嗎?題目中是否已經(jīng)有坐標(biāo)系了,是否需要建立直角坐標(biāo)系?

  七、立體幾何

  1.你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測(cè)畫法)。

  2.線面平行和面面平行的定義、判定和性質(zhì)定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯(lián)系和轉(zhuǎn)化在解決立幾問題中的應(yīng)用是怎樣的?每種平行之間轉(zhuǎn)換的條件是什么?

  3.三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關(guān)鍵是什么嗎?(一面、四線、三垂直、立柱即面的垂線是關(guān)鍵)一面四直線,立柱是關(guān)鍵,垂直三處見

  4.線面平行的判定定理和性質(zhì)定理在應(yīng)用時(shí)都是三個(gè)條件,但這三個(gè)條件易混為一談;面面平行的判定定理易把條件錯(cuò)誤地記為”一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面內(nèi)的兩條相交直線分別平行”而導(dǎo)致證明過程跨步太大。

  5.求兩條異面直線所成的角、直線與平面所成的角和二面角時(shí),如果所求的角為90°,那么就不要忘了還有一種求角的方法即用證明它們垂直的方法。

  6.異面直線所成角利用“平移法”求解時(shí),一定要注意平移后所得角等于所求角(或其補(bǔ)角),特別是題目告訴異面直線所成角,應(yīng)用時(shí)一定要從題意出發(fā),是用銳角還是其補(bǔ)角,還是兩種情況都有可能。

  7.你知道公式:和中每一字母的意思嗎?能夠熟練地應(yīng)用它們解題嗎?

  8. 兩條異面直線所成的角的范圍:0°<α≤90°< p="">

  直線與平面所成的角的范圍:0o≤α≤90°

  高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

  一、函數(shù)

  1.函數(shù)的基本概念

  函數(shù)的概念,函數(shù)的單調(diào)性,函數(shù)的奇偶性,這些屬于函數(shù)的基本概念,已經(jīng)在高一數(shù)學(xué)必修一中有了詳細(xì)的介紹,在此不再贅述。

  2.指數(shù)函數(shù)

  單調(diào)性是指數(shù)函數(shù)的重要性質(zhì),特別是函數(shù)圖象的無限伸展性,x軸是函數(shù)圖象的漸近線,當(dāng)0+∞,y->0;當(dāng)a>1時(shí),x->-∞,y->0;當(dāng)a>1時(shí),a的值越大,第一象限內(nèi)圖象越靠近y軸,遞增的速度越快;

  3.對(duì)數(shù)函數(shù)

  對(duì)數(shù)函數(shù)的性質(zhì)是每年高考的必考內(nèi)容之一,其中單調(diào)性和對(duì)數(shù)函數(shù)的定義域是熱點(diǎn)問題,其單調(diào)性取決于底數(shù)與“1”的大小關(guān)系.

  二、三角函數(shù)

  1.命題趨勢(shì)

  高考可能仍會(huì)將三角函數(shù)概念、同角三角函數(shù)的關(guān)系式和誘導(dǎo)公式作為基礎(chǔ)內(nèi)容,融于三角求值、化簡(jiǎn)及解三角形的考查中.由該部分知識(shí)的基礎(chǔ)性決定這一部分知識(shí)可以和其他知識(shí)融合考查,高考中需要關(guān)注.

  2.三角函數(shù)式的化簡(jiǎn)要遵循“三看”原則

 。1)一看“角”,這是最重要的一環(huán),通過看角之間的差別與聯(lián)系,把角進(jìn)行合理的拆分,從而正確使用公式.

 。2)二看”函數(shù)名稱”,看函數(shù)名稱之間的差異,從而確定使用的公式,常見的有”切化弦”

  (3)三看”結(jié)構(gòu)特征”,分析結(jié)構(gòu)特征,可以幫助我們找到變形的方向,常見的有“遇到分式要通分”等.多做三角函數(shù)練習(xí)題會(huì)對(duì)更加熟悉的掌握三角函數(shù)有幫助,這里給大家推薦李老師教的三角函數(shù)解題法。

  三、導(dǎo)數(shù)

  1.導(dǎo)數(shù)的概念

  1)如果當(dāng)Δx-->0時(shí),Δy/Δx-->常數(shù)A,就說函數(shù)y=f(x)在點(diǎn)x0處可導(dǎo),并把A叫做f(x)在點(diǎn)x0處的導(dǎo)數(shù)(瞬時(shí)變化率).記作f’(x0)的幾何意義是曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線的斜率.瞬時(shí)速度就是位移函數(shù)s對(duì)時(shí)間t的導(dǎo)數(shù).

  2)如果函數(shù)f(x)在開區(qū)間(a,b)內(nèi)每一點(diǎn)都可導(dǎo),其導(dǎo)數(shù)值在(a,b)內(nèi)構(gòu)成一個(gè)新的函數(shù),叫做f(x)在開區(qū)間(a,b)內(nèi)導(dǎo)數(shù),記作f’(x).

  3)如果函數(shù)f(x)在點(diǎn)x0處可導(dǎo),那么函數(shù)y=f(x)在點(diǎn)x0處連續(xù).

  2.函數(shù)的導(dǎo)數(shù)與導(dǎo)數(shù)值的區(qū)別與聯(lián)系:導(dǎo)數(shù)是原來函數(shù)的導(dǎo)函數(shù),而導(dǎo)數(shù)值是導(dǎo)函數(shù)在某一點(diǎn)的函數(shù)值,導(dǎo)數(shù)值是常數(shù).

  3.求導(dǎo)

  在高中數(shù)學(xué)導(dǎo)數(shù)求導(dǎo)過程中,要仔細(xì)分析函數(shù)解析式的結(jié)構(gòu)特征,緊扣求導(dǎo)法則,聯(lián)系基本函數(shù)求導(dǎo)公式,對(duì)于不具備求導(dǎo)法則結(jié)構(gòu)形式的要適當(dāng)恒等變形,對(duì)于比較復(fù)雜的函數(shù),如果直接套用求導(dǎo)法則,會(huì)使求導(dǎo)過程繁瑣冗長(zhǎng),且易出錯(cuò),此時(shí),可將解析式進(jìn)行合理變形,轉(zhuǎn)化為教易求導(dǎo)的結(jié)構(gòu)形。

  掌握每一個(gè)公式定理

  做課本的例題,課本的例題的思路比較簡(jiǎn)單,其知識(shí)點(diǎn)也是單一不會(huì)交叉的,如果課本上的例題你拿出來都會(huì)做了,說明你已經(jīng)具備了一定的理解力。

  做課后練習(xí)題,前面的題是和課本例題一個(gè)級(jí)別的,如果課本上所有的題都會(huì)做了,那么基礎(chǔ)夯實(shí)可以告一段落。

  進(jìn)行專題訓(xùn)練提高數(shù)學(xué)成績(jī)

  1、做高中數(shù)學(xué)題的時(shí)候千萬不能怕難題!有很多人數(shù)學(xué)分?jǐn)?shù)提不動(dòng),很大一部分原因是他們的畏懼心理。有的人看到圓錐曲線和導(dǎo)數(shù),看到稍微長(zhǎng)一點(diǎn)的復(fù)雜一點(diǎn)的敘述,甚至看到21、22就已經(jīng)開始退卻了。這部分的分?jǐn)?shù),如果你不去努力,永遠(yuǎn)都不會(huì)掙到的,所以第一個(gè)建議,就是大膽的去做。前面虧欠數(shù)學(xué)這門學(xué)科太多,就算讓它打腫了又怎樣,后面一點(diǎn)一點(diǎn)的強(qiáng)大起來,總有那么一天你去打它的臉。

  2、錯(cuò)題本怎么用。和記筆記一樣,整理錯(cuò)題不是謄寫不是照抄,而是摘抄。你只顧著去采擷問題,就失去了理解和挑選題目的過程,筆記同理,如果老師說什么記什么,那只能說明你這節(jié)課根本沒聽,真正有效率的人,是會(huì)把知識(shí)簡(jiǎn)化,把書本讀薄的。先學(xué)學(xué)你能思考到答案的哪一步,學(xué)著去偷分。當(dāng)然,因人而異,如果你覺得還有哪些題需要整理也可以記下來。

  3、如何學(xué)好高中數(shù)學(xué)

  1)先看筆記后做作業(yè)。有的高中學(xué)生感到。老師講過的,自己已經(jīng)聽得明明白白了。但是,為什么自己一做題就困難重重了呢?其原因在于,學(xué)生對(duì)教師所講的內(nèi)容的理解,還沒能達(dá)到教師所要求的層次。因此,每天在做作業(yè)之前,一定要把課本的有關(guān)內(nèi)容和當(dāng)天的課堂筆記先看一看。能否堅(jiān)持如此,常常是好學(xué)生與差學(xué)生的最大區(qū)別。尤其練習(xí)題不太配套時(shí),作業(yè)中往往沒有老師剛剛講過的題目類型,因此不能對(duì)比消化。如果自己又不注意對(duì)此落實(shí),天長(zhǎng)日久,就會(huì)造成極大損失。

  2)做題之后加強(qiáng)反思。學(xué)生一定要明確,現(xiàn)在正坐著的題,一定不是考試的題目。而是要運(yùn)用現(xiàn)在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思?偨Y(jié)一下自己的收獲。要總結(jié)出,這是一道什么內(nèi)容的題,用的是什么方法。做到知識(shí)成片,問題成串,日久天長(zhǎng),構(gòu)建起一個(gè)內(nèi)容與方法的科學(xué)的網(wǎng)絡(luò)系統(tǒng)。

  3)主動(dòng)復(fù)習(xí)總結(jié)提高。進(jìn)行章節(jié)總結(jié)是非常重要的。初中時(shí)是教師替學(xué)生做總結(jié),做得細(xì)致,深刻,完整。高中是自己給自己做總結(jié),老師不但不給做,而且是講到哪,考到哪,不留復(fù)習(xí)時(shí)間,也沒有明確指出做總結(jié)的時(shí)間。

  高中數(shù)學(xué)復(fù)習(xí)的五大要點(diǎn)分析

  一、端正態(tài)度,切忌浮躁,忌急于求成

  在第一輪復(fù)習(xí)的過程中,心浮氣躁是一個(gè)非常普遍的現(xiàn)象。主要表現(xiàn)為平時(shí)復(fù)習(xí)覺得沒有問題,題目也能做,但是到了考試時(shí)就是拿不了高分!這主要是因?yàn)椋?/p>

  (1)對(duì)復(fù)習(xí)的知識(shí)點(diǎn)缺乏系統(tǒng)的理解,解題時(shí)缺乏思維層次結(jié)構(gòu)。第一輪復(fù)習(xí)著重對(duì)基礎(chǔ)知識(shí)點(diǎn)的挖掘,數(shù)學(xué)老師一定都會(huì)反復(fù)強(qiáng)調(diào)基礎(chǔ)的重要性。如果不重視對(duì)知識(shí)點(diǎn)的系統(tǒng)化分析,不能構(gòu)成一個(gè)整體的知識(shí)網(wǎng)絡(luò)構(gòu)架,自然在解題時(shí)就不能擁有整體的構(gòu)思,也不能深入理解高考典型例題的思維方法。

  (2)復(fù)習(xí)的時(shí)候心不靜。心不靜就會(huì)導(dǎo)致思維不清晰,而思維不清晰就會(huì)促使復(fù)習(xí)沒有效率。建議大家在開始一個(gè)學(xué)科的復(fù)習(xí)之前,先靜下心來認(rèn)真想一想接下來需要復(fù)習(xí)哪一塊兒,需要做多少事情,然后認(rèn)真去做,同時(shí)需要很高的注意力,只有這樣才會(huì)有很好的效果。

  (3)在第一輪復(fù)習(xí)階段,學(xué)習(xí)的重心應(yīng)該轉(zhuǎn)移到基礎(chǔ)復(fù)習(xí)上來。

  因此,建議廣大同學(xué)在一輪復(fù)習(xí)的時(shí)候千萬不要急于求成,一定要靜下心來,認(rèn)真的揣摩每個(gè)知識(shí)點(diǎn),弄清每一個(gè)原理。只有這樣,一輪復(fù)習(xí)才能顯出成效。

  二、注重教材、注重基礎(chǔ),忌盲目做題

  要把書本中的常規(guī)題型做好,所謂做好就是要用最少的時(shí)間把題目做對(duì)。部分同學(xué)在第一輪復(fù)習(xí)時(shí)對(duì)基礎(chǔ)題不予以足夠的重視,認(rèn)為題目看上去會(huì)做就可以不加訓(xùn)練,結(jié)果常在一些“不該錯(cuò)的地方錯(cuò)了”,最終把原因簡(jiǎn)單的歸結(jié)為粗心,從而忽視了對(duì)基本概念的掌握,對(duì)基本結(jié)論和公式的記憶及基本計(jì)算的訓(xùn)練和常規(guī)方法的積累,造成了實(shí)際成績(jī)與心理感覺的偏差。

  可見,數(shù)學(xué)的基本概念、定義、公式,數(shù)學(xué)知識(shí)點(diǎn)的聯(lián)系,基本的數(shù)學(xué)解題思路與方法,是第一輪復(fù)習(xí)的重中之重。不妨以既是重點(diǎn)也是難點(diǎn)的函數(shù)部分為例,就必須掌握函數(shù)的概念,建立函數(shù)關(guān)系式,掌握定義域、值域與最值、奇偶性、單調(diào)性、周期性、對(duì)稱性等性質(zhì),學(xué)會(huì)利用圖像即數(shù)形結(jié)合。

  三、抓薄弱環(huán)節(jié),做好復(fù)習(xí)的針對(duì)性,忌無計(jì)劃

  每個(gè)同學(xué)在數(shù)學(xué)學(xué)習(xí)上遇到的問題有共同點(diǎn),更有不同點(diǎn)。在復(fù)習(xí)課上,老師只能針對(duì)性去解決共同點(diǎn),而同學(xué)們自己的個(gè)別問題則需要通過自己的思考,與同學(xué)們的討論,并向老師提問來解決問題,我們提倡同學(xué)多問老師,要敢于問。每個(gè)同學(xué)必須了解自己掌握了什么,還有哪些問題沒有解決,要明確只有把漏洞一一補(bǔ)上才能提高。復(fù)習(xí)的過程,實(shí)質(zhì)就是解決問題的過程,問題解決了,復(fù)習(xí)的效果就實(shí)現(xiàn)了。同時(shí),也請(qǐng)同學(xué)們注意:在你問問題之前先經(jīng)過自己思考,不要把不經(jīng)過思考的問題就直接去問,因?yàn)檫@并不能起到更大作用。

  高三的復(fù)習(xí)一定是有計(jì)劃、有目標(biāo)的,所以千萬不要盲目做題。第一輪復(fù)習(xí)非常具有針對(duì)性,對(duì)于所有知識(shí)點(diǎn)的地毯式轟炸,一定要做到不缺不漏。因此,僅靠簡(jiǎn)單做題是達(dá)不到一輪復(fù)習(xí)應(yīng)該具有的效果。而且盲目做題沒有針對(duì)性,更不會(huì)有全面性。在概念模糊的情況下一定要回歸課本,注意教材上最清晰的概念與原理,注重對(duì)知識(shí)點(diǎn)運(yùn)用方法的總結(jié)。

  四、在平時(shí)做題中要養(yǎng)成良好的解題習(xí)慣,忌不思

  1.樹立信心,養(yǎng)成良好的運(yùn)算習(xí)慣。部分同學(xué)平時(shí)學(xué)習(xí)過程中自信心不足,做作業(yè)時(shí)免不了互相對(duì)答案,也不認(rèn)真找出錯(cuò)誤原因并加以改正!皶(huì)而不對(duì)”是高三數(shù)學(xué)學(xué)習(xí)的大忌,常見的有審題失誤、計(jì)算錯(cuò)誤等,平時(shí)都以為是粗心,其實(shí)這就是一種非常不好的習(xí)慣,必須在第一輪復(fù)習(xí)中逐步克服,否則,后患無窮?山Y(jié)合平時(shí)解題中存在的具體問題,逐題找出原因,看其是行為習(xí)慣方面的原因,還是知識(shí)方面的缺陷,再有針對(duì)性加以解決。必要時(shí)作些記錄,也就是錯(cuò)題本,每位同學(xué)必備的,以便以后查詢。

  2.做好解題后的開拓引申,培養(yǎng)一題多解和舉一反三的能力。解題能力的培養(yǎng)可以從一題多解和舉一反三中得到提高,因而解完題后,需要再回味和引申,它包括對(duì)解題方法的開拓引申,即一道數(shù)學(xué)題從不同的角度去考慮去分析,可以有不同的思路,不同的解法。

  考慮的愈廣泛愈深刻,獲得的思路愈廣闊,解法愈多樣;及對(duì)題目做開拓引申,引申出新題和新解法,有利于培養(yǎng)同學(xué)們的發(fā)散思維,激發(fā)創(chuàng)造精神,提高解題能力:

  (1)把題目條件開拓引申。

 、侔烟厥鈼l件一般化;

 、诎岩话銞l件特殊化;

 、郯烟厥鈼l件和一般條件交替變化。

  (2)把題目結(jié)論開拓引申。

  (3)把題型開拓引申,同一個(gè)題目,給出不同的提法,可以變成不同的題型。俗稱為“一題多變”但其解法仍類似,按其解法而言,這些題又可稱為“多題一解”或“一法多用”。

  3.提高解題速度,掌握解題技巧。提高解題速度的主要因素有二:一是解題方法的巧妙與簡(jiǎn)捷;二是對(duì)常規(guī)解法的掌握是否達(dá)到高度的熟練程度。

  五、學(xué)會(huì)總結(jié)、歸納,訓(xùn)練到位,忌題量不足

  我在暑期上課的時(shí)候發(fā)現(xiàn),很多同學(xué)都是一看到題目就開始做題,這也是一輪復(fù)習(xí)應(yīng)該避免的地方。做題如果不注重思路的分析,知識(shí)點(diǎn)的運(yùn)用,效果可想而知。因此建議同學(xué)們?cè)谧鲱}前要把老師上課時(shí)復(fù)習(xí)的知識(shí)再回顧一下,梳理知識(shí)體系,回顧各個(gè)知識(shí)點(diǎn),對(duì)所學(xué)的知識(shí)結(jié)構(gòu)要有一個(gè)完整清楚的認(rèn)識(shí),認(rèn)真分析題目考查的知識(shí),思想,以及方法,還要學(xué)會(huì)總結(jié)歸納不留下任何知識(shí)的盲點(diǎn),在一輪復(fù)習(xí)中要注意對(duì)各個(gè)知識(shí)點(diǎn)的細(xì)化。這個(gè)過程不需要很長(zhǎng)的時(shí)間,而且到了后續(xù)階段會(huì)越來越熟練。因此,養(yǎng)成良好的做題習(xí)慣,有助于訓(xùn)練自己的解題思維,提高自己的解題能力。

  實(shí)踐出真知,充足的題量是把理論轉(zhuǎn)化為能力的一種保障,在足夠的題目的練習(xí)下不僅可以更扎實(shí)的掌握知識(shí)點(diǎn),還可以更深入的了解知識(shí)點(diǎn),避免出現(xiàn)“會(huì)而不對(duì)、對(duì)而不全”的現(xiàn)象。由于高考依然是以做題為主,所以解題能力是高考分?jǐn)?shù)的一個(gè)直接反映,尤其是數(shù)學(xué)試題。而解題能力不是三兩道題就能提升的,而是要大量的反復(fù)的訓(xùn)練、認(rèn)真細(xì)致的推敲才會(huì)有較大的提升。有句話說的好,“量變導(dǎo)致質(zhì)變”,因此,同學(xué)們?cè)诿空聫?fù)習(xí)的時(shí)候,一定要做足夠的題,才能夠充分的理解這一章的內(nèi)容,才能夠做到對(duì)這一章知識(shí)點(diǎn)的熟練運(yùn)用。

  但是,大量訓(xùn)練絕對(duì)不是題海戰(zhàn)術(shù)。因?yàn)獒槍?duì)每章節(jié)做題都有目標(biāo),同時(shí)做題訓(xùn)練都需要不斷的總結(jié),既要橫向總結(jié),也要縱向深入。只要在每章節(jié)做題做到一定程度的時(shí)候都能感覺到這一章的知識(shí)點(diǎn)有哪些,典型題型有哪些,方法和技巧有哪些,換句話說,如果隨機(jī)抽取一些近幾年關(guān)于這一章的高考題都會(huì)做,那我認(rèn)為就可以了。

  高中數(shù)學(xué)知識(shí)點(diǎn)歸納

  1.必修課程由5個(gè)模塊組成:

  必修1:集合,函數(shù)概念與基本初等函數(shù)(指數(shù)函數(shù),冪函數(shù),對(duì)數(shù)函數(shù))

  必修2:立體幾何初步、平面解析幾何初步。

  必修3:算法初步、統(tǒng)計(jì)、概率。

  必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。

  必修5:解三角形、數(shù)列、不等式。

  以上所有的知識(shí)點(diǎn)是所有高中生必須掌握的,而且要懂得運(yùn)用。

  選修課程分為4個(gè)系列:

  系列1:2個(gè)模塊

  選修1-1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何。

  選修1-2:統(tǒng)計(jì)案例、推理與證明、數(shù)系的擴(kuò)充與復(fù)數(shù)、框圖

  系列2:3個(gè)模塊

  選修2-1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何

  選修2-2:導(dǎo)數(shù)及其應(yīng)用、推理與證明、數(shù)系的擴(kuò)充與復(fù)數(shù)

  選修2-3:計(jì)數(shù)原理、隨機(jī)變量及其分布列、統(tǒng)計(jì)案例

  選修4-1:幾何證明選講

  選修4-4:坐標(biāo)系與參數(shù)方程

  選修4-5:不等式選講

  2.重難點(diǎn)及其考點(diǎn):

  重點(diǎn):函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導(dǎo)數(shù)

  難點(diǎn):函數(shù),圓錐曲線

  高考相關(guān)考點(diǎn):

  1.集合與邏輯:集合的邏輯與運(yùn)算(一般出現(xiàn)在高考卷的第一道選擇題)、簡(jiǎn)易邏輯、充要條件

  2.函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、函數(shù)的應(yīng)用

  3.數(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求通項(xiàng)、求和

  4.三角函數(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和差倍半公式、求值、化簡(jiǎn)、證明、三角函數(shù)的圖像及其性質(zhì)、應(yīng)用

  5.平面向量:初等運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及其應(yīng)用

  6.不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對(duì)值不等式(經(jīng)常出現(xiàn)在大題的選做題里)、不等式的應(yīng)用

  7.直線與圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系

  8.圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問題、圓錐曲線的應(yīng)用

  9.直線、平面、簡(jiǎn)單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量

  10.排列、組合和概率:排列、組合應(yīng)用題、二項(xiàng)式定理及其應(yīng)用

  11.概率與統(tǒng)計(jì):概率、分布列、期望、方差、抽樣、正態(tài)分布

  12.導(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用

  13.復(fù)數(shù):復(fù)數(shù)的概念與運(yùn)算

  高三數(shù)學(xué)重要知識(shí)點(diǎn)總結(jié)

  考點(diǎn)一:集合與簡(jiǎn)易邏輯

  集合部分一般以選擇題出現(xiàn),屬容易題。重點(diǎn)考查集合間關(guān)系的理解和認(rèn)識(shí)。近年的試題加強(qiáng)了對(duì)集合計(jì)算化簡(jiǎn)能力的考查,并向無限集發(fā)展,考查抽象思維能力。在解決這些問題時(shí),要注意利用幾何的直觀性,并注重集合表示方法的轉(zhuǎn)換與化簡(jiǎn)。簡(jiǎn)易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關(guān)系、邏輯聯(lián)結(jié)詞、“充要關(guān)系”、命題真?zhèn)蔚呐袛、全稱命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達(dá)數(shù)學(xué)解題過程和邏輯推理。

  考點(diǎn)二:函數(shù)與導(dǎo)數(shù)

  函數(shù)是高考的重點(diǎn)內(nèi)容,以選擇題和填空題的為載體針對(duì)性考查函數(shù)的定義域與值域、函數(shù)的性質(zhì)、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對(duì)數(shù)、冪函數(shù))的應(yīng)用等,分值約為10分,解答題與導(dǎo)數(shù)交匯在一起考查函數(shù)的性質(zhì)。導(dǎo)數(shù)部分一方面考查導(dǎo)數(shù)的運(yùn)算與導(dǎo)數(shù)的幾何意義,另一方面考查導(dǎo)數(shù)的簡(jiǎn)單應(yīng)用,如求函數(shù)的單調(diào)區(qū)間、極值與最值等,通常以客觀題的形式出現(xiàn),屬于容易題和中檔題,三是導(dǎo)數(shù)的綜合應(yīng)用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式出現(xiàn),如一些不等式恒成立問題、參數(shù)的取值范圍問題、方程根的個(gè)數(shù)問題、不等式的證明等問題。

  考點(diǎn)三:三角函數(shù)與平面向量

  一般是2道小題,1道綜合解答題。小題一道考查平面向量有關(guān)概念及運(yùn)算等,另一道對(duì)三角知識(shí)點(diǎn)的補(bǔ)充。大題中如果沒有涉及正弦定理、余弦定理的應(yīng)用,可能就是一道和解答題相互補(bǔ)充的三角函數(shù)的圖像、性質(zhì)或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數(shù)形結(jié)合思想在解題中的應(yīng)用。向量重點(diǎn)考查平面向量數(shù)量積的概念及應(yīng)用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等結(jié)合,解決角度、垂直、共線等問題是“新熱點(diǎn)”題型.

  考點(diǎn)四:數(shù)列與不等式

  不等式主要考查一元二次不等式的解法、一元二次不等式組和簡(jiǎn)單線性規(guī)劃問題、基本不等式的應(yīng)用等,通常會(huì)在小題中設(shè)置1到2道題。對(duì)不等式的工具性穿插在數(shù)列、解析幾何、函數(shù)導(dǎo)數(shù)等解答題中進(jìn)行考查.在選擇、填空題中考查等差或等比數(shù)列的概念、性質(zhì)、通項(xiàng)公式、求和公式等的靈活應(yīng)用,一道解答題大多凸顯以數(shù)列知識(shí)為工具,綜合運(yùn)用函數(shù)、方程、不等式等解決問題的能力,它們都屬于中、高檔題目.

  考點(diǎn)五:立體幾何與空間向量

  一是考查空間幾何體的結(jié)構(gòu)特征、直觀圖與三視圖;二是考查空間點(diǎn)、線、面之間的位置關(guān)系;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求).在高考試卷中,一般有1~2個(gè)客觀題和一個(gè)解答題,多為中檔題。

  考點(diǎn)六:解析幾何

  一般有1~2個(gè)客觀題和1個(gè)解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關(guān)系、圓錐曲線的定義應(yīng)用、標(biāo)準(zhǔn)方程的求解、離心率的計(jì)算等,解答題則主要考查直線與橢圓、拋物線等的位置關(guān)系問題,經(jīng)常與平面向量、函數(shù)與不等式交匯,考查一些存在性問題、證明問題、定點(diǎn)與定值、最值與范圍問題等。

  考點(diǎn)七:算法復(fù)數(shù)推理與證明

  高考對(duì)算法的考查以選擇題或填空題的形式出現(xiàn),或給解答題披層“外衣”.考查的熱點(diǎn)是流程圖的識(shí)別與算法語言的閱讀理解.算法與數(shù)列知識(shí)的網(wǎng)絡(luò)交匯命題是考查的主流.復(fù)數(shù)考查的重點(diǎn)是復(fù)數(shù)的有關(guān)概念、復(fù)數(shù)的代數(shù)形式、運(yùn)算及運(yùn)算的幾何意義,一般是選擇題、填空題,難度不大.推理證明部分命題的方向主要會(huì)在函數(shù)、三角、數(shù)列、立體幾何、解析幾何等方面,單獨(dú)出題的可能性較小。對(duì)于理科,數(shù)學(xué)歸納法可能作為解答題的一小問.

  高考數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)

  三角函數(shù)。

  注意歸一公式、誘導(dǎo)公式的正確性。

  數(shù)列題。

  1、證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫上以誰為首項(xiàng),誰為公差(公比)的等差(等比)數(shù)列;

  2、最后一問證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫上綜上:由①②得證;

  3、證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡(jiǎn)單

  立體幾何題。

  1、證明線面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單;

  2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時(shí),要建系;

  3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。

  概率問題。

  1、搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個(gè)數(shù);

  2、搞清是什么概率模型,套用哪個(gè)公式;

  3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;

  4、求概率時(shí),正難則反(根據(jù)p1+p2+……+pn=1);

  5、注意計(jì)數(shù)時(shí)利用列舉、樹圖等基本方法;

  6、注意放回抽樣,不放回抽樣;

  正弦、余弦典型例題。

  1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為

  2、已知α為銳角,且,則α的度數(shù)是()A、30°B、45°C、60°D、90°

  3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是()A、75°B、90°C、105°D、120°

  4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°

  5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點(diǎn),EF⊥BC,垂足為F,求sin∠EBF的值。

  正弦、余弦解題訣竅。

  1、已知兩角及一邊,或兩邊及一邊的對(duì)角(對(duì)三角形是否存在要討論)用正弦定理。

  2、已知三邊,或兩邊及其夾角用余弦定理

  3、余弦定理對(duì)于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負(fù),還是為零,就可以確定是鈍角。直角還是銳角。

  高考數(shù)學(xué)知識(shí)點(diǎn)

  一、高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)

  主要是考函數(shù)和導(dǎo)數(shù),因?yàn)檫@是整個(gè)高中階段中最核心的部分,這部分里還重點(diǎn)考察兩個(gè)方面:第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析。

  二、平面向量和三角函數(shù)

  對(duì)于這部分知識(shí)重點(diǎn)考察三個(gè)方面:是劃減與求值,第一,重點(diǎn)掌握公式和五組基本公式;第二,掌握三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì);第三,正弦定理和余弦定理來解三角形,這方面難度并不大。

  三、數(shù)列

  數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。

  四、空間向量和立體幾何

  在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計(jì)算。

  五、概率和統(tǒng)計(jì)

  概率和統(tǒng)計(jì)主要屬于數(shù)學(xué)應(yīng)用問題的范疇,需要掌握幾個(gè)方面:……等可能的概率;……事件;獨(dú)立事件和獨(dú)立重復(fù)事件發(fā)生的概率。

  六、解析幾何

  這部分內(nèi)容說起來容易做起來難,需要掌握幾類問題,第一類直線和曲線的位置關(guān)系,要掌握它的通法;第二類動(dòng)點(diǎn)問題;第三類是弦長(zhǎng)問題;第四類是對(duì)稱問題;第五類重點(diǎn)問題,這類題往往覺得有思路卻沒有一個(gè)清晰的答案,但需要要掌握比較好的算法,來提高做題的準(zhǔn)確度。

  七、壓軸題

  同學(xué)們?cè)谧詈蟮膫淇紡?fù)習(xí)中,還應(yīng)該把重點(diǎn)放在不等式計(jì)算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時(shí)多做些壓軸題真題,爭(zhēng)取能解題就解題,能思考就思考。

  人教版高考數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)

  1.有關(guān)平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復(fù)遇到的,而且是以各種各樣的問題(包括論證、計(jì)算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對(duì)問題的分析與概括,掌握立體幾何中解決問題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。

  2.判定兩個(gè)平面平行的方法:

  (1)根據(jù)定義--證明兩平面沒有公共點(diǎn);

  (2)判定定理--證明一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面;

  (3)證明兩平面同垂直于一條直線。

  3.兩個(gè)平面平行的主要性質(zhì):

  (1)由定義知:“兩平行平面沒有公共點(diǎn)”;

  (2)由定義推得:“兩個(gè)平面平行,其中一個(gè)平面內(nèi)的直線必平行于另一個(gè)平面”;

  (3)兩個(gè)平面平行的性質(zhì)定理:“如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行”;

  (4)一條直線垂直于兩個(gè)平行平面中的一個(gè)平面,它也垂直于另一個(gè)平面;

  (5)夾在兩個(gè)平行平面間的平行線段相等;

  (6)經(jīng)過平面外一點(diǎn)只有一個(gè)平面和已知平面平行。

  高考高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)

  1、三類角的求法:

  ①找出或作出有關(guān)的角。

 、谧C明其符合定義,并指出所求作的角。

 、塾(jì)算大小(解直角三角形,或用余弦定理)。

  2、正棱柱——底面為正多邊形的直棱柱

  正棱錐——底面是正多邊形,頂點(diǎn)在底面的射影是底面的中心。

  正棱錐的計(jì)算集中在四個(gè)直角三角形中:

  3、怎樣判斷直線l與圓C的位置關(guān)系?

  圓心到直線的距離與圓的半徑比較。

  直線與圓相交時(shí),注意利用圓的“垂徑定理”。

  4、對(duì)線性規(guī)劃問題:作出可行域,作出以目標(biāo)函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標(biāo)函數(shù)的最值。

  不看后悔!清華名師揭秘學(xué)好高中數(shù)學(xué)的方法

  培養(yǎng)興趣是關(guān)鍵。學(xué)生對(duì)數(shù)學(xué)產(chǎn)生了興趣,自然有動(dòng)力去鉆研。如何培養(yǎng)興趣呢?

  (1)欣賞數(shù)學(xué)的美感

  比如幾何圖形中的對(duì)稱、變換前后的不變量、概念的嚴(yán)謹(jǐn)、邏輯的嚴(yán)密……

  通過對(duì)旋轉(zhuǎn)變換及其不變量的討論,我們可以證明反比例函數(shù)、“對(duì)勾函數(shù)”的圖象都是雙曲線——平面上到兩個(gè)定點(diǎn)的距離之差的絕對(duì)值為定值(小于兩個(gè)定點(diǎn)之間的距離)的點(diǎn)的集合。

  (2)注意到數(shù)學(xué)在實(shí)際生活中的應(yīng)用。

  例如和日常生活息息相關(guān)的等額本金、等額本息兩種不同的還款方式,用數(shù)列的知識(shí)就可以理解.

  學(xué)好數(shù)學(xué),是現(xiàn)代公民的基本素養(yǎng)之一啊.

  人教版高考年級(jí)數(shù)學(xué)知識(shí)點(diǎn)

  1、直線的傾斜角

  定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

  2、直線的斜率

 、俣x:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

 、谶^兩點(diǎn)的直線的斜率公式:

  注意下面四點(diǎn):

  (1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90°;

  (2)k與P1、P2的順序無關(guān);

  (3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

  (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

【高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)08-26

高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11-13

高考數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)08-19

數(shù)學(xué)高考必考知識(shí)點(diǎn)總結(jié)06-30

高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)06-07

數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)15篇08-26

數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)(15篇)08-26

高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【精】08-23

【推薦】高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)08-23

高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【推薦】08-23