數(shù)學的知識點總結15篇
總結就是把一個時間段取得的成績、存在的問題及得到的經(jīng)驗和教訓進行一次全面系統(tǒng)的總結的書面材料,它有助于我們尋找工作和事物發(fā)展的規(guī)律,從而掌握并運用這些規(guī)律,不妨讓我們認真地完成總結吧。但是總結有什么要求呢?下面是小編幫大家整理的數(shù)學的知識點總結,歡迎閱讀,希望大家能夠喜歡。
數(shù)學的知識點總結1
1、認識圓柱和圓錐,掌握它們的基本特征。認識圓柱的底面、側面和高。認識圓錐的底面和高。
2、探索并掌握圓柱的側面積、表面積的計算方法,以及圓柱、圓錐體積的計算公式,會運用公式計算體積,解決有關的簡單實際問題。
3、通過觀察、設計和制作圓柱、圓錐模型等活動,了解平面圖形與立體圖形之間的聯(lián)系,發(fā)展學生的空間觀念。
4、圓柱的兩個圓面叫做底面,周圍的面叫做側面,底面是平面,側面是曲面,。
5、圓柱的側面沿高展開后是長方形,長方形的長等于圓柱底面的周長,長方形的寬等于圓柱的高,當?shù)酌嬷荛L和高相等時,側面沿高展開后是一個正方形。
6、圓柱的表面積=圓柱的側面積+底面積×2即S表=S側+S底×2或2πr×h+2×π
7、圓柱的側面積=底面周長×高即S側=Ch或2πr×
8、圓柱的體積=圓柱的底面積×高,即V=sh或πr2×
(進一法:實際中,使用的材料都要比計算的結果多一些,因此,要保留數(shù)的時候,省略的位上的是4或者比4小,都要向前一位進1。這種取近似值的方法叫做進一法。)
9、圓錐只有一個底面,底面是個圓。圓錐的側面是個曲面。
9、圓錐只有一個底面,底面是個圓。圓錐的側面是個曲面。
10、從圓錐的頂點到底面圓心的距離是圓錐的高。圓錐只有一條高。(測量圓錐的.高:先把圓錐的底面放平,用一塊平板水平地放在圓錐的頂點上面,豎直地量出平板和底面之間的距離。)
11、把圓錐的側面展開得到一個扇形。
12、圓錐的體積等于與它等底等高的圓柱體積的三分之一,即V錐=1/3Sh或πr2×h÷
13、常見的圓柱圓錐解決問題:①、壓路機壓過路面面積(求側面積);②、壓路機壓過路面長度(求底面周長);③、水桶鐵皮(求側面積和一個底面積);④、廚師帽(求側面積和一個底面積);通風管(求側面積)。
數(shù)學的知識點總結2
1.分數(shù)乘法:分數(shù)乘法的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)和的簡便運算。
2.分數(shù)乘法的計算法則
分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的積作分子,分母不變;分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零.。
3.分數(shù)乘法意義
分數(shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)的和的簡便運算。一個數(shù)與分數(shù)相乘,可以看作是求這個數(shù)的幾分之幾是多少。
4.分數(shù)乘整數(shù):數(shù)形結合、轉化化歸
5.倒數(shù):乘積是1的兩個數(shù)叫做互為倒數(shù)。
6.分數(shù)的倒數(shù)
找一個分數(shù)的倒數(shù),例如3/4把3/4這個分數(shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/3。3/4是4/3的倒數(shù),也可以說4/3是3/4的倒數(shù)。
7.整數(shù)的倒數(shù)
找一個整數(shù)的倒數(shù),例如12,把12化成分數(shù),即12/1,再把12/1這個分數(shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是1/12,12是1/12的'倒數(shù)。
8.小數(shù)的倒數(shù)
普通算法:找一個小數(shù)的倒數(shù),例如0.25,把0.25化成分數(shù),即1/4,再把1/4這個分數(shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子,則是4/1。
9.用1計算法:也可以用1去除以這個數(shù),例如0.25,1/0.25等于4,所以0.25的倒數(shù)4,因為乘積是1的兩個數(shù)互為倒數(shù)。分數(shù)、整數(shù)也都使用這種規(guī)律。
10.分數(shù)除法:分數(shù)除法是分數(shù)乘法的逆運算。
11.分數(shù)除法計算法則:
甲數(shù)除以乙數(shù)(0除外),等于甲數(shù)乘乙數(shù)的倒數(shù)。
12.分數(shù)除法的意義:與整數(shù)除法的意義相同,都是已知兩個因數(shù)的積與其中一個因數(shù)求另一個因數(shù)。
13.分數(shù)除法應用題:先找單位1。單位1已知,求部分量或對應分率用乘法,求單位1用除法。
數(shù)學的知識點總結3
1、上、下
(1)在具體場景中理解上、下的含義及其相對性。
。2)能比較準確地確定物體上下的方位,會用上、下描述物體的相對位置。
。3)培養(yǎng)學生初步的空間觀念。
2、前、后
。1)在具體場景中理解前、后、最×的含義,以及前后的相對性。
。2)能比較準確地確定物體前后的方位,會用前、后、最前、最后描述物體的相對位置。
(3)培養(yǎng)學生初步的空間觀念。
加減法
。ㄒ唬┍締卧R網(wǎng)絡:
(二)各課知識點:
有幾枝鉛筆(加法的`認識)
知識點:
1、初步了解加法的含義,會讀、寫加法算式,感悟把兩個數(shù)合并在一起求一共是多少,用加法計算;
2、初步嘗試選擇恰當?shù)姆椒ㄟM行5以內(nèi)的加法口算。
3、第一次出現(xiàn)了圖形應用題,要讓學生學會看圖形應用型題目,理解題目的意思。
有幾輛車(初步認識加法的交換律)
3、左、右(1)在具體場景中理解左、右的含義及其相對性。
。2)能比較準確地確定物體左右的方位,會用左、右描述物體的位置。
(3)培養(yǎng)學生初步的空間觀念。
4、位置
(1)明確“橫為行、豎為列”,并知道“第幾行第幾個”、“第幾組第幾個”的含義。
。2)在具體情境中,會用2個數(shù)據(jù)(2個維度)描述人或物體的具體位置。
。3)在具體情境中,能依據(jù)2個維度的數(shù)據(jù)找到人或物體的具體位置。
數(shù)學的知識點總結4
專題一:計算
我一直強調計算,扎實的算功是學好數(shù)學的必要條件。聰明在于勤奮,知識在于積累。積累一些常見數(shù)是必要的。如1/8,1/4,3/8,1/2,5/8,3/4,7/8的分數(shù),小數(shù),百分數(shù),比的互化要脫口而出。100以內(nèi)的質數(shù)要信手拈來。1-30的平方,1-10的立方的結果要能提筆就寫。對于整除的判定僅僅積累2,3,5的是不夠的。9的整除判定和3的方法是一樣的'。還有就是2和5的n次方整除的判定只要看末n位。如4和25的整除都是看末2位,末2位能被4或25整除則這個數(shù)可以被4或25整除。8和125就看末3位。7,11,13的整除判定就是割開三位。前面部分減去末三位就可以了如果能整除7或11或13,這個數(shù)就是7或11或13的倍數(shù)。這其實是判定1001的方法。此外還有一種方法是割個位法,望同學們至少掌握20以內(nèi)整除的判定方法。
接下來講下數(shù)論的積累。1搞清楚什么是完全平方數(shù),完全平方數(shù)個位只能是0,1,4,5,6,9.奇數(shù)的平方除以8余1,偶數(shù)的平方是4的倍數(shù)。要掌握如何求一個數(shù)的約數(shù)個數(shù),所有約數(shù)的和,小于這個數(shù)且和這個數(shù)互質數(shù)的個數(shù)如何求。如何估計一個數(shù)是否為質數(shù)。
計算分為一般計算和技巧計算。到底用哪個呢?首先基本的運算法則必須很熟悉。不要被簡便運算假象迷惑。這里重點說下技巧計算。首先要熟練乘法和除法的分配律,其次要熟練a-b-c=a-(b+c)a-(b-c)=a-b+c
還有連除就是除以所有除數(shù)的積等。再者對于結合交換律都應該很熟悉。分配律有直接提公因數(shù),和移動小數(shù)點或擴大縮小倍數(shù)來湊出公因數(shù)。甚至有時候要強行創(chuàng)造公因數(shù)。再單獨算尾巴。
分數(shù)的裂項:裂和與裂差 等差數(shù)列求和,平方差,配對,換元,拆項約分,等比定理的轉化等都要很熟悉。還有就是放縮與估計都要熟練。在計算中到底運用小數(shù)還是分數(shù)要看情況。如果既有分數(shù)又有小數(shù)的題,如果不能化成有限小數(shù)的分數(shù)出現(xiàn)的話整個計算應該用分數(shù)。當小數(shù)位數(shù)不超過2位且分數(shù)可以化為3位以內(nèi)的小數(shù)時候可以用小數(shù)。計算時候學會湊整?吹25找4,看到125找8,看到2找5這些要形成條件反射。如7992乘以25
很多孩子用豎式算很久,而實際上只要7992除以4再乘以100=(8000-8)除以4再乘以100=199800運用下除法分配律。這些簡便的方法不要要求簡便的時候才用,平時就要多用才熟能生巧。
最后講下公比是1/2的等比數(shù)列。很多孩子做1/2+1/4+...+1/64能很快1-1/64=63/64,但如果是1/4+1/8+1/16+..+1/256就不會了。實際上一樣的裂項,為1/2-1/4+1/4-1/8+...+1/128-1/256=1/2-1/256=127/256.所以要學活總結裂項的幾種形式。最后一般化。
專題二:解方程
解方程一般是運用等式性質,由于小學生沒學過移項。所以稍復雜的方程容易錯符號。如37-2x=39-3x
解這樣方程建議先把兩邊加3x 得到37+x=39 x=2 有的直接做容易搞成5x=2,所以做完后要檢驗。解含有分母的方程建議首先把分子的多項式加括號。然后左右兩邊每個加數(shù)或減數(shù)都乘以最小公倍數(shù)。注意凡是整體加上括號,最后用分配律和加減的簡便運算方法去掉括號。這樣不會錯符號和漏乘調理也清楚。還有注意訓練整體意識如解60(100-x)=72(97-x)就應該兩邊首先約去12計算更好。對于機構復雜出現(xiàn)重復部分的方程還要注意換元。平時還可以多解一些稍微復雜的百分數(shù)方程。
專題三:分數(shù),比,百分數(shù)應用題
解決這類題關鍵在于搞清楚標準。明白1倍是什么,比的一份是什么。如60比---多1/5,60比----少1/5,60是---的1/5,---是60的1/5,---比60多1/5,----比60少1/5.這個準備題能全對說明標準吃透了否則還要在找標準量上加強訓練。注意分數(shù)帶單位表示具體數(shù)量,不帶單位表示的實際上是倍數(shù)。只是同學們習慣看整數(shù)和小數(shù)倍不習慣看分數(shù)倍數(shù)。百分數(shù)就只能表示倍數(shù),不能表示數(shù)量是不可以帶單位的。如果用比解決問題就務必吃透1份是多少。其實分數(shù)應用題都可以轉化為A是B的多少倍?已知1倍求多倍乘法,已知多倍求1倍除法。比如A比B多1/3,這時候標準是B A比1倍多1/3倍就是A是B的4/3倍。馬上有A:B=4:3,對于應用題中分數(shù)和比的轉化要清晰。很多題我們用分數(shù)抽象但用比很好理解。因為孩子熟悉整數(shù),不喜歡分數(shù)這時事實。對于百分數(shù)應用題我們可以化為比轉化為孩子喜歡的東西。其實很多有不變數(shù)量的題就是找到不變量,統(tǒng)一不變量對應份數(shù),求出1份是多少,按比例分配這4步曲一般分數(shù),百分數(shù)比的應用題就搞定了。對于濃度問題和商品利潤問題我講了十字交叉法。對于有些孩子可能難理解,考試在大題中也不適宜用。其實濃度問題列方程就從溶質入手就可以了。
數(shù)學的知識點總結5
(1)線
直線:直線沒有端點;長度無限;過一點可以畫無數(shù)條,過兩點只能畫一條直線。
射線:射線只有一個端點;長度無限。
線段:線段有兩個端點,它是直線的一部分;長度有限;兩點的連線中,線段為最短。
平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。
兩條平行線之間的垂線長度都相等。
垂線:兩條直線相交成直角時,這兩條直線叫做互相垂直,其中一條直線叫做另一條直線的垂線,相交的點叫做垂足。
從直線外一點到這條直線所畫的垂線的長叫做這點到直線的.距離。
(2)角
(1)從一點引出兩條射線,所組成的圖形叫做角。這個點叫做角的頂點,這兩條射線叫做角的邊。
(2)角的分類
銳角:小于90°的角叫做銳角。
直角:等于90°的角叫做直角。
鈍角:大于90°而小于180°的角叫做鈍角。
平角:角的兩邊成一條直線,這時所組成的角叫做平角。平角180°。
周角:角的一邊旋轉一周,與另一邊重合。周角是360°。
數(shù)學的知識點總結6
1.不在同一直線上的三點確定一個圓。
2.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1 ①平分弦不是直徑的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對稱中心的中心對稱圖形
4.圓是定點的距離等于定長的點的集合
5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合
6.圓的外部可以看作是圓心的距離大于半徑的點的集合
7.同圓或等圓的半徑相等
8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
9.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
10.推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。
11定理圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角
12.①直線L和⊙O相交d
②直線L和⊙O相切d=r
、壑本L和⊙O相離d>r
13.切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
14.切線的性質定理圓的切線垂直于經(jīng)過切點的半徑
15.推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點
16.推論2經(jīng)過切點且垂直于切線的'直線必經(jīng)過圓心
17.切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
18.圓的外切四邊形的兩組對邊的和相等外角等于內(nèi)對角
19.如果兩個圓相切,那么切點一定在連心線上
20.①兩圓外離d>R+r ②兩圓外切d=R+r
、.兩圓相交R-rr
④.兩圓內(nèi)切d=R-rR>r ⑤兩圓內(nèi)含dr
21.定理相交兩圓的連心線垂直平分兩圓的公共弦
22.定理把圓分成nn≥3:
、乓来芜B結各分點所得的多邊形是這個圓的內(nèi)接正n邊形
、平(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
23.定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓
24.正n邊形的每個內(nèi)角都等于n-2×180°/n
25.定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
27.正三角形面積√3a/4 a表示邊長
28.如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×n-2180°/n=360°化為n-2k-2=4
29.弧長計算公式:L=n兀R/180
30.扇形面積公式:S扇形=n兀R^2/360=LR/2
31.內(nèi)公切線長= d-R-r外公切線長= d-R+r
32.定理一條弧所對的圓周角等于它所對的圓心角的一半
33.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
34.推論2半圓或直徑所對的圓周角是直角;90°的圓周角所對的弦是直徑
35.弧長公式l=ar a是圓心角的弧度數(shù)r >0扇形面積公式s=1/2lr
初三數(shù)學復習方法
一、回歸課本,夯實基礎,做好預習。
數(shù)學的基本概念、定義、公式,數(shù)學知識點之間的內(nèi)在聯(lián)系,基本的數(shù)學解題思路與方法,是復習的重中之重。回歸課本,要先對知識點進行梳理,把教材上的每一個例題、習題再做一遍,確保基本概念、公式等牢固掌握,要穩(wěn)扎穩(wěn)打,不要盲目攀高,欲速則不達。復習課的內(nèi)容多、時間緊。要提高復習效率,必須使自己的思維與老師的思維同步。而預習則是達到這一目的的重要途徑。沒有預習,聽老師講課,會感到老師講的都重要,抓不住老師講的重點;而預習了之后,再聽老師講課,就會在記憶上對老師講的內(nèi)容有所取舍,把重點放在自己還未掌握的內(nèi)容上,提高學習效率。
二、提高課堂聽課效率,多動腦,勤動手
初三的課只有兩種形式:復習課和評講課,到初三所有課都進入復習階段,通過復習,學生要知道自己哪些知識點掌握的比較好,哪些知識點有待提高,因此在復習課之前一定要有自已的思考,這樣聽課的目的就明確了,F(xiàn)在學生手中都會有一些復習資料,在老師講課之前,要把例題做一遍,做題中發(fā)現(xiàn)的難點,就是聽課的重點;對預習中遇到的沒有掌握好的舊知識,可進行查漏補缺,以減少聽課過程中的困難,自己理解了的東西與老師的講解進行比較、分析即可提高自己的數(shù)學思維;體會分析問題的思路和解決問題的思想方法,堅持下去,就一定能舉一反三,事半功倍。此外對于老師講課中的難點,重點要作好筆記,筆記不是記錄而是將上述聽課中的要點,思維方法等作出簡單扼要的記錄,以便復習,消化,思考。
三、建立錯題本,查漏補缺
初三復習,各類試題要做幾十套,甚至上百套。特級教師提醒學生可以建立一個錯題本,把平時做錯的題系統(tǒng)的整理好,在上面寫上評析和做錯的原因,每過一段時間,就把“錯題筆記”拿出來看一看。在看參考書時,也可以把精彩之處或做錯的題目做上標記,以后再看這本書時就會有所側重。查漏補缺的過程就是反思的過程。除了把不同的問題弄懂以外,還要學會“舉一反三,融會貫通”,及時歸納總結。每次訂正試卷或作業(yè)時,在錯題旁邊要寫明做錯的原因。
初三數(shù)學學習建議
培養(yǎng)良好的學習習慣
1制定計劃。從而使學習目的明確,時間安排合理,不慌不忙,穩(wěn)打穩(wěn)扎,它是推動學生主動學習和克服困難的內(nèi)在動力。但計劃一定要切實可行,既有長遠打算,又有短期安排,執(zhí)行過程中嚴格要求自己,磨練學習意志。
2課前自學。這是上好新課,取得較好學習效果的基礎。課前自學不僅能培養(yǎng)自學能力,而且能提高學習新課的興趣,掌握學習的主動權。自學不能搞走過場,要講究質量,力爭在課前把教材弄懂,上課著重聽老師講思路,把握重點,突破難點,盡可能把問題解決在課堂上。
3專心上課!皩W然后知不足”,這是理解和掌握基本知識、基本技能和基本方法的關鍵環(huán)節(jié)。課前自學過的學生上課更能專心聽課,他們知道什么地方該詳細聽,什么地方可以一帶而過,該記的地方才記下來,而不是全盤抄錄,顧此失彼。
4及時復習。這是高效率學習的重要一環(huán)。通過反復閱讀教材,多方面查閱有關資料,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關舊知識聯(lián)系起來,進行分析比效,一邊復習一邊將復習成果整理在筆記本上,使對所學的新知識由“懂”到“會”。
5獨立作業(yè)。這是掌握獨立思考,分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的必要過程。這一過程也是對學生意志毅力的考驗,通過作業(yè)練習使學生對所學知識由“會”到“熟”。
6解決疑難。這是指對獨立完成作業(yè)過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。解決疑難一定要有鍥而不舍的精神,做錯的作業(yè)再做一遍。對錯誤的地方?jīng)]弄清楚要反復思考,實在解決不了的要請教老師和同學,并經(jīng)常把容易錯的地方拿來復習強化,作適當?shù)闹貜托跃毩,把從老師、同學處獲得的東西消化變成自己的知識,長期堅持使對所學知識由“熟”到“活”。
7系統(tǒng)小結。這是通過積極思考,達到全面系統(tǒng)深刻地掌握知識和發(fā)展認識能力的重要環(huán)節(jié)。小結要在系統(tǒng)復習的基礎上以教材為依據(jù),參照筆記與資料,通過分析、綜合、類比、概括,揭示知識間的內(nèi)在聯(lián)系,以達到對所學知識融會貫通的目的。經(jīng)常進行多層次小結,能對所學知識由“活”到“悟”。
8課外學習。課外學習是課內(nèi)學習的補充和繼續(xù),包括閱讀課外書籍與報刊,參加學科競賽與講座,走訪高年級同學或老師交流學習心得等。它不僅能豐富學生的文化科學知識,加深和鞏固課內(nèi)所學的知識,而且能夠滿足和發(fā)展學生的興趣愛好,培養(yǎng)獨立學習和工作的能力,激發(fā)求知欲與學習熱情。
數(shù)學的知識點總結7
一、直線與方程
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0180
(2)直線的斜率
、俣x:傾斜角不是90的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當時,。當時,;當時,不存在。
②過兩點的直線的斜率公式:
注意下面四點:
(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90
(2)k與P1、P2的順序無關;
(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。
(3)直線方程
、冱c斜式:直線斜率k,且過點
注意:當直線的斜率為0時,k=0,直線的方程是y=y1。當直線的斜率為90時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1。
②斜截式:,直線斜率為k,直線在y軸上的截距為b
、蹆牲c式:()直線兩點,
④截矩式:其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為。
、菀话闶剑(A,B不全為0)
、菀话闶剑(A,B不全為0)
注意:○1各式的適用范圍
○2特殊的方程如:平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));
(4)直線系方程:即具有某一共同性質的直線
(一)平行直線系
平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))
(二)過定點的直線系
(ⅰ)斜率為k的直線系:直線過定點;
(ⅱ)過兩條直線,的'交點的直線系方程為(為參數(shù)),其中直線不在直線系中。
(5)兩直線平行與垂直;
注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。
(6)兩條直線的交點
相交:交點坐標即方程組的一組解。方程組無解;方程組有無數(shù)解與重合
(7)兩點間距離公式:設是平面直角坐標系中的兩個點,則
(8)點到直線距離公式:一點到直線的距離
(9)兩平行直線距離公式:在任一直線上任取一點,再轉化為點到直線的距離進行求解。
數(shù)學的知識點總結8
其實角的大小與邊的長短沒有關系,角的大小決定于角的兩條邊張開的程度。
角的靜態(tài)定義
具有公共端點的兩條射線組成的圖形叫做角(angle)。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。
角的動態(tài)定義
一條射線繞著它的端點從一個位置旋轉到另一個位置所形成的圖形叫做角。所旋轉射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊
角的符號
角的符號:∠
角的種類
在動態(tài)定義中,取決于旋轉的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。
銳角:大于0°,小于90°的角叫做銳角。
直角:等于90°的角叫做直角。
鈍角:大于90°而小于180°的角叫做鈍角。
平角:等于180°的角叫做平角。
優(yōu)角:大于180°小于360°叫優(yōu)角。
劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。
角周角:等于360°的角叫做周角。
負角:按照順時針方向旋轉而成的角叫做負角。
正角:逆時針旋轉的角為正角。
0角:等于零度的角。
特殊角
余角和補角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補角。等角的余角相等,等角的補角相等。
對頂角:兩條直線相交后所得的只有一個公共頂點且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構成兩對對頂角。互為對頂角的兩個角相等。
鄰補角:兩個角有一條公共邊,它們的另一條邊互為反向延長線,具有這種關系的兩個角,互為鄰補角。
內(nèi)錯角:互相平行的兩條直線直線,被第三條直線所截,如果兩個角都在兩條直線的
內(nèi)側,并且在第三條直線的兩側,那么這樣的一對角叫做內(nèi)錯角(alternate interior angle )。如:∠1和∠6,∠2和∠5
同旁內(nèi)角:兩個角都在截線的同一側,且在兩條被截線之間,具有這樣位置關系的'一對角互為同旁內(nèi)角。如:∠1和∠5,∠2和∠6
同位角:兩個角都在截線的同旁,又分別處在被截的兩條直線同側,具有這樣位置關系的一對角叫做同位角(correspondingangles):∠1和∠8,∠2和∠7
外錯角:兩條直線被第三條直線所截,構成了八個角。如果兩個角都在兩條被截線的外側,并且在截線的兩側,那么這樣的一對角叫做外錯角。例如:∠4與∠7,∠3與∠8。
同旁外角:兩個角都在截線的同一側,且在兩條被截線之外,具有這樣位置關系的一對角互為同旁外角。如:∠4和∠8,∠3和∠7
終邊相同的角:具有共同始邊和終邊的角叫終邊相同的角。與角a終邊相同的角屬于集合:
A{bb=k_360+a,k∈Z}表示角度制;
B{bb=2kπ+a,k∈Z}表示弧度制
數(shù)學的知識點總結9
數(shù)的整除:
1、能被15整除的數(shù)一定還能被( 1、3、5 )整除。[寫出所有可能]
2、從0、2、3、7、8中選出四個不同的數(shù)字,組成一個有因數(shù)2、3、5的四位數(shù),其中最大的是( 8730 ),最小的是( 2370 )。 解:有0,3,7,8和0,2,3,7兩種可能
3、六個連續(xù)偶數(shù)的和是210,這六個偶數(shù)是( 30、32、34、36、38、40 )。
4、在15、19、27、35、51、91這六個數(shù)中,與眾不同的數(shù)是( 19 ),因為( 只有19是質數(shù),其它都是合數(shù) )。
5、兩個質數(shù)的積是46,這兩個質數(shù)的和是( 25 )。
解:因為46是偶數(shù),因此它必是一個奇質數(shù)與一個偶質數(shù)的積,而偶質數(shù)只有2,另一個質數(shù)為46÷2=23,所以2與23的和是25。
6、1992所有的質因數(shù)的和是( 88 )。
解:1992=2 2 2 3 83,所以1992所有的質因數(shù)的和是2+2+2+3+83=92。
7、有兩個數(shù)都是合數(shù),又是互質數(shù),它們的最小公倍數(shù)是90,這兩個數(shù)是( 9和10 )。
8、幾個數(shù)的最大公因數(shù)是最小公倍數(shù)的( 因 )數(shù),幾個數(shù)的最小公倍數(shù)是最大公因數(shù)的( 倍 )數(shù)。
9、幾個數(shù)的( 最大公因 )數(shù)的所有( 因 )數(shù),都是這幾個數(shù)的公因數(shù);幾個數(shù)的( 最小公倍 )數(shù)的所有( 倍 )數(shù),都是這幾個數(shù)的公倍數(shù)。
10、A、B、C都是非零自然數(shù),且A÷B=C,那么A和B的最小公倍數(shù)是( A ),最大公因數(shù)是( B ),C是( A )的因數(shù),A是B的(倍 )數(shù)。
11、甲數(shù)=2×3×5×A,乙數(shù)=2×3×7×A。如果甲、乙兩數(shù)的最大公因數(shù)是30,A應該是( 5 );如果甲、乙兩數(shù)的最小公倍數(shù)是630,A應該是( 3 )。
12、自然數(shù)A=B-1,A、B都是非零自然數(shù),A和B的最大公因數(shù)是( 1 ),最小公倍數(shù)( AB )。
13、長180厘米,寬45厘米,高18厘米的木料,至少能鋸成不余料的同樣大小的正方體木塊多少塊?
解:180、45、18的最大公因數(shù)是9,當鋸成的正方體木塊的棱長是9厘米時,鋸出的正方體木塊塊數(shù)最少,是(180÷9)×(45÷9)×(18÷9)=20×5×2=200塊。
14、用長是9厘米、寬是6厘米、高是7厘米的長方體木塊疊成一個正方體,至少需要這種長方體木塊多少塊?
解:9、6、7的最小公倍數(shù)是126,即疊成的正方體棱長最小是126厘米,至少需要(126÷9)×(126÷6)×(126÷7)=14×21×18=5292塊這樣的長方體木塊才能疊成一個正方體。
15、同學們進行隊列訓練,如果每排8人,最后一排6人;如果每排10人,最后一排少4人。參加隊列訓練的學生最少有多少人?
解:根據(jù)題意,學生人數(shù)除以8余6,除以10也余6,所以是8和10的最小公倍數(shù)40的倍數(shù)加6,學生最少是40+6=46人。
16、小紅、小蘭、小剛和小華,他們的年齡恰好一個比一個大一歲,他們的年齡相乘的積是5040。那么,小紅、小蘭、小剛和小華各是多少歲?
解:5040=2×2×2×2×3×3×5×7=7×(2×2×2)×(3×3)×(2×5),分別是7、8、9、10歲。
長方體和正方體:
17、寫出長方體的側面積計算公式:長方體的側面積=( )×( )。
18、一個正方體的棱長擴大到原來的3倍,則這個正方體的表面積擴大到原來的( 9 )倍,體積擴大到原來的.( 27 )倍。
19、用若干個完全一樣的小正方體,拼成一個較大的正方體,至少需這樣的小正方體( 8 )個,此時所拼成的較大正方體的表面積是原來每個小正方體表面積的( (2×2×6)÷(1×1×6)=4 )倍。
20、一個底面是正方形的長方體,高2分米,側面展開后恰好是一個正方形。這個長方體的體積是多少立方分米?
解:長和寬都是2÷4=0.5分米,體積0.5×0.5×2=0.5立方分米。
21、一間教室長8米,寬6米,高4米,教室里有32個學生,平均每人占有多少空間?
解:8×6×4=192立方米,192÷32=6立方米。
22、一個無蓋的木盒,從外面量長10厘米,寬8厘米,高5厘米,木板厚1厘米。這個木盒的容積是多少?
解:長10-1×2=8厘米,寬8-1×2=6厘米,高5-1=4厘米,容積8×6×4=192立方厘米。
23、把一個長、寬、高分別是5分米、3分米、2分米的長方體截成兩個小長方體,這兩個小長方體表面積之和最大是( )平方分米。
解:原長方體的表面積是5×3×2+5×2×2+3×2×2=62平方分米,截成兩個小長方體后表面積最多增加5×3×2=30平方分米,這兩個小長方體表面積之和最大是62+30=92平方分米。
24、有一個長方體,如果把它的長減少2分米,那么它就變成一個正方體,表面積就會減少48平方分米。求這個長方體的體積。
解:橫截面是正方形,即寬與高相等。長方體的寬與高都是48÷4÷2=6分米,長是6+2=8分米,體積是8×6×6=288立方分米。
25、把一個棱長6厘米的正方體切成棱長2厘米的小正方體,可以得到多少個小正方體?表面積增加了多少平方厘米?
解:切成了(6÷2)×(6÷2)×(6÷2)=27個小正方體,表面積增加了6×6×4×3=432平方厘米。
26、兩個完全一樣的正方體拼成一個長方體,長方體的表面積是40平方厘米,每個小正方體的表面積是多少平方厘米?
解:小正方體的一個面是40÷(5×2)=4平方厘米,每個小正方體的表面積是4×6=24平方厘米。
27、一個長方體玻璃容器,容器內(nèi)裝有6升水,這時水面高度是15厘米。把一個蘋果放入水中,這時容器內(nèi)水面的高度是16.5厘米。請你求出這個蘋果的體積。
解:6升=6000毫升,底面積是6000÷15=400平方厘米,蘋果的體積是400×(16.5-15)=600立方厘米。
分數(shù)的意義和性質:
28、2 的分數(shù)單位是( ),它有( 37 )個這樣的分數(shù)單位,再加上( 23 )個這樣的分數(shù)單位等于最小的合數(shù)。
29、有分母都是7的真分數(shù)、假分數(shù)和帶分數(shù)各一個,它們的大小只差一個分數(shù)單位。這三個分數(shù)分別是( , ,1 )。
30、一個分數(shù)的分子縮小到原來的 ,分母縮小到原來的 ,分數(shù)的值就( 擴大到原來的3倍 )。
31、一輛小汽車6分鐘行駛9千米,行駛1千米要( )分,1分鐘能行駛( 1.5 )千米。
32、 <<1,□里可以填的自然數(shù)有( )。[寫出所有可能]
解: < < ,5□=50、55、60,□=10、11、12。
33、某工廠有煤5噸,如果每天燒 噸,這些煤可燒( 5÷ =5÷0.2=25 )天;如果每天燒這些煤的 ,這些煤可燒( 5 )天。
34、五(1)班女生占全班人數(shù)的 ,那么,男生人數(shù)占全班人數(shù)的( ),女生人數(shù)比男生人數(shù)少( )。
35、某廠男職工人數(shù)是女職工的 ,女職工比男職工多30人,男職工有( )人。
數(shù)學的知識點總結10
學生已經(jīng)掌握了用一元一次方程解決實際問題的方法。在解決某些實際問題時還會遇到一種新方程 一元二次方程。一元二次方程一章就來認識這種方程,討論這種方程的解法,并運用這種方程解決一些實際問題。
本章首先通過雕像設計、制作方盒、排球比賽等問題引出一元二次方程的概念,給出一元二次方程的一般形式。然后讓學生通過數(shù)值代入的方法找出某些簡單的一元二次方程的解,對一元二次方程的解加以體會,并給出一元二次方程的根的概念,
22.2降次解一元二次方程一節(jié)介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說明。
(1)在介紹配方法時,首先通過實際問題引出形如 的方程。這樣的方程可以化為更為簡單的形如 的`方程,由平方根的概念,可以得到這個方程的解。進而舉例說明如何解形如 的方程。然后舉例說明一元二次方程可以化為形如 的方程,引出配方法。最后安排運用配方法解一元二次方程的例題。在例題中,涉及二次項系數(shù)不是1的一元二次方程,也涉及沒有實數(shù)根的一元二次方程。對于沒有實數(shù)根的一元二次方程,學了公式法以后,學生對這個內(nèi)容會有進一步的理解。
(2)在介紹公式法時,首先借助配方法討論方程 的解法,得到一元二次方程的求根公式。然后安排運用公式法解一元二次方程的例題。在例題中,涉及有兩個相等實數(shù)根的一元二次方程,也涉及沒有實數(shù)根的一元二次方程。由此引出一元二次方程的解的三種情況。
(3)在介紹因式分解法時,首先通過實際問題引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排運用因式分解法解一元二次方程的例題。最后對配方法、公式法、因式分解法三種解一元二次方程的方法進行小結。
22.3實際問題與一元二次方程一節(jié)安排了四個探究欄目,分別探究傳播、成本下降率、面積、勻變速運動等問題,使學生進一步體會方程是刻畫現(xiàn)實世界的一個有效的數(shù)學模型。
數(shù)學的知識點總結11
年齡問題的主要特點是兩人的年齡差不變,而倍數(shù)差卻發(fā)生變化。
常用的計算公式是:
成倍時小的年齡=大小年齡之差÷(倍數(shù)-1)
幾年前的年齡=小的現(xiàn)年-成倍數(shù)時小的'年齡
幾年后的年齡=成倍時小的年齡-小的現(xiàn)在年齡
例父親今年54歲,兒子今年12歲。幾年后父親的年齡是兒子年齡的4倍?
(54-12)÷(4-1) =42÷3 =14(歲)→兒子幾年后的年齡
14-12=2(年)→2年后
答:2年后父親的年齡是兒子的4倍。
例2、父親今年的年齡是54歲,兒子今年有12歲。幾年前父親的年齡是兒子年齡的7倍?
(54-12)÷(7-1) =42÷6=7(歲)→兒子幾年前的年齡
12-7=5(年)→5年前
答:5年前父親的年齡是兒子的7倍。
例3、王剛父母今年的年齡和是148歲,父親年齡的3倍與母親年齡的差比年齡和多4歲。王剛父母親今年的年齡各是多少歲?
(148×2+4)÷(3+1) =300÷4 =75(歲)→父親的年齡
148-75=73(歲)→母親的年齡
答:王剛的父親今年75歲,母親今年73歲。
或:(148+2)÷2 =150÷2 =75(歲) 75-2=73(歲)
數(shù)學的知識點總結12
一般地,設一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n≤N),如果每次抽取時總體內(nèi)的各個個體被抽到的機會都相等,就把這種抽樣方法叫做簡單隨機抽樣。
簡單隨機抽樣的特點:
(1)用簡單隨機抽樣從含有N個個體的總體中抽取一個容量為n的樣本時,每次抽取一個個體時任一個體被抽到的概率為;在整個抽樣過程中各個個體被抽到的概率為
(2)簡單隨機抽樣的特點是,逐個抽取,且各個個體被抽到的概率相等;
(3)簡單隨機抽樣方法,體現(xiàn)了抽樣的客觀性與公平性,是其他更復雜抽樣方法的基礎.
(4)簡單隨機抽樣是不放回抽樣;它是逐個地進行抽取;它是一種等概率抽樣
簡單抽樣常用方法:
(1)抽簽法:先將總體中的所有個體(共有N個)編號(號碼可從1到N),并把號碼寫在形狀、大小相同的號簽上(號簽可用小球、卡片、紙條等制作),然后將這些號簽放在同一個箱子里,進行均勻攪拌,抽簽時每次從中抽一個號簽,連續(xù)抽取n次,就得到一個容量為n的樣本適用范圍:總體的個體數(shù)不多時優(yōu)點:抽簽法簡便易行,當總體的個體數(shù)不太多時適宜采用抽簽法.(2)隨機數(shù)表法:隨機數(shù)表抽樣“三步曲”:第一步,將總體中的個體編號;第二步,選定開始的數(shù)字;第三步,獲取樣本號碼概率:
相關高中數(shù)學知識點:系統(tǒng)抽樣
系統(tǒng)抽樣的概念:
當整體中個體數(shù)較多時,將整體均分為幾個部分,然后按一定的規(guī)則,從每一個部分抽取1個個體而得到所需要的樣本的方法叫系統(tǒng)抽樣。
系統(tǒng)抽樣的步驟:
(1)采用隨機方式將總體中的個體編號;
(2)將整個編號進行均勻分段在確定相鄰間隔k后,若不能均勻分段,即
=k不是整數(shù)時,可采用隨機方法從總體中剔除一些個體,使總體中剩余的個體數(shù)N′滿足是整數(shù);
(3)在第一段中采用簡單隨機抽樣方法確定第一個被抽得的個體編號l;
(4)依次將l加上ik,i=1,2,…,(n-1),得到其余被抽取的個體的編號,從而得到整個樣本。
相關高中數(shù)學知識點:分層抽樣
分層抽樣:
當已知總體由差異明顯的.幾部分組成時,常將總體分成幾部分,然后按照各部分所占的比例進行抽樣,這種抽樣叫做分層抽樣,其所分成的各個部分叫做層。
利用分層抽樣抽取樣本,每一層按照它在總體中所占的比例進行抽取。
不放回抽樣和放回抽樣:
在抽樣中,如果每次抽出個體后不再將它放回總體,稱這樣的抽樣為不放回抽樣;如果每次抽出個體后再將它放回總體,稱這樣的抽樣為放回抽樣.
隨機抽樣、系統(tǒng)抽樣、分層抽樣都是不放回抽樣
分層抽樣的特點:
(1)分層抽樣適用于差異明顯的幾部分組成的情況;
(2)在每一層進行抽樣時,在采用簡單隨機抽樣或系統(tǒng)抽樣;
(3)分層抽樣充分利用已掌握的信息,使樣具有良好的代表性;
(4)分層抽樣也是等概率抽樣,而且在每層抽樣時,可以根據(jù)具體情況采用不同的抽樣方法,因此應用較為廣泛。
數(shù)學的知識點總結13
1.點與圓的位置關系及其數(shù)量特征:如果圓的半徑為r,點到圓心的距離為d,則
、冱c在圓上<===>d=r;②點在圓內(nèi)<===>dd>r.
二.圓的對稱性:
1.與圓相關的概念:
、芡膱A:圓心相同,半徑不等的兩個圓叫做同心圓。
、莸葓A:能夠完全重合的兩個圓叫做等圓,半徑相等的兩個圓是等圓。
、薜然。涸谕瑘A或等圓中,能夠互相重合的弧叫做等弧。
、邎A心角:頂點在圓心的角叫做圓心角.
⑧弦心距:從圓心到弦的距離叫做弦心距.
2.圓是軸對稱圖形,直徑所在的直線是它的對稱軸,圓有無數(shù)條對稱軸。
3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。
推論:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。
說明:根據(jù)垂徑定理與推論可知對于一個圓和一條直線來說,如果具備:
①過圓心;②垂直于弦;③平分弦;④平分弦所對的優(yōu)弧;⑤平分弦所對的劣弧。
上述五個條件中的任何兩個條件都可推出其他三個結論。
4.定理:在同圓或等圓中,相等的圓心角所對弧相等、所對的弦相等、所對的弦心距相等。
推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對應的其余各組量都分別相等.
三.圓周角和圓心角的關系:
1.圓周角的定義:頂點在圓上,并且兩邊都與圓相交的角,叫做圓周角.
2.圓周角定理;一條弧所對的圓周角等于它所對的圓心角的一半.
推論1:同弧或等弧所對圓周角相等;反之,在同圓或等圓中,相等圓周角所對弧也相等;
推論2:半圓或直徑所對的圓周角是直角;90°的圓周角所對的弦是直徑;
四.確定圓的條件:
1.理解確定一個圓必須的具備兩個條件:
經(jīng)過一點可以作無數(shù)個圓,經(jīng)過兩點也可以作無數(shù)個圓,其圓心在這個兩點線段的垂直平分線上.
2.定理:不在同一直線上的三個點確定一個圓.
3.三角形的外接圓、三角形的外心、圓的內(nèi)接三角形的概念:
(1)三角形的外接圓和圓的內(nèi)接三角形:經(jīng)過一個三角形三個頂點的圓叫做這個三角形的外接圓,這個三角形叫做圓的內(nèi)接三角形.
(2)三角形的外心:三角形外接圓的圓心叫做這個三角形的外心.
(3)三角形的外心的性質:三角形外心到三頂點的距離相等.
初中數(shù)學實數(shù)的`概念及分類
1、實數(shù)的分類 正有理數(shù) 有理數(shù)零有限小數(shù)和無限循環(huán)小數(shù)
負有理數(shù)
正無理數(shù)
無理數(shù)無限不循環(huán)小數(shù)
負無理數(shù)
整數(shù)包括正整數(shù)、零、負整數(shù)。
正整數(shù)又叫自然數(shù)。
正整數(shù)、零、負整數(shù)、正分數(shù)、負分數(shù)統(tǒng)稱為有理數(shù)。
2、無理數(shù)
在理解無理數(shù)時,要抓住“無限不循環(huán)”這一時之,歸納起來有四類:
(1)開方開不盡的數(shù),如7,2等;
π(2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如+8等; 3
(3)有特定結構的數(shù),如0.1010010001…等;
數(shù)學有理數(shù)基礎知識點
1.有理數(shù)的加法運算
同號兩數(shù)來相加,絕對值加不變號。
異號相加大減小,大數(shù)決定和符號。
互為相反數(shù)求和,結果是零須記好。
“大”減“小”是指絕對值的大小。
2.有理數(shù)的減法運算
減正等于加負,減負等于加正。
有理數(shù)的乘法運算符號法則。
同號得正異號負,一項為零積是零。
3.有理數(shù)混合運算的四種運算技巧
轉化法:一是將除法轉化為乘法,二是將乘方轉化為乘法,三是在乘除混合運算中,通常將小數(shù)轉化為分數(shù)進行約分計算。
湊整法:在加減混合運算中,通常將和為零的兩個數(shù),分母相同的兩個數(shù),和為整數(shù)的兩個數(shù),乘積為整數(shù)的兩個數(shù)分別結合為一組求解。
分拆法:先將帶分數(shù)分拆成一個整數(shù)與一個真分數(shù)的和的形式,然后進行計算。
巧用運算律:在計算中巧妙運用加法運算律或乘法運算律往往使計算更簡便。
數(shù)學的知識點總結14
1.圓中心的一點叫圓心,用O表示。一端在圓心,另一端在圓上的線段叫半徑,用r表示。
兩端都在圓上,并過圓心的線段叫直徑,用d表示。
2.圓有無數(shù)條半徑,有無數(shù)條直徑。
3.圓心決定圓的位置,半徑?jīng)Q定圓的大小。
4.把圓對折,再對折就能找到圓心。
5.圓是軸對稱圖形,直徑所在的直線是圓的對稱軸。圓有無數(shù)條對稱軸。
6.在同一個圓里,直徑的長度是半徑的2倍,可以表示為d=2r或r=d/2.
圓的周長
8.圓的周長除以直徑的商是一個固定的數(shù),叫做圓周率,用字母表示,計算時通常取3.14.
9.C=d或C=r. 半圓的周長
10. 1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.84
7=21.98 8=25.12 9=28.26 10=31.4
圓的面積
11.用S表示圓的面積, r表示圓的半徑,那么S=r^2 S環(huán)=(R^2-r^2)
12. 11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256
17^2=289 18^2=324 19^2=361 20^2=400
13.周長相等時,圓的面積最大。面積相等時,圓的周長最小。
面積相同時,長方形的周長最長,正方形居中,圓周長最短。
周長相同時,圓面積最大,正方形居中,長方形面積最小。
周長相同時,圓面積最大,利用這一特點,籃子、盤子做成圓形。
第四單元:比的認識
15.兩個數(shù)相除,又叫做這兩個數(shù)的比。比的后項不能為0.
16.比的前項和后項同時乘上或除以一個相同的數(shù)(0除外)。比值不變,這叫做比的基本性質。由于在平面直角坐標系中,先畫X軸,而X軸上的坐標表示列。先用小括號將兩個數(shù)括起來,再用逗號將兩個數(shù)隔開。括號里面的數(shù)由左至右為列數(shù)和行數(shù)。
列數(shù)與行數(shù)必須是具體的數(shù),而不能用字母如(X,5)表示,它表述一條橫線,(5,Y)它表示一條豎線,都不能確定一個點。
二、分數(shù)乘法
分數(shù)乘法意義:1、分數(shù)乘整數(shù)是求幾個相同加數(shù)的和的簡便運算,與整數(shù)乘法的意義相同。
2、分數(shù)乘分數(shù)是求一個數(shù)的幾分之幾是多少。
分數(shù)的化簡:分子、分母同時除以它們的最大公因數(shù)。
關于分數(shù)乘法的計算:可在乘的過程中約分,提倡在計算過程中約分,這樣簡便。
分數(shù)的基本性質:分子分母同時乘或者除以一個相同的數(shù)時(0除外),分數(shù)值不變。
倒數(shù)的意義:乘積為1的兩個數(shù)互為倒數(shù)。
特別強調:互為倒數(shù),即倒數(shù)是兩個數(shù)的關系,它們互相依存,倒數(shù)不能單獨存在。
求倒數(shù)的'方法:1、求分數(shù)的倒數(shù)是交換分子分母的位置。
2、求整數(shù)的倒數(shù)是把整數(shù)看做分母是1的分數(shù),再交換分子分母的位置。
1的倒數(shù)是它本身。因為1*1=1
0沒有倒數(shù)。0乘任何數(shù)都得0=0*1,1/0(分母不能為0)
三、分數(shù)除法
分數(shù)除法是分數(shù)乘法的逆運算,就是已知兩個數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算。
除以一個數(shù)是乘這個數(shù)的倒數(shù),除以幾就是乘這個數(shù)的幾分之一。
分數(shù)除法的基本性質:強調0除外
比:兩個數(shù)相除也叫兩個數(shù)的比。比表示兩個數(shù)的關系,可以寫成比的形式,也可以用分數(shù)表示,但仍讀幾比幾。比值是一個數(shù),可以是整數(shù),分數(shù),也可以是小數(shù)。比可以表示兩個相同量的關系,即倍數(shù)關系。也可以表示兩個不同量的比,得到一個新量。例:路程/速度=時間。
化簡比:
1、用比的前項和后項同時除以它們的最大公約數(shù)。
2、兩個分數(shù)的比,用前項后項同時乘分母的最小公倍數(shù),再按化簡整數(shù)比的方法來化簡。
3、兩個小數(shù)的比,向右移動小數(shù)點的位置。也是先化成整數(shù)比。
比和除法、分數(shù)的區(qū)別:除法是一種運算,分數(shù)是一個數(shù),比表示兩個數(shù)的關系。
常用來做判斷的:
一個數(shù)除以小于1的數(shù),商大于被除數(shù)。
一個數(shù)除以1,商等于被除數(shù)。
一個數(shù)除以大于1的數(shù),商小于被除數(shù)。
五、百分數(shù)
百分數(shù)的約分:百分數(shù)化成分數(shù),寫成分數(shù)形式,再約分。
分數(shù)表是一個數(shù),也可以表示兩個數(shù)的關系,百分數(shù)只表示兩個數(shù)的關系,沒有單位。
百分數(shù)的意義:表示一個數(shù)是另一個數(shù)的百分之幾,也叫百分率或者百分比。
一般來講,出勤率、成活率、合格率、正確率能達到100%,出米率、出油率達不到100%,完成率、增長了百分之幾等可以超過100%。一般出粉率在70、80%,出油率在30、40%。
六、統(tǒng)計
條形統(tǒng)計圖可以知道每個數(shù)量的多少。
折現(xiàn)統(tǒng)計圖可以知數(shù)量的增減,
扇形統(tǒng)計圖可以知道部分和總量的關系。
數(shù)學的知識點總結15
一生活中的數(shù)
(一)本單元知識網(wǎng)絡:
(二)各課知識點:
可愛的校園(數(shù)數(shù))
知識點:
1、按一定順序手口一致地數(shù)出每種物體的個數(shù)。
2、能用1-10各數(shù)正確地表述物體的`數(shù)量。
快樂的家園(10以內(nèi)數(shù)的認識)
知識點:
1、能形象理解數(shù)“1”既可以表示單個物體,也可以表示一個集合。
2、在數(shù)數(shù)過程中認識1-10數(shù)的符號表示方法。
3、理解1~10各數(shù)除了表示幾個,還可以表示第幾個,從而認識基數(shù)與序數(shù)的聯(lián)系與區(qū)別:基數(shù)表示數(shù)量的多少,序數(shù)表示數(shù)量的順序。
玩具(1~5的認識與書寫)
知識點:
1、能正確數(shù)出5以內(nèi)物體的個數(shù)。
2、會正確書寫1-5的數(shù)字。
小貓釣魚(0的認識)
知識點:
1、認識“0”的產(chǎn)生,理解“0”的含義,0即可以表示一個物體也沒有,也可以表示起點和分界點。
2、學會讀、寫“0”。
文具(6~10的認識與書寫)
知識點:
1、能正確數(shù)出數(shù)量是6-10的物體的個數(shù)。
2、會讀寫6—10的數(shù)字。
【數(shù)學的知識點總結】相關文章:
數(shù)學的知識點總結02-16
數(shù)學的知識點總結05-11
數(shù)學中考知識點總結02-17
數(shù)學高考知識點總結02-22
數(shù)學知識點總結11-04
數(shù)學知識點總結03-21
蘇教版數(shù)學中考知識點總結08-02
初中數(shù)學知識點總結12-13
數(shù)學必修四知識點總結04-25
高考數(shù)學必考知識點總結02-11