成年女人色视频在线观看网站_一本久精品无码免费_亚洲成a人片在线观看无码专区_开心婷婷五月综合基地六月

初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間:2024-08-26 10:51:58 曉鳳 總結(jié) 投訴 投稿

初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

  總結(jié)是把一定階段內(nèi)的有關(guān)情況分析研究,做出有指導(dǎo)性結(jié)論的書面材料,它可以給我們下一階段的學(xué)習(xí)和工作生活做指導(dǎo),因此我們需要回頭歸納,寫一份總結(jié)了。那么如何把總結(jié)寫出新花樣呢?下面是小編為大家收集的初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié),歡迎大家分享。

初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

  初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 1

  平方根與立方根知識(shí)點(diǎn)

  平方根:

  概括1:一般地,如果一個(gè)數(shù)的平方等于a,這個(gè)數(shù)就叫做a的平方根(或二次方根)。就是說,如果x=a,那么x就叫做a的平方根。如:23與-23都是529的平方根。

  因?yàn)?±23)=529,所以±23是529的平方根。問:

  (1)16,49,100,1100都是正數(shù),它們有幾個(gè)平方根?平方根之間有什么關(guān)系?

  (2)0的平方根是什么?

  概括2:一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù);0有一個(gè)平方根,它是0本身;負(fù)數(shù)沒有平方根。

  概括3:求一個(gè)數(shù)a(a≥0)的平方根的運(yùn)算,叫做開平方。

  開平方運(yùn)算是已知指數(shù)和冪求底數(shù)。平方與開平方互為逆運(yùn)算。一個(gè)數(shù)可以是正數(shù)、負(fù)數(shù)或者是0,它的平方數(shù)只有一個(gè),正數(shù)或負(fù)數(shù)的平方都是正數(shù),0的平方是0。但一個(gè)正數(shù)的平方根卻有兩個(gè),這兩個(gè)數(shù)互為相反數(shù),0的平方根是0。負(fù)數(shù)沒有平方根。因?yàn)槠椒脚c開平方互為逆運(yùn)算,因此我們可以通過平方運(yùn)算來求一個(gè)數(shù)的平方根,也可以通過平方運(yùn)算來檢驗(yàn)一個(gè)數(shù)是不是另一個(gè)數(shù)的平方根。

  一、算術(shù)平方根的概念

  正數(shù)a有兩個(gè)平方根(表示為?根,表示為a。0的平方根也叫做0的算術(shù)平方根,因此0的算術(shù)平方根是0,即0!笔撬阈g(shù)平方根的符號(hào),a就表示a的算術(shù)平方根。a的意義有兩點(diǎn):a,我們把其中正的平方根,叫做a的算術(shù)平方

  (1)被開方數(shù)a表示非負(fù)數(shù),即a≥0;

  (2)a也表示非負(fù)數(shù),即a≥0。也就是說,非負(fù)數(shù)的“算術(shù)”平方根是非負(fù)數(shù)。負(fù)數(shù)不存在算術(shù)平方根,即a<0時(shí),a無意義。

  如:=3,8是64的算術(shù)平方根,6無意義。9既表示對(duì)9進(jìn)行開平方運(yùn)算,也表示9的正的平方根。

  二、平方根與算術(shù)平方根的區(qū)別在于

 、俣x不同;

 、趥(gè)數(shù)不同:一個(gè)正數(shù)有兩個(gè)平方根,而一個(gè)正數(shù)的算術(shù)平方根只有一個(gè);③表示方法不同:正數(shù)a的平方根表示為?a,正數(shù)a的算術(shù)平方根表示為a;④取值范圍不同:正數(shù)的算術(shù)平方根一定是正數(shù),正數(shù)的平方根是一正一負(fù).⑤0的平方根與算術(shù)平方根都是0.

  三、例題講解:

  例1、求下列各數(shù)的.算術(shù)平方根:

  (1)100;

  (2)49;

  (3)0.8164

  注意:由于正數(shù)的算術(shù)平方根是正數(shù),零的算術(shù)平方根是零,可將它們概括成:非負(fù)數(shù)的算

  術(shù)平方根是非負(fù)數(shù),即當(dāng)a≥0時(shí),a≥0(當(dāng)a<0時(shí),a無意義)

  用幾何圖形可以直觀地表示算術(shù)平方根的意義如有一個(gè)面積為a(a應(yīng)是非負(fù)數(shù))、邊長(zhǎng)為

  的正方形就表示a的算術(shù)平方根。

  這里需要說明的是,算術(shù)平方根的符號(hào)“”不僅是一個(gè)運(yùn)算符號(hào),如a≥0時(shí),a表示對(duì)非負(fù)數(shù)a進(jìn)行開平方運(yùn)算,另一方面也是一個(gè)性質(zhì)符號(hào),即表示非負(fù)數(shù)a的正的平方根。

  3、立方根

  (1)立方根的定義:如果一個(gè)數(shù)x的立方等于a,這個(gè)數(shù)叫做a的立方根(也叫做三次方根),即如果x?a,那么x叫做a的立方根

  (2)一個(gè)數(shù)a的立方根,讀作:“三次根號(hào)a”,其中a叫被開方數(shù),3叫根指數(shù),不能省略,若省略表示平方。

  (3)一個(gè)正數(shù)有一個(gè)正的立方根;0有一個(gè)立方根,是它本身;一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根;任何數(shù)都有的立方根。

  (4)利用開立方和立方互為逆運(yùn)算關(guān)系,求一個(gè)數(shù)的立方根,就可以利用這種互逆關(guān)系,檢驗(yàn)其正確性,求負(fù)數(shù)的立方根,可以先求出這個(gè)負(fù)數(shù)的絕對(duì)值的立方根,再取其相反數(shù)。

  初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 2

  1、正方形的概念

  有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形。

  2、正方形的性質(zhì)

  (1)具有平行四邊形、矩形、菱形的一切性質(zhì);

  (2)正方形的四個(gè)角都是直角,四條邊都相等;

  (3)正方形的`兩條對(duì)角線相等,并且互相垂直平分,每一條對(duì)角線平分一組對(duì)角;

  (4)正方形是軸對(duì)稱圖形,有4條對(duì)稱軸;

  (5)正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形,兩條對(duì)角線把正方形分成四個(gè)全等的小等腰直角三角形;

  (6)正方形的一條對(duì)角線上的一點(diǎn)到另一條對(duì)角線的兩端點(diǎn)的距離相等。

  3、正方形的判定

  (1)判定一個(gè)四邊形是正方形的主要依據(jù)是定義,途徑有兩種:

  先證它是矩形,再證有一組鄰邊相等。

  先證它是菱形,再證有一個(gè)角是直角。

  (2)判定一個(gè)四邊形為正方形的一般順序如下:

  先證明它是平行四邊形;

  再證明它是菱形(或矩形);

  最后證明它是矩形(或菱形)。

  初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 3

  第一章勾股定理

  1、探索勾股定理

 、俟垂啥ɡ恚褐苯侨切蝺芍苯沁叺钠椒胶偷扔谛边叺钠椒,如果用a,b和c分別表示直角三角形的兩直角邊和斜邊,那么a2+b2=c2

  2、一定是直角三角形嗎

 、偃绻切蔚娜呴L(zhǎng)a b c滿足a2+b2=c2,那么這個(gè)三角形一定是直角三角形

  3、勾股定理的應(yīng)用

  第二章實(shí)數(shù)

  1、認(rèn)識(shí)無理數(shù)

  ①有理數(shù):總是可以用有限小數(shù)和無限循環(huán)小數(shù)表示

  ②無理數(shù):無限不循環(huán)小數(shù)

  2、平方根

 、偎銛(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么這個(gè)正數(shù)x就叫做a的算數(shù)平方根

 、谔貏e地,我們規(guī)定:0的算數(shù)平方根是0

  ③平方根:一般地,如果一個(gè)數(shù)x的平方等于a,即x2=a。那么這個(gè)數(shù)x就叫做a的平方根,也叫做二次方根

 、芤粋(gè)正數(shù)有兩個(gè)平方根;0只有一個(gè)平方根,它是0本身;負(fù)數(shù)沒有平方根

 、菡龜(shù)有兩個(gè)平方根,一個(gè)是a的算數(shù)平方,另一個(gè)是—,它們互為相反數(shù),這兩個(gè)平方根合起來可記作±

 、揲_平方:求一個(gè)數(shù)a的平方根的運(yùn)算叫做開平方,a叫做被開方數(shù)

  3、立方根

  ①立方根:一般地,如果一個(gè)數(shù)x的立方等于a,即x3=a,那么這個(gè)數(shù)x就叫做a的立方根,也叫三次方根

 、诿總(gè)數(shù)都有一個(gè)立方根,正數(shù)的立方根是正數(shù);0立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。

 、坶_立方:求一個(gè)數(shù)a的立方根的運(yùn)算叫做開立方,a叫做被開方數(shù)

  4、估算

 、俟浪,一般結(jié)果是相對(duì)復(fù)雜的小數(shù),估算有精確位數(shù)

  5、用計(jì)算機(jī)開平方

  6、實(shí)數(shù)

 、賹(shí)數(shù):有理數(shù)和無理數(shù)的統(tǒng)稱

 、趯(shí)數(shù)也可以分為正實(shí)數(shù)、0、負(fù)實(shí)數(shù)

  ③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上表示,數(shù)軸上每一個(gè)點(diǎn)都對(duì)應(yīng)一個(gè)實(shí)數(shù),在數(shù)軸上,右邊的點(diǎn)永遠(yuǎn)比左邊的點(diǎn)表示的數(shù)大

  7、二次根式

  ①含義:一般地,形如(a≥0)的式子叫做二次根式,a叫做被開方數(shù)

  ② =(a≥0,b≥0),=(a≥0,b>0)

 、圩詈(jiǎn)二次根式:一般地,被開方數(shù)不含分母,也不含能開的盡方的因數(shù)或因式,這樣的二次根式,叫做最簡(jiǎn)二次根式

  ④化簡(jiǎn)時(shí),通常要求最終結(jié)果中分母不含有根號(hào),而且各個(gè)二次根式時(shí)最簡(jiǎn)二次根式

  第三章位置與坐標(biāo)

  1、確定位置

 、僭谄矫鎯(nèi),確定一個(gè)物體的位置一般需要兩個(gè)數(shù)據(jù)

  2、平面直角坐標(biāo)系

 、俸x:在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成平面直角坐標(biāo)系

 、谕ǔ5兀瑑蓷l數(shù)軸分別置于水平位置與豎直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或者橫軸,豎直的數(shù)軸叫y軸和縱軸,二者統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)o被稱為直角坐標(biāo)系的原點(diǎn)

  ③建立了平面直角坐標(biāo)系,平面內(nèi)的點(diǎn)就可以用一組有序?qū)崝?shù)對(duì)來表示

  ④在平面直角坐標(biāo)系中,兩條坐標(biāo)軸將坐標(biāo)平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時(shí)針方向叫做第二象限,第三象限,第四象限,坐標(biāo)軸上的點(diǎn)不在任何一個(gè)象限

 、菰谥苯亲鴺(biāo)系中,對(duì)于平面上任意一點(diǎn),都有唯一的一個(gè)有序?qū)崝?shù)對(duì)(即點(diǎn)的坐標(biāo))與它對(duì)應(yīng);反過來,對(duì)于任意一個(gè)有序?qū)崝?shù)對(duì),都有平面上唯一的一點(diǎn)與它對(duì)應(yīng)

  3、軸對(duì)稱與坐標(biāo)變化

  ①關(guān)于x軸對(duì)稱的兩個(gè)點(diǎn)的坐標(biāo),橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù);關(guān)于y軸對(duì)稱的兩個(gè)點(diǎn)的坐標(biāo),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù)

  第四章一次函數(shù)

  1、函數(shù)

  ①一般地,如果在一個(gè)變化過程中有兩個(gè)變量x和y,并且對(duì)于變量x的每一個(gè)值,變量y都有唯一的值與它對(duì)應(yīng),那么我們稱y是x的函數(shù)其中x是自變量

  ②表示函數(shù)的方法一般有:列表法、關(guān)系式法和圖象法

  ③對(duì)于自變量在可取值范圍內(nèi)的一個(gè)確定的值a,函數(shù)有唯一確定的對(duì)應(yīng)值,這個(gè)對(duì)應(yīng)值稱為當(dāng)自變量等于a的函數(shù)值

  2、一次函數(shù)與正比例函數(shù)

 、偃魞蓚(gè)變量x,y間的對(duì)應(yīng)關(guān)系可以表示成y=kx+b(k、b為常數(shù),k≠0)的形式,則稱y是x的一次函數(shù),特別的,當(dāng)b=0時(shí),稱y是x的正比例函數(shù)

  3、一次函數(shù)的圖像

 、僬壤瘮(shù)y=kx的圖像是一條經(jīng)過原點(diǎn)(0,0)的直線。因此,畫正比例函數(shù)圖像是,只要再確定一點(diǎn),過這個(gè)點(diǎn)與原點(diǎn)畫直線就可以了

 、谠谡壤瘮(shù)y=kx中,當(dāng)k>0時(shí),y的值隨著x值的增大而減。划(dāng)k<0時(shí),y的值隨著x的值增大而減小

  ③一次函數(shù)y=kx+b的圖像是一條直線,因此畫一次函數(shù)圖像時(shí),只要確定兩個(gè)點(diǎn),再過這兩點(diǎn)畫直線就可以了。一次函數(shù)y=kx+b的圖像也稱為直線y=kx+b

 、芤淮魏瘮(shù)y=kx+b的圖像經(jīng)過點(diǎn)(0,b)。當(dāng)k>0時(shí),y的值隨著x值的增大而增大;當(dāng)k<0時(shí),y的值隨著x值的增大而減小

  4、一次函數(shù)的應(yīng)用

 、僖话愕,當(dāng)一次函數(shù)y=kx+b的函數(shù)值為0時(shí),相應(yīng)的自變量的值就是方程kx+b=0的解,從圖像上看,一次函數(shù)y=kx+b的圖像與x軸交點(diǎn)的橫坐標(biāo)就是方程kx+b=0

  第五章二元一次方程組

  1、認(rèn)識(shí)二元一次方程組

 、俸袃蓚(gè)未知數(shù),并且所含有未知數(shù)的'項(xiàng)的次數(shù)都是1的方程叫做二元一次方程

  ②共含有兩個(gè)未知數(shù)的兩個(gè)一次方程所組成的一組方程,叫做二元一次方程組

  ③二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解

  2、求解二元一次方程組

 、賹⑵渲幸粋(gè)方程中的某個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示出來,并代入另個(gè)方程中,從而消去一個(gè)未知數(shù),化二元一次方程組為一元一次方程,這種解方程組的方法稱為代入消元法,簡(jiǎn)稱代入法

  ②通過兩式子加減,消去其中一個(gè)未知數(shù),這種解二元一次方程組的方法叫做加減消元法,簡(jiǎn)稱加減法

  3、應(yīng)用二元一次方程組

  ①雞兔同籠

  4、應(yīng)用二元一次方程組

 、僭鰷p收支

  5、應(yīng)用二元一次方程組

 、倮锍瘫系臄(shù)

  6、二元一次方程組與一次函數(shù)

 、僖话愕兀砸粋(gè)二元一次方程的解為坐標(biāo)的點(diǎn)組成的圖像與相應(yīng)的一次函數(shù)的圖像相同,是一條直線

 、谝话愕,從圖形的角度看,確定兩條直線相交點(diǎn)的坐標(biāo),相當(dāng)于求相應(yīng)的二元一次方程組的解,解一個(gè)二元一次方程組相當(dāng)于確定相應(yīng)兩條直線交點(diǎn)的坐標(biāo)

  7、用二元一次方程組確定一次函數(shù)表達(dá)式

 、傧仍O(shè)出函數(shù)表達(dá)式,再根據(jù)所給條件確定表達(dá)式中未知的系數(shù),從而得到函數(shù)表達(dá)式的方法,叫做待定系數(shù)法。

  8、三元一次方程組

 、僭谝粋(gè)方程組中,各個(gè)式子都含有三個(gè)未知數(shù),并且所含有未知數(shù)的項(xiàng)的次數(shù)都是1,這樣的方程叫做三元一次方程

 、谙襁@樣,共含有三個(gè)未知數(shù)的三個(gè)一次方程所組成的一組方程,叫做三元一次方程組

 、廴淮畏匠探M中各個(gè)方程的公共解,叫做這個(gè)三元一次方程組的解。

  第六章數(shù)據(jù)的分析

  1、平均數(shù)

  ①一般地,對(duì)于n個(gè)數(shù)x1x2.....xn,我們把(x1+x2+···+xn)叫做這n個(gè)數(shù)的算數(shù)平均數(shù),簡(jiǎn)稱平均數(shù)記為。

 、谠趯(shí)際問題中,一組數(shù)據(jù)里的各個(gè)數(shù)據(jù)的“重要程度”未必相同,因而在計(jì)算,這組數(shù)據(jù)的平均數(shù)時(shí),往往給每個(gè)數(shù)據(jù)一個(gè)權(quán),叫做加權(quán)平均數(shù)

  2、中位數(shù)與眾數(shù)

  ①中位數(shù):一般地,n個(gè)數(shù)據(jù)按大小順序排列,處于最中間位置的一個(gè)數(shù)據(jù)(或最中間兩個(gè)數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)

 、谝唤M數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個(gè)數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)

 、燮骄鶖(shù)、中位數(shù)和眾數(shù)都是描述數(shù)據(jù)集中趨勢(shì)的統(tǒng)計(jì)量

 、苡(jì)算平均數(shù)時(shí),所有數(shù)據(jù)都參加運(yùn)算,它能充分地利用數(shù)據(jù)所提供的信息,因此在現(xiàn)實(shí)生活中較為常用,但他容易受極端值影響。

  ⑤中位數(shù)的優(yōu)點(diǎn)是計(jì)算簡(jiǎn)單,受極端值影響較小,但不能充分利用所有數(shù)據(jù)的信息

  ⑥各個(gè)數(shù)據(jù)重復(fù)次數(shù)大致相等時(shí),眾數(shù)往往沒有特別意義

  3、從統(tǒng)計(jì)圖分析數(shù)據(jù)的集中趨勢(shì)

  4、數(shù)據(jù)的離散程度

 、賹(shí)際生活中,除了關(guān)心數(shù)據(jù)的集中趨勢(shì)外,人們還關(guān)注數(shù)據(jù)的離散程度,即它們相對(duì)于集中趨勢(shì)的偏離情況。一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差,(稱為極差),就是刻畫數(shù)據(jù)離散程度的一個(gè)統(tǒng)計(jì)量

 、跀(shù)學(xué)上,數(shù)據(jù)的離散程度還可以用方差或標(biāo)準(zhǔn)差刻畫

 、鄯讲钍歉鱾(gè)數(shù)據(jù)與平均數(shù)差的平方的平均數(shù)

  ④其中是x1x2......xn平均數(shù),s2是方差,而標(biāo)準(zhǔn)差就是方差的算術(shù)平方根

 、菀话愣裕唤M數(shù)據(jù)的極差、方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定。

  第七章平行線的證明

  1、為什么要證明

 、賹(shí)驗(yàn)、觀察、歸納得到的結(jié)論可能正確,也可能不正確,因此,要判斷一個(gè)數(shù)學(xué)結(jié)論是否正確,僅僅依靠實(shí)驗(yàn)、觀察、歸納是不夠的,必須進(jìn)行有根有據(jù)的證明

  2、定義與命題

 、僮C明時(shí),為了交流方便,必須對(duì)某些名稱和術(shù)語(yǔ)形成共同的認(rèn)識(shí),為此,就要對(duì)名稱和術(shù)語(yǔ)的含義加以描述,做出明確的規(guī)定,也就是給它們的定義

  ②判斷一件事情的句子,叫做命題

 、垡话愕兀總(gè)命題都由條件和結(jié)論兩部分組成。條件是已知的選項(xiàng),結(jié)論是已知選項(xiàng)推出的事項(xiàng)。命題通常可以寫成“如果....那么....”的形式,其中“如果”引出的部分是條件,“那么”引出的部分是結(jié)論

  ④正確的命題稱為真命題,不正確的命題稱為假命題

 、菀f明一個(gè)命題是假命題,常常可以舉出一個(gè)例子,使它具備命題的條件,而不具有命題的結(jié)論,這種例子稱為反例

 、逇W幾里得在編寫《原本》時(shí),挑選了一部分?jǐn)?shù)學(xué)名詞和一部分公認(rèn)的真命題作為證實(shí)其他命題的出發(fā)點(diǎn)和依據(jù)。其中數(shù)學(xué)名詞稱為原名,公認(rèn)的真命題稱為公理,除了公理外,其他命題的真假都需要通過演繹推理的方法進(jìn)行判斷

  ⑦演繹推理的過程稱為證明,經(jīng)過證明的真命題稱為定理,每個(gè)定理都只能用公理、定義和已經(jīng)證明為真的命題來證明

  a.本套教科書選用九條基本事實(shí)作為證明的出發(fā)點(diǎn)和依據(jù),其中八條是:兩點(diǎn)確定一條直線

  b.兩點(diǎn)之間線段最短

  c.同一平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直

  d.兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行(簡(jiǎn)述為:同位角相等,兩直線平行)

  e.過直線外一點(diǎn)有且只有一條直線與這條直線平行

  f.兩邊及其夾角分別相等的兩個(gè)三角形全等

  g.兩角及其夾邊分別相等的兩個(gè)三角形全等

  h.三邊分別相等的兩個(gè)三角形全等

  ⑧此外,數(shù)與式的運(yùn)算律和運(yùn)算法則、等式的有關(guān)性質(zhì),以及反映大小關(guān)系的有關(guān)性質(zhì)都可以作為證明的依據(jù)

 、 定理:同角(等角)的補(bǔ)角相等

  同角(等角)的余角相等

  三角形的任意兩邊之和大于第三邊

  對(duì)頂角相等

  3、平行線的判定

 、 定理:兩條直線被第三條直線所截,如果內(nèi)錯(cuò)角相等,那么這兩條直線平行,簡(jiǎn)述為:內(nèi)錯(cuò)角相等,兩直線平行

 、 定理:兩條直線被第三條直線所截,如果同旁內(nèi)角互補(bǔ),那么這兩條直線平行,簡(jiǎn)述為:同旁內(nèi)角互補(bǔ),兩直線平行。

  4、平行線的性質(zhì)

  ① 定理:兩條平行直線被第三條直線所截,同位角相等。簡(jiǎn)述為:兩直線平行,同位角相等

  ② 定理:兩條平行直線被第三條直線所截,內(nèi)錯(cuò)角相等。簡(jiǎn)述為:兩直線平行,內(nèi)錯(cuò)角相等

 、 定理:兩條平行直線被第三條直線所截,同旁內(nèi)角互補(bǔ)。簡(jiǎn)述為:兩直線平行,同旁內(nèi)角互補(bǔ)

 、 定理:平行于同一條直線的兩條直線平行

  5、三角形內(nèi)角和定理

 、 三角形內(nèi)角和定理:三角形的內(nèi)角和等于180°

 、 定理:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

  定理:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

 、 我們通過三角形的內(nèi)角和定理直接推導(dǎo)出兩個(gè)新定理。像這樣,由一個(gè)基本事實(shí)或定理直接推出的定理,叫做這個(gè)基本事實(shí)或定理的推論,推論可以當(dāng)定理使用。

  初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)匯總

 。ㄒ唬┻\(yùn)用公式法:

  我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項(xiàng)式分解因式。于是有:

  a2—b2=(a+b)(a—b)

  a2+2ab+b2=(a+b)2

  a2—2ab+b2=(a—b)2

  如果把乘法公式反過來,就可以用來把某些多項(xiàng)式分解因式。這種分解因式的方法叫做運(yùn)用公式法。

 。ǘ┢椒讲罟

  1.平方差公式

 。1)式子: a2—b2=(a+b)(a—b)

 。2)語(yǔ)言:兩個(gè)數(shù)的平方差,等于這兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積。這個(gè)公式就是平方差公式。

 。ㄈ┮蚴椒纸

  1.因式分解時(shí),各項(xiàng)如果有公因式應(yīng)先提公因式,再進(jìn)一步分解。

  2.因式分解,必須進(jìn)行到每一個(gè)多項(xiàng)式因式不能再分解為止。

 。ㄋ模┩耆椒焦

 。1)把乘法公式(a+b)2=a2+2ab+b2 和 (a—b)2=a2—2ab+b2反過來,就可以得到:

  a2+2ab+b2 =(a+b)2

  a2—2ab+b2 =(a—b)2

  這就是說,兩個(gè)數(shù)的平方和,加上(或者減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或者差)的平方。

  把a(bǔ)2+2ab+b2和a2—2ab+b2這樣的式子叫完全平方式。

  上面兩個(gè)公式叫完全平方公式。

 。2)完全平方式的形式和特點(diǎn)

 、夙(xiàng)數(shù):三項(xiàng)

  ②有兩項(xiàng)是兩個(gè)數(shù)的的平方和,這兩項(xiàng)的符號(hào)相同。

 、塾幸豁(xiàng)是這兩個(gè)數(shù)的積的兩倍。

 。3)當(dāng)多項(xiàng)式中有公因式時(shí),應(yīng)該先提出公因式,再用公式分解。

 。4)完全平方公式中的a、b可表示單項(xiàng)式,也可以表示多項(xiàng)式。這里只要將多項(xiàng)式看成一個(gè)整體就可以了。

 。5)分解因式,必須分解到每一個(gè)多項(xiàng)式因式都不能再分解為止。

 。ㄎ澹┓纸M分解法

  我們看多項(xiàng)式am+ an+ bm+ bn,這四項(xiàng)中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。

  如果我們把它分成兩組(am+ an)和(bm+ bn),這兩組能分別用提取公因式的方法分別分解因式。

  原式=(am +an)+(bm+ bn)

  =a(m+ n)+b(m +n)

  做到這一步不叫把多項(xiàng)式分解因式,因?yàn)樗环弦蚴椒纸獾囊饬x。但不難看出這兩項(xiàng)還有公因式(m+n),因此還能繼續(xù)分解,所以

  原式=(am +an)+(bm+ bn)

  =a(m+ n)+b(m+ n)

  =(m +n)×(a +b)。

  這種利用分組來分解因式的方法叫做分組分解法。從上面的例子可以看出,如果把一個(gè)多項(xiàng)式的項(xiàng)分組并提取公因式后它們的另一個(gè)因式正好相同,那么這個(gè)多項(xiàng)式就可以用分組分解法來分解因式。

  (六)提公因式法

  1.在運(yùn)用提取公因式法把一個(gè)多項(xiàng)式因式分解時(shí),首先觀察多項(xiàng)式的結(jié)構(gòu)特點(diǎn),確定多項(xiàng)式的公因式。當(dāng)多項(xiàng)式各項(xiàng)的公因式是一個(gè)多項(xiàng)式時(shí),可以用設(shè)輔助元的方法把它轉(zhuǎn)化為單項(xiàng)式,也可以把這個(gè)多項(xiàng)式因式看作一個(gè)整體,直接提取公因式;當(dāng)多項(xiàng)式各項(xiàng)的公因式是隱含的時(shí)候,要把多項(xiàng)式進(jìn)行適當(dāng)?shù)淖冃,或改變符?hào),直到可確定多項(xiàng)式的公因式。

  2. 運(yùn)用公式x2 +(p+q)x+pq=(x+q)(x+p)進(jìn)行因式分解要注意:

  1.必須先將常數(shù)項(xiàng)分解成兩個(gè)因數(shù)的積,且這兩個(gè)因數(shù)的代數(shù)和等于一次項(xiàng)的系數(shù)。

  2.將常數(shù)項(xiàng)分解成滿足要求的兩個(gè)因數(shù)積的多次嘗試,一般步驟:

 、 列出常數(shù)項(xiàng)分解成兩個(gè)因數(shù)的積各種可能情況;

  ②嘗試其中的哪兩個(gè)因數(shù)的和恰好等于一次項(xiàng)系數(shù)。

  3.將原多項(xiàng)式分解成(x+q)(x+p)的形式。

 。ㄆ撸┓质降某顺

  1.把一個(gè)分式的分子與分母的公因式約去,叫做分式的約分。

  2.分式進(jìn)行約分的目的是要把這個(gè)分式化為最簡(jiǎn)分式。

  3.如果分式的分子或分母是多項(xiàng)式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式。如果分子或分母中的多項(xiàng)式不能分解因式,此時(shí)就不能把分子、分母中的某些項(xiàng)單獨(dú)約分。

  4.分式約分中注意正確運(yùn)用乘方的符號(hào)法則,如x—y=—(y—x),(x—y)2=(y—x)2,(x—y)3=—(y—x)3。

  5.分式的分子或分母帶符號(hào)的n次方,可按分式符號(hào)法則,變成整個(gè)分式的符號(hào),然后再按—1的偶次方為正、奇次方為負(fù)來處理。當(dāng)然,簡(jiǎn)單的分式之分子分母可直接乘方。

  6.注意混合運(yùn)算中應(yīng)先算括號(hào),再算乘方,然后乘除,最后算加減。

 。ò耍┓?jǐn)?shù)的加減法

  1.通分與約分雖都是針對(duì)分式而言,但卻是兩種相反的變形。約分是針對(duì)一個(gè)分式而言,而通分是針對(duì)多個(gè)分式而言;約分是把分式化簡(jiǎn),而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來。

  2.通分和約分都是依據(jù)分式的基本性質(zhì)進(jìn)行變形,其共同點(diǎn)是保持分式的值不變。

  3.一般地,通分結(jié)果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項(xiàng)式,為進(jìn)一步運(yùn)算作準(zhǔn)備。

  4.通分的依據(jù):分式的基本性質(zhì)。

  5.通分的關(guān)鍵:確定幾個(gè)分式的公分母。

  通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡(jiǎn)公分母。

  6.類比分?jǐn)?shù)的通分得到分式的通分:

  把幾個(gè)異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分。

  7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。

  同分母的分式加減運(yùn)算,分母不變,把分子相加減,這就是把分式的運(yùn)算轉(zhuǎn)化為整式運(yùn)算。

  8.異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质剑缓笤偌訙p。

  9.同分母分式相加減,分母不變,只須將分子作加減運(yùn)算,但注意每個(gè)分子是個(gè)整體,要適時(shí)添上括號(hào)。

  10.對(duì)于整式和分式之間的加減運(yùn)算,則把整式看成一個(gè)整體,即看成是分母為1的分式,以便通分。

  11.異分母分式的加減運(yùn)算,首先觀察每個(gè)公式是否最簡(jiǎn)分式,能約分的先約分,使分式簡(jiǎn)化,然后再通分,這樣可使運(yùn)算簡(jiǎn)化。

  12.作為最后結(jié)果,如果是分式則應(yīng)該是最簡(jiǎn)分式。

  (九)含有字母系數(shù)的一元一次方程

  1.含有字母系數(shù)的一元一次方程

  引例:一數(shù)的a倍(a≠0)等于b,求這個(gè)數(shù)。用x表示這個(gè)數(shù),根據(jù)題意,可得方程 ax=b(a≠0)

  在這個(gè)方程中,x是未知數(shù),a和b是用字母表示的已知數(shù)。對(duì)x來說,字母a是x的系數(shù),b是常數(shù)項(xiàng)。這個(gè)方程就是一個(gè)含有字母系數(shù)的一元一次方程。

  含有字母系數(shù)的方程的解法與以前學(xué)過的只含有數(shù)字系數(shù)的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個(gè)式子的值不能等于零

  初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 4

  1、直角三角形斜邊上的中線等于斜邊上的一半。

  2、四邊形的外角和等于360°。

  3、等腰梯形性質(zhì)定理:等腰梯形在同一底上的兩個(gè)角相等。

  4、同角或等角的余角相等。

  5、過一點(diǎn)有且只有一條直線和已知直線垂直。

  6、平行公理:經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行。

  7、如果兩條直線都和第三條直線平行,這兩條直線也互相平行。

  8、同位角相等,兩直線平行。

  9、同旁內(nèi)角互補(bǔ),兩直線平行。

  10、兩直線平行,同位角相等。

  二次根式知識(shí)點(diǎn)

  (一)一般地,形如√a的代數(shù)式叫做二次根式,其中,a叫做被開方數(shù)。當(dāng)a≥0時(shí),√a表示a的算術(shù)平方根;當(dāng)a小于0時(shí),√a的值為純虛數(shù)。

  (二)二次根式的加減法

  1.同類二次根式:一般地,把幾個(gè)二次根式化為最簡(jiǎn)二次根式后,如果它們的被開方數(shù)相同,就把這幾個(gè)二次根式叫做同類二次根式。

  2.合并同類二次根式:把幾個(gè)同類二次根式合并為一個(gè)二次根式就叫做合并同類二次根式。

  3.二次根式加減時(shí),可以先將二次根式化為最簡(jiǎn)二次根式,再將被開方數(shù)相同的進(jìn)行合并。

  (三)二次根式的乘除法

  二次根式相乘除,把被開方數(shù)相乘除,根指數(shù)不變,再把結(jié)果化為最簡(jiǎn)二次根式。

  一次函數(shù)知識(shí)點(diǎn)

  (一)一般地,形如y=kx+b(k,b是常數(shù),且k≠0)的函數(shù),叫做一次函數(shù),其中x是自變量。當(dāng)b=0時(shí),一次函數(shù)y=kx,又叫做正比例函數(shù)。

  (二)一次函數(shù)的圖像及性質(zhì)

  1.在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。

  2.一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)。

  3.正比例函數(shù)的圖像總是過原點(diǎn)。

  4.k,b與函數(shù)圖像所在象限的關(guān)系:

  當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小。

  當(dāng)k>0,b>0時(shí),直線通過一、二、三象限;

  當(dāng)k>0,b<0時(shí),直線通過一、三、四象限;

  當(dāng)k<0,b>0時(shí),直線通過一、二、四象限;

  當(dāng)k<0,b<0時(shí),直線通過二、三、四象限;

  當(dāng)b=0時(shí),直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

  這時(shí),當(dāng)k>0時(shí),直線只通過一、三象限;當(dāng)k<0時(shí),直線只通過二、四象限。

  初二數(shù)學(xué)下冊(cè)函數(shù)知識(shí)點(diǎn)歸納

  1、變量與常量

  在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。

  一般地,在某一變化過程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有唯一確定的值與它對(duì)應(yīng),那么就說x是自變量,y是x的函數(shù)。

  2、函數(shù)解析式

  用來表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。

  使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。

  3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)

  (1)解析法

  兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做解析法。

  (2)列表法

  把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來表示函數(shù)關(guān)系,這種表示法叫做列表法。

  (3)圖像法

  用圖像表示函數(shù)關(guān)系的方法叫做圖像法。

  4、由函數(shù)解析式畫其圖像的一般步驟

  (1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值

  (2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)

  (3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來。

  八年級(jí)數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)

  第十六章分式

  一.知識(shí)框架

  二.知識(shí)概念

  1.分式:形如A/B,A、B是整式,B中含有未知數(shù)且B不等于0的整式叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。

  2.分式有意義的條件:分母不等于0

  3.約分:把一個(gè)分式的分子和分母的公因式(不為1的數(shù))約去,這種變形稱為約分。

  4.通分:異分母的分式可以化成同分母的分式,這一過程叫做通分。

  分式的基本性質(zhì):分式的分子和分母同時(shí)乘以(或除以)同一個(gè)不為0的整式,分式的值不變。用式子表示為:A/B=A_C/B_C A/B=A÷C/B÷C(A,B,C為整式,且C≠0)

  5.最簡(jiǎn)分式:一個(gè)分式的分子和分母沒有公因式時(shí),這個(gè)分式稱為最簡(jiǎn)分式.約分時(shí),一般將一個(gè)分式化為最簡(jiǎn)分式.

  6.分式的四則運(yùn)算:1.同分母分式加減法則:同分母的分式相加減,分母不變,把分子相加減.用字母表示為:a/c±b/c=a±b/c

  2.異分母分式加減法則:異分母的分式相加減,先通分,化為同分母的分式,然后再按同分母分式的加減法法則進(jìn)行計(jì)算.用字母表示為:a/b±c/d=ad±cb/bd

  3.分式的乘法法則:兩個(gè)分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母.用字母表示為:a/b _ c/d=ac/bd

  4.分式的除法法則:(1).兩個(gè)分式相除,把除式的分子和分母顛倒位置后再與被除式相乘.a/b÷c/d=ad/bc

  (2).除以一個(gè)分式,等于乘以這個(gè)分式的倒數(shù):a/b÷c/d=a/b_d/c

  7.分式方程的意義:分母中含有未知數(shù)的方程叫做分式方程.

  8.分式方程的解法:①去分母(方程兩邊同時(shí)乘以最簡(jiǎn)公分母,將分式方程化為整式方程);②按解整式方程的步驟求出未知數(shù)的值;③驗(yàn)根(求出未知數(shù)的值后必須驗(yàn)根,因?yàn)樵诎逊质椒匠袒癁檎椒匠痰倪^程中,擴(kuò)大了未知數(shù)的取值范圍,可能產(chǎn)生增根).

  分式和分?jǐn)?shù)有著許多相似點(diǎn)。教師在講授本章內(nèi)容時(shí),可以對(duì)比分?jǐn)?shù)的特點(diǎn)及性質(zhì),讓學(xué)生自主學(xué)習(xí)。重點(diǎn)在于分式方程解實(shí)際應(yīng)用問題。

  第十七章反比例函數(shù)

  一.知識(shí)框架

  二.知識(shí)概念

  1.反比例函數(shù):形如y= (k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù)。其他形式xy=k

  2.圖像:反比例函數(shù)的圖像屬于雙曲線。反比例函數(shù)的圖象既是軸對(duì)稱圖形又是中心對(duì)稱圖形。有兩條對(duì)稱軸:直線y=x和y=-x。對(duì)稱中心是:原點(diǎn)

  3.性質(zhì):當(dāng)k>0時(shí)雙曲線的兩支分別位于第一、第三象限,在每個(gè)象限內(nèi)y值隨x值的增大而減;

  當(dāng)k<0時(shí)雙曲線的兩支分別位于第二、第四象限,在每個(gè)象限內(nèi)y值隨x值的增大而增大。

  4.|k|的幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積。

  在學(xué)習(xí)反比例函數(shù)時(shí),教師可讓學(xué)生對(duì)比之前所學(xué)習(xí)的一次函數(shù)啟發(fā)學(xué)生進(jìn)行對(duì)比性學(xué)習(xí)。在做題時(shí),培養(yǎng)和養(yǎng)成數(shù)形結(jié)合的思想。

  第十八章勾股定理

  一.知識(shí)框架

  二知識(shí)概念

  1.勾股定理:如果直角三角形的兩直角邊長(zhǎng)分別為a,b,斜邊長(zhǎng)為c,那么a2+b2=c2。

  勾股定理逆定理:如果三角形三邊長(zhǎng)a,b,c滿足a2+b2=c2。,那么這個(gè)三角形是直角三角形。

  2.定理:經(jīng)過證明被確認(rèn)正確的命題叫做定理。

  3.我們把題設(shè)、結(jié)論正好相反的兩個(gè)命題叫做互逆命題。如果把其中一個(gè)叫做原命題,那么另一個(gè)叫做它的逆命題。(例:勾股定理與勾股定理逆定理)

  勾股定理是直角三角形具備的重要性質(zhì)。本章要求學(xué)生在理解勾股定理的前提下,學(xué)會(huì)利用這個(gè)定理解決實(shí)際問題?梢酝ㄟ^自主學(xué)習(xí)的'發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受

  第十九章四邊形

  一.知識(shí)框架

  二.知識(shí)概念

  1.平行四邊形定義:有兩組對(duì)邊分別平行的四邊形叫做平行四邊形。

  2.平行四邊形的性質(zhì):平行四邊形的對(duì)邊相等;平行四邊形的對(duì)角相等。平行四邊形的對(duì)角線互相平分。

  3.平行四邊形的判定1.兩組對(duì)邊分別相等的四邊形是平行四邊形

  2.對(duì)角線互相平分的四邊形是平行四邊形;

  3.兩組對(duì)角分別相等的四邊形是平行四邊形;

  4.一組對(duì)邊平行且相等的四邊形是平行四邊形。

  4.三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。

  5.直角三角形斜邊上的中線等于斜邊的一半。

  6.矩形的定義:有一個(gè)角是直角的平行四邊形。

  7.矩形的性質(zhì):矩形的四個(gè)角都是直角;矩形的對(duì)角線平分且相等。AC=BD

  8.矩形判定定理:1.有一個(gè)角是直角的平行四邊形叫做矩形。

  2.對(duì)角線相等的平行四邊形是矩形。

  3.有三個(gè)角是直角的四邊形是矩形。

  9.菱形的定義:鄰邊相等的平行四邊形。

  10.菱形的性質(zhì):菱形的四條邊都相等;菱形的兩條對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角。

  11.菱形的判定定理:1.一組鄰邊相等的平行四邊形是菱形。

  2.對(duì)角線互相垂直的平行四邊形是菱形。

  3.四條邊相等的四邊形是菱形。

  12.S菱形=1/2×ab(a、b為兩條對(duì)角線)

  13.正方形定義:一個(gè)角是直角的菱形或鄰邊相等的矩形。

  14.正方形的性質(zhì):四條邊都相等,四個(gè)角都是直角。正方形既是矩形,又是菱形。

  15.正方形判定定理:1.鄰邊相等的矩形是正方形。 2.有一個(gè)角是直角的菱形是正方形。

  16.梯形的定義:一組對(duì)邊平行,另一組對(duì)邊不平行的四邊形叫做梯形。

  17.直角梯形的定義:有一個(gè)角是直角的梯形

  18.等腰梯形的定義:兩腰相等的梯形。

  19.等腰梯形的性質(zhì):等腰梯形同一底邊上的兩個(gè)角相等;等腰梯形的兩條對(duì)角線相等。

  20.等腰梯形判定定理:同一底上兩個(gè)角相等的梯形是等腰梯形。

  本章內(nèi)容是對(duì)平面上四邊形的分類及性質(zhì)上的研究,要求學(xué)生在學(xué)習(xí)過程中多動(dòng)手多動(dòng)腦,把自己的發(fā)現(xiàn)和知識(shí)帶入做題中。因此教師在教學(xué)時(shí)可以多鼓勵(lì)學(xué)生自己總結(jié)四邊形的特點(diǎn),這樣有利于學(xué)生對(duì)知識(shí)的把握。

  第二十章數(shù)據(jù)的分析

  一.知識(shí)框架

  二.知識(shí)概念

  1.加權(quán)平均數(shù):加權(quán)平均數(shù)的計(jì)算公式。權(quán)的理解:反映了某個(gè)數(shù)據(jù)在整個(gè)數(shù)據(jù)中的重要程度。

  2.中位數(shù):將一組數(shù)據(jù)按照由小到大(或由大到小)的順序排列,如果數(shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù)(median);如果數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)。

  3.眾數(shù):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)(mode)。

  4.極差:組數(shù)據(jù)中的最大數(shù)據(jù)與最小數(shù)據(jù)的差叫做這組數(shù)據(jù)的極差(range)。

  5.方差越大,數(shù)據(jù)的波動(dòng)越大;方差越小,數(shù)據(jù)的波動(dòng)越小,就越穩(wěn)定。

  本章內(nèi)容要求學(xué)生在經(jīng)歷數(shù)據(jù)的收集、整理、分析過程中發(fā)展學(xué)生的統(tǒng)計(jì)意識(shí)和數(shù)據(jù)處理的方法與能力。在教學(xué)過程中,以生活實(shí)例為主,讓學(xué)生體會(huì)到數(shù)據(jù)在生活中的重要性。

  初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 5

  初二上冊(cè)知識(shí)點(diǎn)

  第一章 一次函數(shù)

  1 函數(shù)的定義,函數(shù)的定義域、值域、表達(dá)式,函數(shù)的圖像

  2 一次函數(shù)和正比例函數(shù),包括他們的表達(dá)式、增減性、圖像

  3 從函數(shù)的觀點(diǎn)看方程、方程組和不等式

  第二章 數(shù)據(jù)的描述

  1 了解幾種常見的統(tǒng)計(jì)圖表:條形圖、扇形圖、折線圖、復(fù)合條形圖、直方圖,了解各種圖表的特點(diǎn)

  條形圖特點(diǎn):

 。1)能夠顯示出每組中的具體數(shù)據(jù);

 。2)易于比較數(shù)據(jù)間的差別

  扇形圖的特點(diǎn):

  (1)用扇形的面積來表示部分在總體中所占的百分比;

 。2)易于顯示每組數(shù)據(jù)相對(duì)與總數(shù)的大小

  折線圖的特點(diǎn);

  易于顯示數(shù)據(jù)的變化趨勢(shì)

  直方圖的特點(diǎn):

 。1)能夠顯示各組頻數(shù)分布的情況;

 。2)易于顯示各組之間頻數(shù)的差別

  2 會(huì)用各種統(tǒng)計(jì)圖表示出一些實(shí)際的問題

  第三章 全等三角形

  1 全等三角形的性質(zhì):

  全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

  2 全等三角形的判定

  邊邊邊、邊角邊、角邊角、角角邊、直角三角形的HL定理

  3 角平分線的性質(zhì)

  角平分線上的點(diǎn)到角的兩邊的距離相等;

  到角的兩邊距離相等的點(diǎn)在角的平分線上.

  第四章 軸對(duì)稱

  1 軸對(duì)稱圖形和關(guān)于直線對(duì)稱的兩個(gè)圖形

  2 軸對(duì)稱的性質(zhì)

  軸對(duì)稱圖形的對(duì)稱軸是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線;

  如果兩個(gè)圖形關(guān)于某條直線對(duì)稱,那么對(duì)稱軸是任何一對(duì)對(duì)應(yīng)點(diǎn)所連的線段的垂直平分線;

  線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等;

  到線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上

  3 用坐標(biāo)表示軸對(duì)稱

  點(diǎn)(x,y)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)是(x,-y),關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)是(-x,y),關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是(-x,-y).

  4 等腰三角形

  等腰三角形的兩個(gè)底角相等;(等邊對(duì)等角)

  等腰三角形的頂角平分線、底邊上的中線、底邊上的高線互相重合;(三線合一)

  一個(gè)三角形的兩個(gè)相等的角所對(duì)的邊也相等.(等角對(duì)等邊)

  5 等邊三角形的性質(zhì)和判定

  等邊三角形的三個(gè)內(nèi)角都相等,都等于60度;

  三個(gè)角都相等的三角形是等邊三角形;

  有一個(gè)角是60度的等腰三角形是等邊三角形;

  推論:

  直角三角形中,如果有一個(gè)銳角是30度,那么他所對(duì)的直角邊等于斜邊的一半.

  在三角形中,大角對(duì)大邊,大邊對(duì)大角.

  第五章 整式

  1 整式定義、同類項(xiàng)及其合并

  2 整式的加減

  3 整式的乘法

 。1)同底數(shù)冪的乘法:

 。2)冪的乘方

  (3)積的乘方

 。4)整式的乘法

  4 乘法公式

 。1)平方差公式

 。2)完全平方公式

  5 整式的除法

 。1)同底數(shù)冪的除法

 。2)整式的除法

  6 因式分解

 。1)提共因式法

 。2)公式法

 。3)十字相乘法

  初二下冊(cè)知識(shí)點(diǎn)

  第一章 分式

  1 分式及其基本性質(zhì)

  分式的分子和分母同時(shí)乘以(或除以)一個(gè)不等于零的整式,分式的只不變

  2 分式的運(yùn)算

 。1)分式的乘除

  乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母

  除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘.

  (2) 分式的加減

  加減法法則:同分母分式相加減,分母不變,把分子相加減;

  異分母分式相加減,先通分,變?yōu)橥帜傅姆质?再加減

  3 整數(shù)指數(shù)冪的加減乘除法

  4 分式方程及其解法

  第二章 反比例函數(shù)

  1 反比例函數(shù)的表達(dá)式、圖像、性質(zhì)

  圖像:雙曲線

  表達(dá)式:y=k/x(k不為0)

  性質(zhì):兩支的.增減性相同;

  2 反比例函數(shù)在實(shí)際問題中的應(yīng)用

  第三章 勾股定理

  1 勾股定理:直角三角形的兩個(gè)直角邊的平方和等于斜邊的平方

  2 勾股定理的逆定理:如果一個(gè)三角形中,有兩個(gè)邊的平方和等于第三條邊的平方,那么這個(gè)三角形是直角三角形.

  第四章 四邊形

  1 平行四邊形

  性質(zhì):對(duì)邊相等;對(duì)角相等;對(duì)角線互相平分.

  判定:兩組對(duì)邊分別相等的四邊形是平行四邊形;

  兩組對(duì)角分別相等的四邊形是平行四邊形;

  對(duì)角線互相平分的四邊形是平行四邊形;

  一組對(duì)邊平行而且相等的四邊形是平行四邊形.

  推論:三角形的中位線平行第三邊,并且等于第三邊的一半.

  2 特殊的平行四邊形:矩形、菱形、正方形

  (1) 矩形

  性質(zhì):矩形的四個(gè)角都是直角;

  矩形的對(duì)角線相等;

  矩形具有平行四邊形的所有性質(zhì)

  判定: 有一個(gè)角是直角的平行四邊形是矩形;

  對(duì)角線相等的平行四邊形是矩形;

  推論: 直角三角形斜邊的中線等于斜邊的一半.

  (2) 菱形

  性質(zhì):菱形的四條邊都相等;

  菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;

  菱形具有平行四邊形的一切性質(zhì)

  判定:有一組鄰邊相等的平行四邊形是菱形;

  對(duì)角線互相垂直的平行四邊形是菱形;

  四邊相等的四邊形是菱形.

  (3) 正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質(zhì).

  3 梯形:直角梯形和等腰梯形

  等腰梯形:等腰梯形同一底邊上的兩個(gè)角相等;

  等腰梯形的兩條對(duì)角線相等;

  同一個(gè)底上的兩個(gè)角相等的梯形是等腰梯形.

  第五章 數(shù)據(jù)的分析

  加權(quán)平均數(shù)、中位數(shù)、眾數(shù)、極差、方差

  初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 6

  一、實(shí)數(shù)的概念及分類

  1、實(shí)數(shù)的分類

  一是分類是:正數(shù)、負(fù)數(shù)、0;

  另一種分類是:有理數(shù)、無理數(shù)

  將兩種分類進(jìn)行組合:負(fù)有理數(shù),負(fù)無理數(shù),0,正有理數(shù),正無理數(shù)

  2、無理數(shù):無限不循環(huán)小數(shù)叫做無理數(shù)。

  在理解無理數(shù)時(shí),要抓住“無限不循環(huán)”這一時(shí)之,歸納起來有四類:

  (1)開方開不盡的數(shù),如等;

  (2)有特定意義的數(shù),如圓周率π,或化簡(jiǎn)后含有π的數(shù),如+8等;

  (3)有特定結(jié)構(gòu)的數(shù),如0.1010010001…等;

  (4)某些三角函數(shù)值,如sin60o等

  二、實(shí)數(shù)的'倒數(shù)、相反數(shù)和絕對(duì)值

  1、相反數(shù)

  實(shí)數(shù)與它的相反數(shù)時(shí)一對(duì)數(shù)(只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱,如果a與b互為相反數(shù),則有a+b=0,a=—b,反之亦成立。

  2、絕對(duì)值

  在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離,叫做該數(shù)的絕對(duì)值。(|a|≥0)。零的絕對(duì)值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。

  3、倒數(shù)

  如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。

  4、數(shù)軸

  規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線叫做數(shù)軸(畫數(shù)軸時(shí),要注意上述規(guī)定的三要素缺一不可)。

  解題時(shí)要真正掌握數(shù)形結(jié)合的思想,理解實(shí)數(shù)與數(shù)軸的點(diǎn)是一一對(duì)應(yīng)的,并能靈活運(yùn)用。

  初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 7

  軸對(duì)稱

  一、知識(shí)框架:

  二、知識(shí)概念:

  1.基本概念:

  ⑴軸對(duì)稱圖形:如果一個(gè)圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形就叫做軸對(duì)稱圖形.

 、苾蓚(gè)圖形成軸對(duì)稱:把一個(gè)圖形沿某一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這條直線對(duì)稱.

 、蔷段的垂直平分線:經(jīng)過線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線.

  ⑷等腰三角形:有兩條邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角.

 、傻冗吶切危喝龡l邊都相等的三角形叫做等邊三角形.

  2.基本性質(zhì):

 、艑(duì)稱的性質(zhì):

  ①不管是軸對(duì)稱圖形還是兩個(gè)圖形關(guān)于某條直線對(duì)稱,對(duì)稱軸都是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線.

 、趯(duì)稱的'圖形都全等.

 、凭段垂直平分線的性質(zhì):

 、倬段垂直平分線上的點(diǎn)與這條線段兩個(gè)端點(diǎn)的距離相等.

 、谂c一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上.

 、顷P(guān)于坐標(biāo)軸對(duì)稱的點(diǎn)的坐標(biāo)性質(zhì)

 、冱c(diǎn)P(x,y)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)為P(x,y).

 、邳c(diǎn)P(x,y)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)為P"(x,y).

 、鹊妊切蔚男再|(zhì):

 、俚妊切蝺裳嗟.

 、诘妊切蝺傻捉窍嗟(等邊對(duì)等角).

 、鄣妊切蔚捻斀墙瞧椒志、底邊上的中線,底邊上的高相互重合.

  ④等腰三角形是軸對(duì)稱圖形,對(duì)稱軸是三線合一(1條).

  ⑸等邊三角形的性質(zhì):

 、俚冗吶切稳叾枷嗟.

 、诘冗吶切稳齻(gè)內(nèi)角都相等,都等于60°

  ③等邊三角形每條邊上都存在三線合一.

 、艿冗吶切问禽S對(duì)稱圖形,對(duì)稱軸是三線合一(3條).

  3.基本判定:

  ⑴等腰三角形的判定:

 、儆袃蓷l邊相等的三角形是等腰三角形.

  ②如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊).

 、频冗吶切蔚呐卸ǎ

  ①三條邊都相等的三角形是等邊三角形.

 、谌齻(gè)角都相等的三角形是等邊三角形.

 、塾幸粋(gè)角是60°的等腰三角形是等邊三角形.

  4.基本方法:

 、抛鲆阎本的垂線:

 、谱鲆阎段的垂直平分線:

 、亲鲗(duì)稱軸:連接兩個(gè)對(duì)應(yīng)點(diǎn),作所連線段的垂直平分線.

 、茸饕阎獔D形關(guān)于某直線的對(duì)稱圖形:

 、稍谥本上做一點(diǎn),使它到該直線同側(cè)的兩個(gè)已知點(diǎn)的距離之和最短.

  初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 8

  全等三角形

  一、知識(shí)框架:

  二、知識(shí)概念:

  1.基本定義:

 、湃刃危耗軌蛲耆睾系膬蓚(gè)圖形叫做全等形.

 、迫热切危耗軌蛲耆睾系膬蓚(gè)三角形叫做全等三角形.

 、菍(duì)應(yīng)頂點(diǎn):全等三角形中互相重合的頂點(diǎn)叫做對(duì)應(yīng)頂點(diǎn).

 、葘(duì)應(yīng)邊:全等三角形中互相重合的邊叫做對(duì)應(yīng)邊.

  ⑸對(duì)應(yīng)角:全等三角形中互相重合的角叫做對(duì)應(yīng)角.

  2.基本性質(zhì):

 、湃切蔚姆(wěn)定性:三角形三邊的長(zhǎng)度確定了,這個(gè)三角形的形狀、大小就全確定,這個(gè)性質(zhì)叫做三角形的穩(wěn)定性.

 、迫热切蔚男再|(zhì):全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等.

  3.全等三角形的判定定理:

 、胚呥呥(SSS):三邊對(duì)應(yīng)相等的兩個(gè)三角形全等.

  ⑵邊角邊(SAS):兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等.

 、墙沁吔(ASA):兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等.

 、冉墙沁(AAS):兩角和其中一個(gè)角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等.

  ⑸斜邊、直角邊(HL):斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等.

  4.角平分線:

 、女嫹ǎ

 、菩再|(zhì)定理:角平分線上的點(diǎn)到角的兩邊的距離相等.

 、切再|(zhì)定理的逆定理:角的內(nèi)部到角的`兩邊距離相等的點(diǎn)在角的平分線上.

  5.證明的基本方法:

  ⑴明確命題中的已知和求證.(包括隱含條件,如公共邊、公共角、對(duì)頂角、角平分線、中線、高、等腰三角形等所隱含的邊角關(guān)系)

 、聘鶕(jù)題意,畫出圖形,并用數(shù)字符號(hào)表示已知和求證.

 、墙(jīng)過分析,找出由已知推出求證的途徑,寫出證明過程.

  初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 9

  一、 在平面內(nèi),確定物體的位置一般需要兩個(gè)數(shù)據(jù)。

  二、平面直角坐標(biāo)系及有關(guān)概念

  1、平面直角坐標(biāo)系

  在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸,組成平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統(tǒng)稱坐標(biāo)軸。它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。

  2、為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個(gè)部分,分別叫做第一象限、第二象限、第三象限、第四象限。

  注意:x軸和y軸上的點(diǎn)(坐標(biāo)軸上的點(diǎn)),不屬于任何一個(gè)象限。

  3、點(diǎn)的坐標(biāo)的概念

  對(duì)于平面內(nèi)任意一點(diǎn)P,過點(diǎn)P分別x軸、y軸向作垂線,垂足在上x軸、y軸對(duì)應(yīng)的數(shù)a,b分別叫做點(diǎn)P的橫坐標(biāo)、縱坐標(biāo),有序數(shù)對(duì)(a,b)叫做點(diǎn)P的坐標(biāo)。

  點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有,分開,橫、縱坐標(biāo)的.位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對(duì),當(dāng) 時(shí),(a,b)和(b,a)是兩個(gè)不同點(diǎn)的坐標(biāo)。

  平面內(nèi)點(diǎn)的與有序?qū)崝?shù)對(duì)是一一對(duì)應(yīng)的。

  4、不同位置的點(diǎn)的坐標(biāo)的特征

  (1)、各象限內(nèi)點(diǎn)的坐標(biāo)的特征

  點(diǎn)P(x,y)在第一象限:x0

  點(diǎn)P(x,y)在第二象限:x0

  點(diǎn)P(x,y)在第三象限:x0

  點(diǎn)P(x,y)在第四象限:x0

  (2)、坐標(biāo)軸上的點(diǎn)的特征

  點(diǎn)P(x,y)在x軸上,y=0 ,x為任意實(shí)數(shù)

  點(diǎn)P(x,y)在y軸上,x=0 ,y為任意實(shí)數(shù)

  點(diǎn)P(x,y)既在x軸上,又在y軸上, x,y同時(shí)為零,即點(diǎn)P坐標(biāo)為(0,0)即原點(diǎn)

  (3)、兩條坐標(biāo)軸夾角平分線上點(diǎn)的坐標(biāo)的特征

  點(diǎn)P(x,y)在第一、三象限夾角平分線(直線y=x)上,x與y相等

  點(diǎn)P(x,y)在第二、四象限夾角平分線上,x與y互為相反數(shù)

  (4)、和坐標(biāo)軸平行的直線上點(diǎn)的坐標(biāo)的特征

  位于平行于x軸的直線上的各點(diǎn)的縱坐標(biāo)相同。

  位于平行于y軸的直線上的各點(diǎn)的橫坐標(biāo)相同。

  (5)、關(guān)于x軸、y軸或原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的特征

  點(diǎn)P與點(diǎn)p關(guān)于x軸對(duì)稱 橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于x軸的對(duì)稱點(diǎn)為P(x,-y)

  點(diǎn)P與點(diǎn)p關(guān)于y軸對(duì)稱 縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于y軸的對(duì)稱點(diǎn)為P(-x,y)

  點(diǎn)P與點(diǎn)p關(guān)于原點(diǎn)對(duì)稱 橫、縱坐標(biāo)均互為相反數(shù),即點(diǎn)P(x,y)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為P(-x,-y)

  (6)、點(diǎn)到坐標(biāo)軸及原點(diǎn)的距離

  點(diǎn)P(x,y)到坐標(biāo)軸及原點(diǎn)的距離:

  (1)點(diǎn)P(x,y)到x軸的距離等于|y|;

  (2)點(diǎn)P(x,y)到y(tǒng)軸的距離等于|x|;

  (3)點(diǎn)P(x,y)到原點(diǎn)的距離等于根號(hào)x*x+y*y

  三、坐標(biāo)變化與圖形變化的規(guī)律:

  坐標(biāo)(x,y)的變化

  圖形的變化

  x a或y a

  被橫向或縱向拉長(zhǎng)(壓縮)為原來的a倍

  x a,y a

  放大(縮小)為原來的a倍

  x (-1)或y (-1)

  關(guān)于y軸或x軸對(duì)稱

  x (-1),y (-1)

  關(guān)于原點(diǎn)成中心對(duì)稱

  x +a或y+ a

  沿x軸或y軸平移a個(gè)單位

  x +a,y+ a

  沿x軸平移a個(gè)單位,再沿y軸平移a個(gè)單

  初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 10

  一次函數(shù)

  (1)正比例函數(shù):一般地,形如y=kx(k是常數(shù),k?0)的函數(shù),叫做正比例函數(shù),其中k叫做比例系數(shù);

  (2)正比例函數(shù)圖像特征:一些過原點(diǎn)的直線;

  (3)圖像性質(zhì):

 、佼(dāng)k>0時(shí),函數(shù)y=kx的圖像經(jīng)過第一、三象限,從左向右上升,即隨著x的增大y也增大;②當(dāng)k<0時(shí),函數(shù)y=kx的圖像經(jīng)過第二、四象限,從左向右下降,即隨著x的'增大y反而減;

  (4)求正比例函數(shù)的解析式:已知一個(gè)非原點(diǎn)即可;

  (5)畫正比例函數(shù)圖像:經(jīng)過原點(diǎn)和點(diǎn)(1,k);(或另外一個(gè)非原點(diǎn))

  (6)一次函數(shù):一般地,形如y=kx+b(k、b是常數(shù),k?0)的函數(shù),叫做一次函數(shù);

  (7)正比例函數(shù)是一種特殊的一次函數(shù);(因?yàn)楫?dāng)b=0時(shí),y=kx+b即為y=kx)

  (8)一次函數(shù)圖像特征:一些直線;

  (9)性質(zhì):

 、賧=kx與y=kx+b的傾斜程度一樣,y=kx+b可看成由y=kx平移|b|個(gè)單位長(zhǎng)度而得;(當(dāng)b>0,向上平移;當(dāng)b<0,向下平移)

 、诋(dāng)k>0時(shí),直線y=kx+b由左至右上升,即y隨著x的增大而增大;

 、郛(dāng)k<0時(shí),直線y=kx+b由左至右下降,即y隨著x的增大而減小;

 、墚(dāng)b>0時(shí),直線y=kx+b與y軸正半軸有交點(diǎn)為(0,b);

  ⑤當(dāng)b<0時(shí),直線y=kx+b與y軸負(fù)半軸有交點(diǎn)為(0,b);

  (10)求一次函數(shù)的解析式:即要求k與b的值;

  (11)畫一次函數(shù)的圖像:已知兩點(diǎn);

  用函數(shù)觀點(diǎn)看方程(組)與不等式

  (1)解一元一次方程可以轉(zhuǎn)化為:當(dāng)某個(gè)一次函數(shù)的值為0時(shí),求相應(yīng)的自變量的值;從圖像上看,這相當(dāng)于已知直線y=kx+b,確定它與x軸交點(diǎn)的橫坐標(biāo)的值;

  (2)解一元一次不等式可以看作:當(dāng)一次函數(shù)值大(小)于0時(shí),求自變量相應(yīng)的取值范圍;

  (3)每個(gè)二元一次方程都對(duì)應(yīng)一個(gè)一元一次函數(shù),于是也對(duì)應(yīng)一條直線;

  (4)一般地,每個(gè)二元一次方程組都對(duì)應(yīng)兩個(gè)一次函數(shù),于是也對(duì)應(yīng)兩條直線。從“數(shù)”的角度看,解方程組相當(dāng)于考慮自變量為何值時(shí)兩個(gè)函數(shù)的值相等,以及這個(gè)函數(shù)值是何值;從“形”的角度看,解方程組相當(dāng)于確定兩條直線交點(diǎn)的坐標(biāo);

  初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 11

  軸對(duì)稱

  1.如果一個(gè)平面圖形沿著一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形,這條直線叫做對(duì)稱軸。

  2.性質(zhì)

  (1)成軸對(duì)稱的兩個(gè)圖形全等;

  (2)如果兩個(gè)圖形成軸對(duì)稱,那么對(duì)稱軸是對(duì)稱點(diǎn)連線的垂直平分線。

  一次函數(shù)

  (一)一次函數(shù)是函數(shù)中的一種,一般形如y=kx+b(k,b是常數(shù),k≠0),其中x是自變量,y是因變量。特別地,當(dāng)b=0時(shí),y=kx+b(k為常數(shù),k≠0),y叫做x的正比例函數(shù)。

  (二)函數(shù)三要素

  1.定義域:設(shè)x、y是兩個(gè)變量,變量x的變化范圍為D,如果對(duì)于每一個(gè)數(shù)x∈D,變量y遵照一定的法則總有確定的數(shù)值與之對(duì)應(yīng),則稱y是x的函數(shù),記作y=f(x),x∈D,x稱為自變量,y稱為因變量,數(shù)集D稱為這個(gè)函數(shù)的定義域。

  2.在函數(shù)經(jīng)典定義中,因變量改變而改變的取值范圍叫做這個(gè)函數(shù)的值域,在函數(shù)現(xiàn)代定義中是指定義域中所有元素在某個(gè)對(duì)應(yīng)法則下對(duì)應(yīng)的所有的象所組成的集合。如:f(x)=x,那么f(x)的取值范圍就是函數(shù)f(x)的值域。

  3.對(duì)應(yīng)法則:一般地說,在函數(shù)記號(hào)y=f(x)中,“f”即表示對(duì)應(yīng)法則,等式y(tǒng)=f(x)表明,對(duì)于定義域中的任意的x值,在對(duì)應(yīng)法則“f”的作用下,即可得到值域中唯一y值。

  (三)一次函數(shù)的表示方法

  1.解析式法:用含自變量x的式子表示函數(shù)的方法叫做解析式法。

  2.列表法:把一系列x的.值對(duì)應(yīng)的函數(shù)值y列成一個(gè)表來表示的函數(shù)關(guān)系的方法叫做列表法。

  3.圖像法:用圖象來表示函數(shù)關(guān)系的方法叫做圖象法。

  (四)一次函數(shù)的性質(zhì)

  1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k。即:y=kx+b(k≠0)(k不等于0,且k,b為常數(shù))。

  2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的交點(diǎn),坐標(biāo)為(0,b)。當(dāng)y=0時(shí),該函數(shù)圖象在x軸上的交點(diǎn)坐標(biāo)為(-b/k,0)。

  3.k為一次函數(shù)y=kx+b的斜率,k=tanθ(角θ為一次函數(shù)圖象與x軸正方向夾角,θ≠90°)。

  4.當(dāng)b=0時(shí)(即y=kx),一次函數(shù)圖象變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的一次函數(shù)。

  5.函數(shù)圖象性質(zhì):當(dāng)k相同,且b不相等,圖像平行;當(dāng)k不同,且b相等,圖象相交于Y軸;當(dāng)k互為負(fù)倒數(shù)時(shí),兩直線垂直。

  6.平移時(shí):上加下減在末尾,左加右減在中間。

  直角三角形

  1.勾股定理及其逆定理

  定理:直角三角形的兩條直角邊的等于的平方。

  逆定理:如果三角形兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是直角三角形。

  2.含30°的直角三角形的邊的性質(zhì)

  定理:在直角三角形中,如果一個(gè)銳角等于30°,那么等于的一半。

  3.直角三角形斜邊上的中線等于斜邊的一半。

  要點(diǎn)詮釋:①勾股定理的逆定理在語(yǔ)言敘述的時(shí)候一定要注意,不能說成“兩條邊的平方和等于斜邊的平方”,應(yīng)該說成“三角形兩邊的平方和等于第三邊的平方”。

 、谥苯侨切蔚娜扰卸ǚ椒,HL還有SSS,SAS,ASA,AAS,一共有5種判定方法。

  圖形的平移與旋轉(zhuǎn)

  1.平移,是指在同一平面內(nèi),將一個(gè)圖形上的所有點(diǎn)都按照某個(gè)直線方向做相同距離的移動(dòng),這樣的圖形運(yùn)動(dòng)叫做圖形的平移運(yùn)動(dòng),簡(jiǎn)稱平移。

  2.平移性質(zhì)

  (1)圖形平移前后的形狀和大小沒有變化,只是位置發(fā)生變化。

  (2)圖形平移后,對(duì)應(yīng)點(diǎn)連成的線段平行(或在同一直線上)且相等。

  拓展閱讀:初中數(shù)學(xué)提高解題速度的方法

  認(rèn)真仔細(xì)審題

  對(duì)于一道具體的習(xí)題,解題時(shí)最重要的環(huán)節(jié)是審題。審題的第一步是讀題,這是獲取信息量和思考的過程。讀題要慢,一邊讀,一邊想,應(yīng)特別注意每一句話的內(nèi)在涵義,并從中找出隱含條件。

  有些學(xué)生沒有養(yǎng)成讀題、思考的習(xí)慣,心里著急,匆匆一看,就開始解題,結(jié)果常常是漏掉了一些信息,花了很長(zhǎng)時(shí)間解不出來,還找不到原因,想快卻慢了。所以,在實(shí)際解題時(shí),應(yīng)特別注意,審題要認(rèn)真、仔細(xì)。

  做好歸納總結(jié)

  在解過一定數(shù)量的習(xí)題之后,對(duì)所涉及到的知識(shí)、解題方法進(jìn)行歸納總結(jié),以便使解題思路更為清晰,就能達(dá)到舉一反三的效果,對(duì)于類似的習(xí)題一目了然,可以節(jié)約大量的解題時(shí)間。

  熟悉習(xí)題內(nèi)容

  解題、做練習(xí)只是學(xué)習(xí)過程中的一個(gè)環(huán)節(jié),而不是學(xué)習(xí)的全部,你不能為解題而解題。解題時(shí),我們的概念越清晰,對(duì)公式、定理和規(guī)則越熟悉,解題速度就越快。

  因此,我們?cè)诮忸}之前,應(yīng)通過閱讀教科書和做簡(jiǎn)單的練習(xí),先熟悉、記憶和辨別這些基本內(nèi)容,正確理解其涵義的本質(zhì),接著馬上就做后面所配的練習(xí),一刻也不要停留。

  學(xué)會(huì)主動(dòng)畫圖

  畫圖是一個(gè)翻譯的過程,把解題時(shí)的抽象思維,變成了形象思維,從而降低了解題難度。有些題目,只要分析圖一畫出來,其中的關(guān)系就變得一目了然。尤其是對(duì)于幾何題,包括解析幾何題,若不會(huì)畫圖,有時(shí)簡(jiǎn)直是無從下手。

  因此,牢記各種題型的基本作圖方法,牢記各種函數(shù)的圖像和意義及演變過程和條件,對(duì)于提高解題速度非常重要。

  逐步增加難度

  人們認(rèn)識(shí)事物的過程都是從簡(jiǎn)單到復(fù)雜。簡(jiǎn)單的問題解多了,從而使概念清晰了,對(duì)公式、定理以及解題步驟熟悉了,解題時(shí)就會(huì)形成跳躍性思維,解題的速度就會(huì)大大提高。

  我們?cè)趯W(xué)習(xí)時(shí),應(yīng)根據(jù)自己的能力,先去解那些看似簡(jiǎn)單,卻很重要的習(xí)題,以不斷提高解題速度和解題能力。隨著速度和能力的提高,再逐漸增加難度,就會(huì)達(dá)到事半功倍的效果。

  初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 12

  在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形.

  (1)多邊形的一些要素:

  邊:組成多邊形的各條線段叫做多邊形的邊.

  頂點(diǎn):每相鄰兩條邊的公共端點(diǎn)叫做多邊形的頂點(diǎn).

  內(nèi)角:多邊形相鄰兩邊組成的`角叫多邊形的內(nèi)角,一個(gè)n邊形有n個(gè)內(nèi)角。

  外角:多邊形的邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角。

  (2)在定義中應(yīng)注意:

 、僖恍┚段(多邊形的邊數(shù)是大于等于3的正整數(shù));

  ②首尾順次相連,二者缺一不可;

 、劾斫鈺r(shí)要特別注意“在同一平面內(nèi)”這個(gè)條件,其目的是為了排除幾個(gè)點(diǎn)不共面的情況,即空間

  初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 13

  實(shí)數(shù)

  無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)

  平方根:①如果一個(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。②如果一個(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。③一個(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒有平方根。④求一個(gè)數(shù)A的平方根運(yùn)算,叫做開平方,其中A叫做被開方數(shù)。

  立方根:①如果一個(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。③求一個(gè)數(shù)A的立方根的運(yùn)算叫開立方,其中A叫做被開方數(shù)。

  實(shí)數(shù):①實(shí)數(shù)分有理數(shù)和無理數(shù)。②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣。③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來表示。

  相信通過上面的學(xué)習(xí),同學(xué)們對(duì)實(shí)數(shù)知識(shí)點(diǎn)可以很好的掌握了,希望同學(xué)們?cè)诳荚囍腥〉煤贸煽?jī)。

  初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系

  下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

  平面直角坐標(biāo)系

  平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

  平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合

  三個(gè)規(guī)定:

 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

 、趩挝婚L(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。

 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成

  對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。

  平面直角坐標(biāo)系的構(gòu)成

  在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。

  通過上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

  初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)

  下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。

  點(diǎn)的坐標(biāo)的性質(zhì)

  建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。

  對(duì)于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。

  一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。

  希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。

  初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟

  關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。

  因式分解的一般步驟

  如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,

  通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的`因式分解,若題目沒有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。

  相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。

  初中數(shù)學(xué)知識(shí)點(diǎn):因式分解

  下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的知識(shí)講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。

  因式分解

  因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。

  因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④

  因式分解與整式乘法的關(guān)系:m(a+b+c)

  公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。

  公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。

  提取公因式步驟:

  ①確定公因式。②確定商式③公因式與商式寫成積的形式。

  分解因式注意;

 、俨粶(zhǔn)丟字母

 、诓粶(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)

 、垭p重括號(hào)化成單括號(hào)

  ④結(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列

 、菹嗤蚴綄懗蓛绲男问

  ⑥首項(xiàng)負(fù)號(hào)放括號(hào)外

 、呃ㄌ(hào)內(nèi)同類項(xiàng)合并。

  通過上面對(duì)因式分解內(nèi)容知識(shí)的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。

  初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 14

  一.定義

  1.一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么這個(gè)正數(shù)x叫做a的算術(shù)平方根.a叫做被開方數(shù).

  2.一般地,如果一個(gè)數(shù)的平方等于a,那么這個(gè)數(shù)叫做a的平方根或二次方根,求一個(gè)數(shù)a的平方根的運(yùn)算,叫做開平方.

  3.一般地,如果一個(gè)數(shù)的立方等于a,那么這個(gè)數(shù)叫做a的立方根或三次方根.求一個(gè)數(shù)的立方根的.運(yùn)算,叫做開立方.

  4.任何一個(gè)有理數(shù)都可以寫成有限小數(shù)或無限循環(huán)小數(shù)的形式.任何有限小數(shù)或無限循環(huán)小數(shù)也都是有理數(shù).

  5.無限不循環(huán)小數(shù)又叫無理數(shù).

  6.有理數(shù)和無理數(shù)統(tǒng)稱實(shí)數(shù).

  7.數(shù)軸上的點(diǎn)與實(shí)數(shù)一一對(duì)應(yīng).平面直角坐標(biāo)系中與有序?qū)崝?shù)對(duì)之間也是一一對(duì)應(yīng)的.

  二.重點(diǎn)

  1.平方與開平方互為逆運(yùn)算.

  2.正數(shù)的平方根有兩個(gè),它們互為相反數(shù),其中正的平方根就是這個(gè)數(shù)的算術(shù)平方根.

  3.當(dāng)被開方數(shù)的小數(shù)點(diǎn)向右每移動(dòng)兩位,它的算術(shù)平方根的小數(shù)點(diǎn)就向右移動(dòng)一位.

  4.當(dāng)被平方數(shù)小數(shù)點(diǎn)每向右移動(dòng)三位,它的立方根小數(shù)點(diǎn)向右移動(dòng)一位.

  5.數(shù)a的相反數(shù)是-a[a為任意實(shí)數(shù)],一個(gè)正實(shí)數(shù)的絕對(duì)值是它本身,一個(gè)負(fù)實(shí)數(shù)的絕對(duì)值是它的相反數(shù);0的絕對(duì)值是0.

  三.注意

  1.被開方數(shù)一定是非負(fù)數(shù).

  2.0,1的算術(shù)平方根是它本身;0的平方根是0,負(fù)數(shù)沒有平方根;正數(shù)的立方根是正數(shù),負(fù)數(shù)的立方根是負(fù)數(shù),0的立方根是0.

  3.帶根號(hào)的無理數(shù)的整數(shù)倍或幾分之幾仍是無理數(shù);帶根號(hào)的數(shù)若開之后是有理數(shù)則是有理數(shù);任何一個(gè)有理數(shù)都能寫成分?jǐn)?shù)的形式.

  以上就是數(shù)學(xué)網(wǎng)為大家提供的初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié):實(shí)數(shù)希望能對(duì)考生產(chǎn)生幫助,更多資料請(qǐng)咨詢數(shù)學(xué)網(wǎng)中考頻道。

【初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-21

初二下數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12-23

初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11-02

初二物理知識(shí)點(diǎn)總結(jié)12-11

初二物理知識(shí)點(diǎn)總結(jié)06-27

初二函數(shù)知識(shí)點(diǎn)總結(jié)05-30

初二物理知識(shí)點(diǎn)總結(jié)01-23

數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)01-28

初二數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)總結(jié)04-15

[優(yōu)秀]初二物理知識(shí)點(diǎn)總結(jié)05-21