數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)集合15篇
總結(jié)是對(duì)取得的成績(jī)、存在的問(wèn)題及得到的經(jīng)驗(yàn)和教訓(xùn)等方面情況進(jìn)行評(píng)價(jià)與描述的一種書(shū)面材料,通過(guò)它可以全面地、系統(tǒng)地了解以往的學(xué)習(xí)和工作情況,讓我們一起來(lái)學(xué)習(xí)寫(xiě)總結(jié)吧。你所見(jiàn)過(guò)的總結(jié)應(yīng)該是什么樣的?以下是小編幫大家整理的數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié),僅供參考,大家一起來(lái)看看吧。
數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)1
高考數(shù)學(xué)重要知識(shí)點(diǎn)整理
一、求動(dòng)點(diǎn)的軌跡方程的基本步驟
、苯⑦m當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);
、矊(xiě)出點(diǎn)M的集合;
、沉谐龇匠=0;
⒋化簡(jiǎn)方程為最簡(jiǎn)形式;
、禉z驗(yàn)。
二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。
、敝弊g法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
、捕x法:如果能夠確定動(dòng)點(diǎn)的軌跡滿(mǎn)足某種已知曲線(xiàn)的定義,則可利用曲線(xiàn)的定義寫(xiě)出方程,這種求軌跡方程的方法叫做定義法。
、诚嚓P(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿(mǎn)足的曲線(xiàn)方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。
、磪(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的.方法叫做參數(shù)法。
⒌交軌法:將兩動(dòng)曲線(xiàn)方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線(xiàn)交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。
6.直譯法:求動(dòng)點(diǎn)軌跡方程的一般步驟
、俳ㄏ怠⑦m當(dāng)?shù)淖鴺?biāo)系;
、谠O(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);
、哿惺健谐鰟(dòng)點(diǎn)p所滿(mǎn)足的關(guān)系式;
、艽鷵Q——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡(jiǎn);
⑤證明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。
人教版高三年級(jí)高考數(shù)學(xué)必考知識(shí)點(diǎn)
①正棱錐各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高).
、谡忮F的高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形,正棱錐的高、側(cè)棱、側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形.
、翘厥饫忮F的頂點(diǎn)在底面的射影位置:
①棱錐的側(cè)棱長(zhǎng)均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心.
、诶忮F的側(cè)棱與底面所成的角均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心.
、劾忮F的各側(cè)面與底面所成角均相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心.
、芾忮F的頂點(diǎn)到底面各邊距離相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心.
、萑忮F有兩組對(duì)棱垂直,則頂點(diǎn)在底面的射影為三角形垂心.
、奕忮F的三條側(cè)棱兩兩垂直,則頂點(diǎn)在底面上的射影為三角形的垂心.
、呙總(gè)四面體都有外接球,球心0是各條棱的中垂面的交點(diǎn),此點(diǎn)到各頂點(diǎn)的距離等于球半徑;
、嗝總(gè)四面體都有內(nèi)切球,球心
是四面體各個(gè)二面角的平分面的交點(diǎn),到各面的距離等于半徑.
[注]:
i.各個(gè)側(cè)面都是等腰三角形,且底面是正方形的棱錐是正四棱錐.(×)(各個(gè)側(cè)面的等腰三角形不知是否全等)
ii.若一個(gè)三角錐,兩條對(duì)角線(xiàn)互相垂直,則第三對(duì)角線(xiàn)必然垂直.
簡(jiǎn)證:AB⊥CD,AC⊥BD
BC⊥AD.令得,已知?jiǎng)t.
iii.空間四邊形OABC且四邊長(zhǎng)相等,則順次連結(jié)各邊的中點(diǎn)的四邊形一定是矩形.
iv.若是四邊長(zhǎng)與對(duì)角線(xiàn)分別相等,則順次連結(jié)各邊的中點(diǎn)的四邊是一定是正方形.
簡(jiǎn)證:取AC中點(diǎn),則平面90°易知EFGH為平行四邊形
EFGH為長(zhǎng)方形.若對(duì)角線(xiàn)等,則為正方形.
高三數(shù)學(xué)高考復(fù)習(xí)知識(shí)點(diǎn)
數(shù)列是高中數(shù)學(xué)的重要內(nèi)容,又是學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)。高考對(duì)本章的考查比較全面,等差數(shù)列,等比數(shù)列的考查每年都不會(huì)遺漏。有關(guān)數(shù)列的試題經(jīng)常是綜合題,經(jīng)常把數(shù)列知識(shí)和指數(shù)函數(shù)、對(duì)數(shù)函數(shù)和不等式的知識(shí)綜合起來(lái),試題也常把等差數(shù)列、等比數(shù)列,求極限和數(shù)學(xué)歸納法綜合在一起。
探索性問(wèn)題是高考的熱點(diǎn),常在數(shù)列解答題中出現(xiàn)。本章中還蘊(yùn)含著豐富的數(shù)學(xué)思想,在主觀題中著重考查函數(shù)與方程、轉(zhuǎn)化與化歸、分類(lèi)討論等重要思想,以及配方法、換元法、待定系數(shù)法等基本數(shù)學(xué)方法。
近幾年來(lái),高考關(guān)于數(shù)列方面的命題主要有以下三個(gè)方面;
(1)數(shù)列本身的有關(guān)知識(shí),其中有等差數(shù)列與等比數(shù)列的概念、性質(zhì)、通項(xiàng)公式及求和公式。
(2)數(shù)列與其它知識(shí)的結(jié)合,其中有數(shù)列與函數(shù)、方程、不等式、三角、幾何的結(jié)合。
(3)數(shù)列的應(yīng)用問(wèn)題,其中主要是以增長(zhǎng)率問(wèn)題為主。試題的難度有三個(gè)層次,小題大都以基礎(chǔ)題為主,解答題大都以基礎(chǔ)題和中檔題為主,只有個(gè)別地方用數(shù)列與幾何的綜合與函數(shù)、不等式的綜合作為最后一題難度較大。
1.在掌握等差數(shù)列、等比數(shù)列的定義、性質(zhì)、通項(xiàng)公式、前n項(xiàng)和公式的基礎(chǔ)上,系統(tǒng)掌握解等差數(shù)列與等比數(shù)列綜合題的規(guī)律,深化數(shù)學(xué)思想方法在解題實(shí)踐中的指導(dǎo)作用,靈活地運(yùn)用數(shù)列知識(shí)和方法解決數(shù)學(xué)和實(shí)際生活中的有關(guān)問(wèn)題;
2.在解決綜合題和探索性問(wèn)題實(shí)踐中加深對(duì)基礎(chǔ)知識(shí)、基本技能和基本數(shù)學(xué)思想方法的認(rèn)識(shí),溝通各類(lèi)知識(shí)的聯(lián)系,形成更完整的知識(shí)網(wǎng)絡(luò),提高分析問(wèn)題和解決問(wèn)題的能力,
進(jìn)一步培養(yǎng)學(xué)生閱讀理解和創(chuàng)新能力,綜合運(yùn)用數(shù)學(xué)思想方法分析問(wèn)題與解決問(wèn)題的能力。
數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)2
一、函數(shù)
1.函數(shù)的基本概念
函數(shù)的概念,函數(shù)的單調(diào)性,函數(shù)的奇偶性,這些屬于函數(shù)的基本概念,已經(jīng)在高一數(shù)學(xué)必修一中有了詳細(xì)的介紹,在此不再贅述。
2.指數(shù)函數(shù)
單調(diào)性是指數(shù)函數(shù)的重要性質(zhì),特別是函數(shù)圖象的無(wú)限伸展性,x軸是函數(shù)圖象的漸近線(xiàn),當(dāng)0+∞,y->0;當(dāng)a>1時(shí),x->-∞,y->0;當(dāng)a>1時(shí),a的值越大,第一象限內(nèi)圖象越靠近y軸,遞增的速度越快;
3.對(duì)數(shù)函數(shù)
對(duì)數(shù)函數(shù)的性質(zhì)是每年高考的必考內(nèi)容之一,其中單調(diào)性和對(duì)數(shù)函數(shù)的定義域是熱點(diǎn)問(wèn)題,其單調(diào)性取決于底數(shù)與“1”的大小關(guān)系.
二、三角函數(shù)
1.命題趨勢(shì)
高考可能仍會(huì)將三角函數(shù)概念、同角三角函數(shù)的關(guān)系式和誘導(dǎo)公式作為基礎(chǔ)內(nèi)容,融于三角求值、化簡(jiǎn)及解三角形的考查中.由該部分知識(shí)的基礎(chǔ)性決定這一部分知識(shí)可以和其他知識(shí)融合考查,高考中需要關(guān)注.
2.三角函數(shù)式的化簡(jiǎn)要遵循“三看”原則
(1)一看“角”,這是最重要的一環(huán),通過(guò)看角之間的差別與聯(lián)系,把角進(jìn)行合理的拆分,從而正確使用公式.
。2)二看”函數(shù)名稱(chēng)”,看函數(shù)名稱(chēng)之間的差異,從而確定使用的公式,常見(jiàn)的有”切化弦”
。3)三看”結(jié)構(gòu)特征”,分析結(jié)構(gòu)特征,可以幫助我們找到變形的方向,常見(jiàn)的有“遇到分式要通分”等.多做三角函數(shù)練習(xí)題會(huì)對(duì)更加熟悉的掌握三角函數(shù)有幫助,這里給大家推薦李老師教的三角函數(shù)解題法。
三、導(dǎo)數(shù)
1.導(dǎo)數(shù)的概念
1)如果當(dāng)Δx-->0時(shí),Δy/Δx-->常數(shù)A,就說(shuō)函數(shù)y=f(x)在點(diǎn)x0處可導(dǎo),并把A叫做f(x)在點(diǎn)x0處的導(dǎo)數(shù)(瞬時(shí)變化率).記作f’(x0)的幾何意義是曲線(xiàn)y=f(x)在點(diǎn)(x0,f(x0))處的'切線(xiàn)的斜率.瞬時(shí)速度就是位移函數(shù)s對(duì)時(shí)間t的導(dǎo)數(shù).
2)如果函數(shù)f(x)在開(kāi)區(qū)間(a,b)內(nèi)每一點(diǎn)都可導(dǎo),其導(dǎo)數(shù)值在(a,b)內(nèi)構(gòu)成一個(gè)新的函數(shù),叫做f(x)在開(kāi)區(qū)間(a,b)內(nèi)導(dǎo)數(shù),記作f’(x).
3)如果函數(shù)f(x)在點(diǎn)x0處可導(dǎo),那么函數(shù)y=f(x)在點(diǎn)x0處連續(xù).
2.函數(shù)的導(dǎo)數(shù)與導(dǎo)數(shù)值的區(qū)別與聯(lián)系:導(dǎo)數(shù)是原來(lái)函數(shù)的導(dǎo)函數(shù),而導(dǎo)數(shù)值是導(dǎo)函數(shù)在某一點(diǎn)的函數(shù)值,導(dǎo)數(shù)值是常數(shù).
3.求導(dǎo)
在高中數(shù)學(xué)導(dǎo)數(shù)求導(dǎo)過(guò)程中,要仔細(xì)分析函數(shù)解析式的結(jié)構(gòu)特征,緊扣求導(dǎo)法則,聯(lián)系基本函數(shù)求導(dǎo)公式,對(duì)于不具備求導(dǎo)法則結(jié)構(gòu)形式的要適當(dāng)恒等變形,對(duì)于比較復(fù)雜的函數(shù),如果直接套用求導(dǎo)法則,會(huì)使求導(dǎo)過(guò)程繁瑣冗長(zhǎng),且易出錯(cuò),此時(shí),可將解析式進(jìn)行合理變形,轉(zhuǎn)化為教易求導(dǎo)的結(jié)構(gòu)形
數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)3
1.數(shù)列的定義
按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個(gè)數(shù)都叫做數(shù)列的項(xiàng).
(1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.
(2)在數(shù)列的定義中并沒(méi)有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個(gè)相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1,….
(4)數(shù)列的項(xiàng)與它的項(xiàng)數(shù)是不同的,數(shù)列的項(xiàng)是指這個(gè)數(shù)列中的某一個(gè)確定的數(shù),是一個(gè)函數(shù)值,也就是相當(dāng)于f(n),而項(xiàng)數(shù)是指這個(gè)數(shù)在數(shù)列中的位置序號(hào),它是自變量的值,相當(dāng)于f(n)中的n.
(5)次序?qū)τ跀?shù)列來(lái)講是十分重要的,有幾個(gè)相同的數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個(gè)相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別.如:2,3,4,5,6這5個(gè)數(shù)按不同的次序排列時(shí),就會(huì)得到不同的'數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個(gè)集合.
2.數(shù)列的分類(lèi)
(1)根據(jù)數(shù)列的項(xiàng)數(shù)多少可以對(duì)數(shù)列進(jìn)行分類(lèi),分為有窮數(shù)列和無(wú)窮數(shù)列.在寫(xiě)數(shù)列時(shí),對(duì)于有窮數(shù)列,要把末項(xiàng)寫(xiě)出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫(xiě)成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無(wú)窮數(shù)列.
(2)按照項(xiàng)與項(xiàng)之間的大小關(guān)系或數(shù)列的增減性可以分為以下幾類(lèi):遞增數(shù)列、遞減數(shù)列、擺動(dòng)數(shù)列、常數(shù)列.
3.數(shù)列的通項(xiàng)公式
數(shù)列是按一定次序排列的一列數(shù),其內(nèi)涵的本質(zhì)屬性是確定這一列數(shù)的規(guī)律,這個(gè)規(guī)律通常是用式子f(n)來(lái)表示的,
這兩個(gè)通項(xiàng)公式形式上雖然不同,但表示同一個(gè)數(shù)列,正像每個(gè)函數(shù)關(guān)系不都能用解析式表達(dá)出來(lái)一樣,也不是每個(gè)數(shù)列都能寫(xiě)出它的通項(xiàng)公式;有的數(shù)列雖然有通項(xiàng)公式,但在形式上,又不一定是的,僅僅知道一個(gè)數(shù)列前面的有限項(xiàng),無(wú)其他說(shuō)明,數(shù)列是不能確定的,通項(xiàng)公式更非.如:數(shù)列1,2,3,4,…,
由公式寫(xiě)出的后續(xù)項(xiàng)就不一樣了,因此,通項(xiàng)公式的歸納不僅要看它的前幾項(xiàng),更要依據(jù)數(shù)列的構(gòu)成規(guī)律,多觀察分析,真正找到數(shù)列的內(nèi)在規(guī)律,由數(shù)列前幾項(xiàng)寫(xiě)出其通項(xiàng)公式,沒(méi)有通用的方法可循.
再?gòu)?qiáng)調(diào)對(duì)于數(shù)列通項(xiàng)公式的理解注意以下幾點(diǎn):
(1)數(shù)列的通項(xiàng)公式實(shí)際上是一個(gè)以正整數(shù)集N.或它的有限子集{1,2,…,n}為定義域的函數(shù)的表達(dá)式.
(2)如果知道了數(shù)列的通項(xiàng)公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個(gè)數(shù)列的各項(xiàng);同時(shí),用數(shù)列的通項(xiàng)公式也可判斷某數(shù)是否是某數(shù)列中的一項(xiàng),如果是的話(huà),是第幾項(xiàng).
(3)如所有的函數(shù)關(guān)系不一定都有解析式一樣,并不是所有的數(shù)列都有通項(xiàng)公式.
如2的不足近似值,精確到1,0.1,0.01,0.001,0.0001,…所構(gòu)成的數(shù)列1,1.4,1.41,1.414,1.4142,…就沒(méi)有通項(xiàng)公式.
(4)有的數(shù)列的通項(xiàng)公式,形式上不一定是的,正如舉例中的:
(5)有些數(shù)列,只給出它的前幾項(xiàng),并沒(méi)有給出它的構(gòu)成規(guī)律,那么僅由前面幾項(xiàng)歸納出的數(shù)列通項(xiàng)公式并不.
數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)4
高中數(shù)學(xué)復(fù)習(xí)的五大要點(diǎn)分析
一、端正態(tài)度,切忌浮躁,忌急于求成
在第一輪復(fù)習(xí)的過(guò)程中,心浮氣躁是一個(gè)非常普遍的現(xiàn)象。主要表現(xiàn)為平時(shí)復(fù)習(xí)覺(jué)得沒(méi)有問(wèn)題,題目也能做,但是到了考試時(shí)就是拿不了高分!這主要是因?yàn)椋?/p>
(1)對(duì)復(fù)習(xí)的知識(shí)點(diǎn)缺乏系統(tǒng)的理解,解題時(shí)缺乏思維層次結(jié)構(gòu)。第一輪復(fù)習(xí)著重對(duì)基礎(chǔ)知識(shí)點(diǎn)的挖掘,數(shù)學(xué)老師一定都會(huì)反復(fù)強(qiáng)調(diào)基礎(chǔ)的重要性。如果不重視對(duì)知識(shí)點(diǎn)的系統(tǒng)化分析,不能構(gòu)成一個(gè)整體的知識(shí)網(wǎng)絡(luò)構(gòu)架,自然在解題時(shí)就不能擁有整體的構(gòu)思,也不能深入理解高考典型例題的思維方法。
(2)復(fù)習(xí)的時(shí)候心不靜。心不靜就會(huì)導(dǎo)致思維不清晰,而思維不清晰就會(huì)促使復(fù)習(xí)沒(méi)有效率。建議大家在開(kāi)始一個(gè)學(xué)科的復(fù)習(xí)之前,先靜下心來(lái)認(rèn)真想一想接下來(lái)需要復(fù)習(xí)哪一塊兒,需要做多少事情,然后認(rèn)真去做,同時(shí)需要很高的注意力,只有這樣才會(huì)有很好的效果。
(3)在第一輪復(fù)習(xí)階段,學(xué)習(xí)的重心應(yīng)該轉(zhuǎn)移到基礎(chǔ)復(fù)習(xí)上來(lái)。
因此,建議廣大同學(xué)在一輪復(fù)習(xí)的時(shí)候千萬(wàn)不要急于求成,一定要靜下心來(lái),認(rèn)真的揣摩每個(gè)知識(shí)點(diǎn),弄清每一個(gè)原理。只有這樣,一輪復(fù)習(xí)才能顯出成效。
二、注重教材、注重基礎(chǔ),忌盲目做題
要把書(shū)本中的常規(guī)題型做好,所謂做好就是要用最少的時(shí)間把題目做對(duì)。部分同學(xué)在第一輪復(fù)習(xí)時(shí)對(duì)基礎(chǔ)題不予以足夠的重視,認(rèn)為題目看上去會(huì)做就可以不加訓(xùn)練,結(jié)果常在一些“不該錯(cuò)的地方錯(cuò)了”,最終把原因簡(jiǎn)單的歸結(jié)為粗心,從而忽視了對(duì)基本概念的掌握,對(duì)基本結(jié)論和公式的記憶及基本計(jì)算的訓(xùn)練和常規(guī)方法的積累,造成了實(shí)際成績(jī)與心理感覺(jué)的偏差。
可見(jiàn),數(shù)學(xué)的基本概念、定義、公式,數(shù)學(xué)知識(shí)點(diǎn)的聯(lián)系,基本的數(shù)學(xué)解題思路與方法,是第一輪復(fù)習(xí)的重中之重。不妨以既是重點(diǎn)也是難點(diǎn)的函數(shù)部分為例,就必須掌握函數(shù)的概念,建立函數(shù)關(guān)系式,掌握定義域、值域與最值、奇偶性、單調(diào)性、周期性、對(duì)稱(chēng)性等性質(zhì),學(xué)會(huì)利用圖像即數(shù)形結(jié)合。
三、抓薄弱環(huán)節(jié),做好復(fù)習(xí)的針對(duì)性,忌無(wú)計(jì)劃
每個(gè)同學(xué)在數(shù)學(xué)學(xué)習(xí)上遇到的問(wèn)題有共同點(diǎn),更有不同點(diǎn)。在復(fù)習(xí)課上,老師只能針對(duì)性去解決共同點(diǎn),而同學(xué)們自己的個(gè)別問(wèn)題則需要通過(guò)自己的思考,與同學(xué)們的討論,并向老師提問(wèn)來(lái)解決問(wèn)題,我們提倡同學(xué)多問(wèn)老師,要敢于問(wèn)。每個(gè)同學(xué)必須了解自己掌握了什么,還有哪些問(wèn)題沒(méi)有解決,要明確只有把漏洞一一補(bǔ)上才能提高。復(fù)習(xí)的過(guò)程,實(shí)質(zhì)就是解決問(wèn)題的過(guò)程,問(wèn)題解決了,復(fù)習(xí)的效果就實(shí)現(xiàn)了。同時(shí),也請(qǐng)同學(xué)們注意:在你問(wèn)問(wèn)題之前先經(jīng)過(guò)自己思考,不要把不經(jīng)過(guò)思考的問(wèn)題就直接去問(wèn),因?yàn)檫@并不能起到更大作用。
高三的復(fù)習(xí)一定是有計(jì)劃、有目標(biāo)的,所以千萬(wàn)不要盲目做題。第一輪復(fù)習(xí)非常具有針對(duì)性,對(duì)于所有知識(shí)點(diǎn)的地毯式轟炸,一定要做到不缺不漏。因此,僅靠簡(jiǎn)單做題是達(dá)不到一輪復(fù)習(xí)應(yīng)該具有的效果。而且盲目做題沒(méi)有針對(duì)性,更不會(huì)有全面性。在概念模糊的情況下一定要回歸課本,注意教材上最清晰的概念與原理,注重對(duì)知識(shí)點(diǎn)運(yùn)用方法的總結(jié)。
四、在平時(shí)做題中要養(yǎng)成良好的解題習(xí)慣,忌不思
1.樹(shù)立信心,養(yǎng)成良好的運(yùn)算習(xí)慣。部分同學(xué)平時(shí)學(xué)習(xí)過(guò)程中自信心不足,做作業(yè)時(shí)免不了互相對(duì)答案,也不認(rèn)真找出錯(cuò)誤原因并加以改正!皶(huì)而不對(duì)”是高三數(shù)學(xué)學(xué)習(xí)的大忌,常見(jiàn)的有審題失誤、計(jì)算錯(cuò)誤等,平時(shí)都以為是粗心,其實(shí)這就是一種非常不好的習(xí)慣,必須在第一輪復(fù)習(xí)中逐步克服,否則,后患無(wú)窮?山Y(jié)合平時(shí)解題中存在的具體問(wèn)題,逐題找出原因,看其是行為習(xí)慣方面的原因,還是知識(shí)方面的缺陷,再有針對(duì)性加以解決。必要時(shí)作些記錄,也就是錯(cuò)題本,每位同學(xué)必備的,以便以后查詢(xún)。
2.做好解題后的開(kāi)拓引申,培養(yǎng)一題多解和舉一反三的能力。解題能力的培養(yǎng)可以從一題多解和舉一反三中得到提高,因而解完題后,需要再回味和引申,它包括對(duì)解題方法的開(kāi)拓引申,即一道數(shù)學(xué)題從不同的角度去考慮去分析,可以有不同的思路,不同的'解法。
考慮的愈廣泛愈深刻,獲得的思路愈廣闊,解法愈多樣;及對(duì)題目做開(kāi)拓引申,引申出新題和新解法,有利于培養(yǎng)同學(xué)們的發(fā)散思維,激發(fā)創(chuàng)造精神,提高解題能力:
(1)把題目條件開(kāi)拓引申。
、侔烟厥鈼l件一般化;②把一般條件特殊化;③把特殊條件和一般條件交替變化。
(2)把題目結(jié)論開(kāi)拓引申。
(3)把題型開(kāi)拓引申,同一個(gè)題目,給出不同的提法,可以變成不同的題型。俗稱(chēng)為“一題多變”但其解法仍類(lèi)似,按其解法而言,這些題又可稱(chēng)為“多題一解”或“一法多用”。
3.提高解題速度,掌握解題技巧。提高解題速度的主要因素有二:一是解題方法的巧妙與簡(jiǎn)捷;二是對(duì)常規(guī)解法的掌握是否達(dá)到高度的熟練程度。
五、學(xué)會(huì)總結(jié)、歸納,訓(xùn)練到位,忌題量不足
我在暑期上課的時(shí)候發(fā)現(xiàn),很多同學(xué)都是一看到題目就開(kāi)始做題,這也是一輪復(fù)習(xí)應(yīng)該避免的地方。做題如果不注重思路的分析,知識(shí)點(diǎn)的運(yùn)用,效果可想而知。因此建議同學(xué)們?cè)谧鲱}前要把老師上課時(shí)復(fù)習(xí)的知識(shí)再回顧一下,梳理知識(shí)體系,回顧各個(gè)知識(shí)點(diǎn),對(duì)所學(xué)的知識(shí)結(jié)構(gòu)要有一個(gè)完整清楚的認(rèn)識(shí),認(rèn)真分析題目考查的知識(shí),思想,以及方法,還要學(xué)會(huì)總結(jié)歸納不留下任何知識(shí)的盲點(diǎn),在一輪復(fù)習(xí)中要注意對(duì)各個(gè)知識(shí)點(diǎn)的細(xì)化。這個(gè)過(guò)程不需要很長(zhǎng)的時(shí)間,而且到了后續(xù)階段會(huì)越來(lái)越熟練。因此,養(yǎng)成良好的做題習(xí)慣,有助于訓(xùn)練自己的解題思維,提高自己的解題能力。
實(shí)踐出真知,充足的題量是把理論轉(zhuǎn)化為能力的一種保障,在足夠的題目的練習(xí)下不僅可以更扎實(shí)的掌握知識(shí)點(diǎn),還可以更深入的了解知識(shí)點(diǎn),避免出現(xiàn)“會(huì)而不對(duì)、對(duì)而不全”的現(xiàn)象。由于高考依然是以做題為主,所以解題能力是高考分?jǐn)?shù)的一個(gè)直接反映,尤其是數(shù)學(xué)試題。而解題能力不是三兩道題就能提升的,而是要大量的反復(fù)的訓(xùn)練、認(rèn)真細(xì)致的推敲才會(huì)有較大的提升。有句話(huà)說(shuō)的好,“量變導(dǎo)致質(zhì)變”,因此,同學(xué)們?cè)诿空聫?fù)習(xí)的時(shí)候,一定要做足夠的題,才能夠充分的理解這一章的內(nèi)容,才能夠做到對(duì)這一章知識(shí)點(diǎn)的熟練運(yùn)用。
但是,大量訓(xùn)練絕對(duì)不是題海戰(zhàn)術(shù)。因?yàn)獒槍?duì)每章節(jié)做題都有目標(biāo),同時(shí)做題訓(xùn)練都需要不斷的總結(jié),既要橫向總結(jié),也要縱向深入。只要在每章節(jié)做題做到一定程度的時(shí)候都能感覺(jué)到這一章的知識(shí)點(diǎn)有哪些,典型題型有哪些,方法和技巧有哪些,換句話(huà)說(shuō),如果隨機(jī)抽取一些近幾年關(guān)于這一章的高考題都會(huì)做,那我認(rèn)為就可以了。
高中數(shù)學(xué)知識(shí)點(diǎn)歸納
1.必修課程由5個(gè)模塊組成:
必修1:集合,函數(shù)概念與基本初等函數(shù)(指數(shù)函數(shù),冪函數(shù),對(duì)數(shù)函數(shù))
必修2:立體幾何初步、平面解析幾何初步。
必修3:算法初步、統(tǒng)計(jì)、概率。
必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。
必修5:解三角形、數(shù)列、不等式。
以上所有的知識(shí)點(diǎn)是所有高中生必須掌握的,而且要懂得運(yùn)用。
選修課程分為4個(gè)系列:
系列1:2個(gè)模塊
選修1-1:常用邏輯用語(yǔ)、圓錐曲線(xiàn)與方程、空間向量與立體幾何。
選修1-2:統(tǒng)計(jì)案例、推理與證明、數(shù)系的擴(kuò)充與復(fù)數(shù)、框圖
系列2:3個(gè)模塊
選修2-1:常用邏輯用語(yǔ)、圓錐曲線(xiàn)與方程、空間向量與立體幾何
選修2-2:導(dǎo)數(shù)及其應(yīng)用、推理與證明、數(shù)系的擴(kuò)充與復(fù)數(shù)
選修2-3:計(jì)數(shù)原理、隨機(jī)變量及其分布列、統(tǒng)計(jì)案例
選修4-1:幾何證明選講
選修4-4:坐標(biāo)系與參數(shù)方程
選修4-5:不等式選講
2.重難點(diǎn)及其考點(diǎn):
重點(diǎn):函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線(xiàn),立體幾何,導(dǎo)數(shù)
難點(diǎn):函數(shù),圓錐曲線(xiàn)
高考相關(guān)考點(diǎn):
1.集合與邏輯:集合的邏輯與運(yùn)算(一般出現(xiàn)在高考卷的第一道選擇題)、簡(jiǎn)易邏輯、充要條件
2.函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、函數(shù)的應(yīng)用
3.數(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求通項(xiàng)、求和
4.三角函數(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和差倍半公式、求值、化簡(jiǎn)、證明、三角函數(shù)的圖像及其性質(zhì)、應(yīng)用
5.平面向量:初等運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及其應(yīng)用
6.不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對(duì)值不等式(經(jīng)常出現(xiàn)在大題的選做題里)、不等式的應(yīng)用
7.直線(xiàn)與圓的方程:直線(xiàn)的方程、兩直線(xiàn)的位置關(guān)系、線(xiàn)性規(guī)劃、圓、直線(xiàn)與圓的位置關(guān)系
8.圓錐曲線(xiàn)方程:橢圓、雙曲線(xiàn)、拋物線(xiàn)、直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系、軌跡問(wèn)題、圓錐曲線(xiàn)的應(yīng)用
9.直線(xiàn)、平面、簡(jiǎn)單幾何體:空間直線(xiàn)、直線(xiàn)與平面、平面與平面、棱柱、棱錐、球、空間向量
10.排列、組合和概率:排列、組合應(yīng)用題、二項(xiàng)式定理及其應(yīng)用
11.概率與統(tǒng)計(jì):概率、分布列、期望、方差、抽樣、正態(tài)分布
12.導(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用
13.復(fù)數(shù):復(fù)數(shù)的概念與運(yùn)算
高三數(shù)學(xué)重要知識(shí)點(diǎn)總結(jié)
考點(diǎn)一:集合與簡(jiǎn)易邏輯
集合部分一般以選擇題出現(xiàn),屬容易題。重點(diǎn)考查集合間關(guān)系的理解和認(rèn)識(shí)。近年的試題加強(qiáng)了對(duì)集合計(jì)算化簡(jiǎn)能力的考查,并向無(wú)限集發(fā)展,考查抽象思維能力。在解決這些問(wèn)題時(shí),要注意利用幾何的直觀性,并注重集合表示方法的轉(zhuǎn)換與化簡(jiǎn)。簡(jiǎn)易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關(guān)系、邏輯聯(lián)結(jié)詞、“充要關(guān)系”、命題真?zhèn)蔚呐袛、全稱(chēng)命題和特稱(chēng)命題的否定等,二是在解答題中深層次考查常用邏輯用語(yǔ)表達(dá)數(shù)學(xué)解題過(guò)程和邏輯推理。
考點(diǎn)二:函數(shù)與導(dǎo)數(shù)
函數(shù)是高考的重點(diǎn)內(nèi)容,以選擇題和填空題的為載體針對(duì)性考查函數(shù)的定義域與值域、函數(shù)的性質(zhì)、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對(duì)數(shù)、冪函數(shù))的應(yīng)用等,分值約為10分,解答題與導(dǎo)數(shù)交匯在一起考查函數(shù)的性質(zhì)。導(dǎo)數(shù)部分一方面考查導(dǎo)數(shù)的運(yùn)算與導(dǎo)數(shù)的幾何意義,另一方面考查導(dǎo)數(shù)的簡(jiǎn)單應(yīng)用,如求函數(shù)的單調(diào)區(qū)間、極值與最值等,通常以客觀題的形式出現(xiàn),屬于容易題和中檔題,三是導(dǎo)數(shù)的綜合應(yīng)用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式出現(xiàn),如一些不等式恒成立問(wèn)題、參數(shù)的取值范圍問(wèn)題、方程根的個(gè)數(shù)問(wèn)題、不等式的證明等問(wèn)題。
考點(diǎn)三:三角函數(shù)與平面向量
一般是2道小題,1道綜合解答題。小題一道考查平面向量有關(guān)概念及運(yùn)算等,另一道對(duì)三角知識(shí)點(diǎn)的補(bǔ)充。大題中如果沒(méi)有涉及正弦定理、余弦定理的應(yīng)用,可能就是一道和解答題相互補(bǔ)充的三角函數(shù)的圖像、性質(zhì)或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數(shù)形結(jié)合思想在解題中的應(yīng)用。向量重點(diǎn)考查平面向量數(shù)量積的概念及應(yīng)用,向量與直線(xiàn)、圓錐曲線(xiàn)、數(shù)列、不等式、三角函數(shù)等結(jié)合,解決角度、垂直、共線(xiàn)等問(wèn)題是“新熱點(diǎn)”題型.
考點(diǎn)四:數(shù)列與不等式
不等式主要考查一元二次不等式的解法、一元二次不等式組和簡(jiǎn)單線(xiàn)性規(guī)劃問(wèn)題、基本不等式的應(yīng)用等,通常會(huì)在小題中設(shè)置1到2道題。對(duì)不等式的工具性穿插在數(shù)列、解析幾何、函數(shù)導(dǎo)數(shù)等解答題中進(jìn)行考查.在選擇、填空題中考查等差或等比數(shù)列的概念、性質(zhì)、通項(xiàng)公式、求和公式等的靈活應(yīng)用,一道解答題大多凸顯以數(shù)列知識(shí)為工具,綜合運(yùn)用函數(shù)、方程、不等式等解決問(wèn)題的能力,它們都屬于中、高檔題目.
考點(diǎn)五:立體幾何與空間向量
一是考查空間幾何體的結(jié)構(gòu)特征、直觀圖與三視圖;二是考查空間點(diǎn)、線(xiàn)、面之間的位置關(guān)系;三是考查利用空間向量解決立體幾何問(wèn)題:利用空間向量證明線(xiàn)面平行與垂直、求空間角等(文科不要求).在高考試卷中,一般有1~2個(gè)客觀題和一個(gè)解答題,多為中檔題。
考點(diǎn)六:解析幾何
一般有1~2個(gè)客觀題和1個(gè)解答題,其中客觀題主要考查直線(xiàn)斜率、直線(xiàn)方程、圓的方程、直線(xiàn)與圓的位置關(guān)系、圓錐曲線(xiàn)的定義應(yīng)用、標(biāo)準(zhǔn)方程的求解、離心率的計(jì)算等,解答題則主要考查直線(xiàn)與橢圓、拋物線(xiàn)等的位置關(guān)系問(wèn)題,經(jīng)常與平面向量、函數(shù)與不等式交匯,考查一些存在性問(wèn)題、證明問(wèn)題、定點(diǎn)與定值、最值與范圍問(wèn)題等。
考點(diǎn)七:算法復(fù)數(shù)推理與證明
高考對(duì)算法的考查以選擇題或填空題的形式出現(xiàn),或給解答題披層“外衣”.考查的熱點(diǎn)是流程圖的識(shí)別與算法語(yǔ)言的閱讀理解.算法與數(shù)列知識(shí)的網(wǎng)絡(luò)交匯命題是考查的主流.復(fù)數(shù)考查的重點(diǎn)是復(fù)數(shù)的有關(guān)概念、復(fù)數(shù)的代數(shù)形式、運(yùn)算及運(yùn)算的幾何意義,一般是選擇題、填空題,難度不大.推理證明部分命題的方向主要會(huì)在函數(shù)、三角、數(shù)列、立體幾何、解析幾何等方面,單獨(dú)出題的可能性較小。對(duì)于理科,數(shù)學(xué)歸納法可能作為解答題的一小問(wèn).
數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)5
圓與圓的位置關(guān)系的判斷方法
一、設(shè)兩個(gè)圓的半徑為R和r,圓心距為d。
則有以下五種關(guān)系:
1、d>R+r兩圓外離;兩圓的圓心距離之和大于兩圓的半徑之和。
2、d=R+r兩圓外切;兩圓的圓心距離之和等于兩圓的`半徑之和。
3、d=R—r兩圓內(nèi)切;兩圓的圓心距離之和等于兩圓的半徑之差。
4、d 5、d 二、圓和圓的位置關(guān)系,還可用有無(wú)公共點(diǎn)來(lái)判斷: 1、無(wú)公共點(diǎn),一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含。 2、有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切。 3、有兩個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。 人教版高考數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn) 1.有關(guān)平行與垂直(線(xiàn)線(xiàn)、線(xiàn)面及面面)的問(wèn)題,是在解決立體幾何問(wèn)題的過(guò)程中,大量的、反復(fù)遇到的,而且是以各種各樣的問(wèn)題(包括論證、計(jì)算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問(wèn)題著手,通過(guò)較為基本問(wèn)題,熟悉公理、定理的內(nèi)容和功能,通過(guò)對(duì)問(wèn)題的分析與概括,掌握立體幾何中解決問(wèn)題的規(guī)律--充分利用線(xiàn)線(xiàn)平行(垂直)、線(xiàn)面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。 2.判定兩個(gè)平面平行的方法: (1)根據(jù)定義--證明兩平面沒(méi)有公共點(diǎn); (2)判定定理--證明一個(gè)平面內(nèi)的兩條相交直線(xiàn)都平行于另一個(gè)平面; (3)證明兩平面同垂直于一條直線(xiàn)。 3.兩個(gè)平面平行的主要性質(zhì): (1)由定義知:“兩平行平面沒(méi)有公共點(diǎn)”; (2)由定義推得:“兩個(gè)平面平行,其中一個(gè)平面內(nèi)的直線(xiàn)必平行于另一個(gè)平面”; (3)兩個(gè)平面平行的性質(zhì)定理:“如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線(xiàn)平行”; (4)一條直線(xiàn)垂直于兩個(gè)平行平面中的一個(gè)平面,它也垂直于另一個(gè)平面; (5)夾在兩個(gè)平行平面間的平行線(xiàn)段相等; (6)經(jīng)過(guò)平面外一點(diǎn)只有一個(gè)平面和已知平面平行。 高考高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn) 1、三類(lèi)角的求法: ①找出或作出有關(guān)的角。 、谧C明其符合定義,并指出所求作的角。 、塾(jì)算大小(解直角三角形,或用余弦定理)。 2、正棱柱——底面為正多邊形的直棱柱 正棱錐——底面是正多邊形,頂點(diǎn)在底面的射影是底面的中心。 正棱錐的計(jì)算集中在四個(gè)直角三角形中: 3、怎樣判斷直線(xiàn)l與圓C的位置關(guān)系? 圓心到直線(xiàn)的距離與圓的半徑比較。 直線(xiàn)與圓相交時(shí),注意利用圓的“垂徑定理”。 4、對(duì)線(xiàn)性規(guī)劃問(wèn)題:作出可行域,作出以目標(biāo)函數(shù)為截距的直線(xiàn),在可行域內(nèi)平移直線(xiàn),求出目標(biāo)函數(shù)的最值。 不看后悔!清華名師揭秘學(xué)好高中數(shù)學(xué)的方法 培養(yǎng)興趣是關(guān)鍵。學(xué)生對(duì)數(shù)學(xué)產(chǎn)生了興趣,自然有動(dòng)力去鉆研。如何培養(yǎng)興趣呢? (1)欣賞數(shù)學(xué)的美感 比如幾何圖形中的對(duì)稱(chēng)、變換前后的不變量、概念的嚴(yán)謹(jǐn)、邏輯的嚴(yán)密…… 通過(guò)對(duì)旋轉(zhuǎn)變換及其不變量的討論,我們可以證明反比例函數(shù)、“對(duì)勾函數(shù)”的圖象都是雙曲線(xiàn)——平面上到兩個(gè)定點(diǎn)的距離之差的絕對(duì)值為定值(小于兩個(gè)定點(diǎn)之間的距離)的點(diǎn)的集合。 (2)注意到數(shù)學(xué)在實(shí)際生活中的應(yīng)用。 例如和日常生活息息相關(guān)的等額本金、等額本息兩種不同的還款方式,用數(shù)列的知識(shí)就可以理解. 學(xué)好數(shù)學(xué),是現(xiàn)代公民的基本素養(yǎng)之一啊. 人教版高考年級(jí)數(shù)學(xué)知識(shí)點(diǎn) 1、直線(xiàn)的傾斜角 定義:x軸正向與直線(xiàn)向上方向之間所成的角叫直線(xiàn)的傾斜角。特別地,當(dāng)直線(xiàn)與x軸平行或重合時(shí),我們規(guī)定它的.傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180° 2、直線(xiàn)的斜率 、俣x:傾斜角不是90°的直線(xiàn),它的傾斜角的正切叫做這條直線(xiàn)的斜率。直線(xiàn)的斜率常用k表示。即。斜率反映直線(xiàn)與軸的傾斜程度。 、谶^(guò)兩點(diǎn)的直線(xiàn)的斜率公式: 注意下面四點(diǎn): (1)當(dāng)時(shí),公式右邊無(wú)意義,直線(xiàn)的斜率不存在,傾斜角為90°; (2)k與P1、P2的順序無(wú)關(guān); (3)以后求斜率可不通過(guò)傾斜角而由直線(xiàn)上兩點(diǎn)的坐標(biāo)直接求得; (4)求直線(xiàn)的傾斜角可由直線(xiàn)上兩點(diǎn)的坐標(biāo)先求斜率得到。 云南高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 任一x=A,x=B,記做AB AB,BAA=B AB={x|x=A,且x=B} AB={x|x=A,或x=B} Card(AB)=card(A)+card(B)—card(AB) 。1)命題 原命題若p則q 逆命題若q則p 否命題若p則q 逆否命題若q,則p 。2)AB,A是B成立的充分條件 BA,A是B成立的必要條件 AB,A是B成立的充要條件 1、集合元素具有 ①確定性; 、诨ギ愋; ③無(wú)序性 2、集合表示方法 、倭信e法; ②描述法; 、垌f恩圖; 、軘(shù)軸法 (3)集合的'運(yùn)算 、貯∩(B∪C)=(A∩B)∪(A∩C) ②Cu(A∩B)=CuA∪CuB Cu(A∪B)=CuA∩CuB (4)集合的性質(zhì) n元集合的字集數(shù):2n 真子集數(shù):2n—1; 非空真子集數(shù):2n—2 表達(dá)式:(a+b)(a-b)=a^2-b^2,兩個(gè)數(shù)的和與這兩個(gè)數(shù)差的積,等于這兩個(gè)數(shù)的平方差,這個(gè)公式就叫做乘法的平方差公式 公式運(yùn)用 可用于某些分母含有根號(hào)的'分式: 1/(3-4倍根號(hào)2)化簡(jiǎn): 1×(3+4倍根號(hào)2)/(3-4倍根號(hào)2)^2;=(3+4倍根號(hào)2)/(9-32)=(3+4倍根號(hào)2)/-23 [解方程] x^2-y^2=1991 [思路分析] 利用平方差公式求解 [解題過(guò)程] x^2-y^2=1991 。▁+y)(x-y)=1991 因?yàn)?991可以分成1×1991,11×181 所以如果x+y=1991,x-y=1,解得x=996,y=995 如果x+y=181,x-y=11,x=96,y=85同時(shí)也可以是負(fù)數(shù) 所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995 或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85 有時(shí)應(yīng)注意加減的過(guò)程。 易錯(cuò)點(diǎn)1 遺忘空集致誤 錯(cuò)因分析:由于空集是任何非空集合的真子集,因此,對(duì)于集合B高三經(jīng)典糾錯(cuò)筆記:數(shù)學(xué)A,就有B=A,φ≠B高三經(jīng)典糾錯(cuò)筆記:數(shù)學(xué)A,B≠φ,三種情況,在解題中如果思維不夠縝密就有可能忽視了 B≠φ這種情況,導(dǎo)致解題結(jié)果錯(cuò)誤。尤其是在解含有參數(shù)的集合問(wèn)題時(shí),更要充分注意當(dāng)參數(shù)在某個(gè)范圍內(nèi)取值時(shí)所給的集合可能是空集這種情況?占且粋(gè)特殊的集合,由于思維定式的原因,考生往往會(huì)在解題中遺忘了這個(gè)集合,導(dǎo)致解題錯(cuò)誤或是解題不全面。 易錯(cuò)點(diǎn)2 忽視集合元素的三性致誤 錯(cuò)因分析:集合中的元素具有確定性、無(wú)序性、互異性,集合元素的三性中互異性對(duì)解題的影響最大,特別是帶有字母參數(shù)的集合,實(shí)際上就隱含著對(duì)字母參數(shù)的一些要求。在解題時(shí)也可以先確定字母參數(shù)的范圍后,再具體解決問(wèn)題。 易錯(cuò)點(diǎn)3 四種命題的結(jié)構(gòu)不明致誤 錯(cuò)因分析:如果原命題是“若 A則B”,則這個(gè)命題的逆命題是“若B則A”,否命題是“若┐A則┐B”,逆否命題是“若┐B則┐A”。這里面有兩組等價(jià)的命題,即“原命題和它的逆否命題等價(jià),否命題與逆命題等價(jià)”。在解答由一個(gè)命題寫(xiě)出該命題的其他形式的命題時(shí),一定要明確四種命題的結(jié)構(gòu)以及它們之間的等價(jià)關(guān)系。另外,在否定一個(gè)命題時(shí),要注意全稱(chēng)命題的否定是特稱(chēng)命題,特稱(chēng)命題的 否定是全稱(chēng)命題。如對(duì)“a,b都是偶數(shù)”的否定應(yīng)該是“a,b不都是偶數(shù)”,而不應(yīng)該是“a ,b都是奇數(shù)”。 易錯(cuò)點(diǎn)4 充分必要條件顛倒致誤 錯(cuò)因分析:對(duì)于兩個(gè)條件A,B,如果A=>B成立,則A是B的充分條件,B是A的必要條件;如果B=>A成立,則A是B的必要條件,B是A的充分條件;如果A<=>B,則A,B互為充分必要條件。解題時(shí)最容易出錯(cuò)的就是顛倒了充分性與必要性,所以在解決這類(lèi)問(wèn)題時(shí)一定要根據(jù)充要條件的概念作出準(zhǔn)確的判斷。 三角函數(shù)的單調(diào)性判斷致誤 對(duì)于函數(shù)y=Asin(ωx+φ)的單調(diào)性,當(dāng)ω>0時(shí),由于內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞增的,所以該函數(shù)的單調(diào)性和y=sin x的單調(diào)性相同,故可完全按照函數(shù)y=sin x的單調(diào)區(qū)間解決;但當(dāng)ω<0時(shí),內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞減的,此時(shí)該函數(shù)的單調(diào)性和函數(shù)y=sinx的單調(diào)性相反,就不能再按照函數(shù)y=sinx的單調(diào)性解決,一般是根據(jù)三角函數(shù)的奇偶性將內(nèi)層函數(shù)的系數(shù)變?yōu)檎龜?shù)后再加以解決。對(duì)于帶有絕對(duì)值的三角函數(shù)應(yīng)該根據(jù)圖像,從直觀上進(jìn)行判斷。 忽視零向量致誤 零向量是向量中最特殊的向量,規(guī)定零向量的長(zhǎng)度為0,其方向是任意的,零向量與任意向量都共線(xiàn)。它在向量中的位置正如實(shí)數(shù)中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會(huì)出錯(cuò),考生應(yīng)給予足夠的重視。 向量夾角范圍不清致誤 解題時(shí)要全面考慮問(wèn)題。數(shù)學(xué)試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時(shí)把這些因素考慮到,是解題成功的關(guān)鍵,如當(dāng)a·b<0時(shí),a與b的夾角不一定為鈍角,要注意θ=π的情況。 an與Sn關(guān)系不清致誤 在數(shù)列問(wèn)題中,數(shù)列的通項(xiàng)an與其前n項(xiàng)和Sn之間存在下列關(guān)系:an=S1,n=1,Sn-Sn-1,n≥2。這個(gè)關(guān)系對(duì)任意數(shù)列都是成立的,但要注意的是這個(gè)關(guān)系式是分段的,在n=1和n≥2時(shí)這個(gè)關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯(cuò)的一個(gè)地方,在使用這個(gè)關(guān)系式時(shí)要牢牢記住其“分段”的特點(diǎn)。 對(duì)數(shù)列的定義、性質(zhì)理解錯(cuò)誤 等差數(shù)列的前n項(xiàng)和在公差不為零時(shí)是關(guān)于n的常數(shù)項(xiàng)為零的二次函數(shù);一般地,有結(jié)論“若數(shù)列{an}的前n項(xiàng)和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈Nx)是等差數(shù)列。 數(shù)列中的最值錯(cuò)誤 數(shù)列問(wèn)題中其通項(xiàng)公式、前n項(xiàng)和公式都是關(guān)于正整數(shù)n的`函數(shù),要善于從函數(shù)的觀點(diǎn)認(rèn)識(shí)和理解數(shù)列問(wèn)題。數(shù)列的通項(xiàng)an與前n項(xiàng)和Sn的關(guān)系是高考的命題重點(diǎn),解題時(shí)要注意把n=1和n≥2分開(kāi)討論,再看能不能統(tǒng)一。在關(guān)于正整數(shù)n的二次函數(shù)中其取最值的點(diǎn)要根據(jù)正整數(shù)距離二次函數(shù)的對(duì)稱(chēng)軸的遠(yuǎn)近而定。 錯(cuò)位相減求和項(xiàng)處理不當(dāng)致誤 錯(cuò)位相減求和法的適用條件:數(shù)列是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列對(duì)應(yīng)項(xiàng)的乘積所組成的,求其前n項(xiàng)和。基本方法是設(shè)這個(gè)和式為Sn,在這個(gè)和式兩端同時(shí)乘以等比數(shù)列的公比得到另一個(gè)和式,這兩個(gè)和式錯(cuò)一位相減,就把問(wèn)題轉(zhuǎn)化為以求一個(gè)等比數(shù)列的前n項(xiàng)和或前n-1項(xiàng)和為主的求和問(wèn)題.這里最容易出現(xiàn)問(wèn)題的就是錯(cuò)位相減后對(duì)剩余項(xiàng)的處理。 不等式性質(zhì)應(yīng)用不當(dāng)致誤 在使用不等式的基本性質(zhì)進(jìn)行推理論證時(shí)一定要準(zhǔn)確,特別是不等式兩端同時(shí)乘以或同時(shí)除以一個(gè)數(shù)式、兩個(gè)不等式相乘、一個(gè)不等式兩端同時(shí)n次方時(shí),一定要注意使其能夠這樣做的條件,如果忽視了不等式性質(zhì)成立的前提條件就會(huì)出現(xiàn)錯(cuò)誤。 忽視基本不等式應(yīng)用條件致誤 利用基本不等式a+b≥2ab以及變式ab≤a+b22等求函數(shù)的最值時(shí),務(wù)必注意a,b為正數(shù)(或a,b非負(fù)),ab或a+b其中之一應(yīng)是定值,特別要注意等號(hào)成立的條件。對(duì)形如y=ax+bx(a,b>0)的函數(shù),在應(yīng)用基本不等式求函數(shù)最值時(shí),一定要注意ax,bx的'符號(hào),必要時(shí)要進(jìn)行分類(lèi)討論,另外要注意自變量x的取值范圍,在此范圍內(nèi)等號(hào)能否取到。 三角函數(shù)。 注意歸一公式、誘導(dǎo)公式的正確性。 數(shù)列題。 1、證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫(xiě)上以誰(shuí)為首項(xiàng),誰(shuí)為公差(公比)的等差(等比)數(shù)列; 2、最后一問(wèn)證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫(xiě)上綜上:由①②得證; 3、證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡(jiǎn)單 立體幾何題。 1、證明線(xiàn)面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單; 2、求異面直線(xiàn)所成的角、線(xiàn)面角、二面角、存在性問(wèn)題、幾何體的高、表面積、體積等問(wèn)題時(shí),要建系; 3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。 概率問(wèn)題。 1、搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的`基本事件的個(gè)數(shù); 2、搞清是什么概率模型,套用哪個(gè)公式; 3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式; 4、求概率時(shí),正難則反(根據(jù)p1+p2+……+pn=1); 5、注意計(jì)數(shù)時(shí)利用列舉、樹(shù)圖等基本方法; 6、注意放回抽樣,不放回抽樣; 正弦、余弦典型例題。 1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為 2、已知α為銳角,且,則α的度數(shù)是()A、30°B、45°C、60°D、90° 3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是()A、75°B、90°C、105°D、120° 4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60° 5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點(diǎn),EF⊥BC,垂足為F,求sin∠EBF的值。 正弦、余弦解題訣竅。 1、已知兩角及一邊,或兩邊及一邊的對(duì)角(對(duì)三角形是否存在要討論)用正弦定理。 2、已知三邊,或兩邊及其夾角用余弦定理 3、余弦定理對(duì)于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負(fù),還是為零,就可以確定是鈍角。直角還是銳角。 一、集合有關(guān)概念 1. 集合的含義 2. 集合的中元素的三個(gè)特性: (1) 元素的確定性, (2) 元素的互異性, (3) 元素的無(wú)序性, 3.集合的表示:{ … } 如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋} (1) 用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5} (2) 集合的表示方法:列舉法與描述法。 ? 注意:常用數(shù)集及其記法: 非負(fù)整數(shù)集(即自然數(shù)集) 記作:N 正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R 1) 列舉法:{a,b,c……} 2) 描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的方法。{x?R| x-3>2} ,{x| x-3>2} 3) 語(yǔ)言描述法:例:{不是直角三角形的三角形} 4) Venn圖: 4、集合的分類(lèi): (1) 有限集 含有有限個(gè)元素的集合 (2) 無(wú)限集 含有無(wú)限個(gè)元素的集合 (3) 空集 不含任何元素的集合 例:{x|x2=-5} 二、集合間的基本關(guān)系 1.“包含”關(guān)系—子集 注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A 2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5) 實(shí)例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等” 即:① 任何一個(gè)集合是它本身的子集。A?A 、谡孀蛹:如果A?B,且A? B那就說(shuō)集合A是集合B的真子集,記作A B(或B A) 、廴绻 A?B, B?C ,那么 A?C 、 如果A?B 同時(shí) B?A 那么A=B 3. 不含任何元素的'集合叫做空集,記為 規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 ? 有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集 三、集合的運(yùn)算 運(yùn)算類(lèi)型 交 集 并 集 補(bǔ) 集 定 義 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}. 由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:A B(讀作‘A并B’),即A B ={x|x A,或x B}). 設(shè)S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集) 一個(gè)推導(dǎo) 利用錯(cuò)位相減法推導(dǎo)等比數(shù)列的前n項(xiàng)和: Sn=a1+a1q+a1q2+…+a1qn-1, 同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn, 兩式相減得(1-q)Sn=a1-a1qn,∴Sn=(q≠1). 兩個(gè)防范 (1)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗(yàn)證a1≠0. (2)在運(yùn)用等比數(shù)列的前n項(xiàng)和公式時(shí),必須注意對(duì)q=1與q≠1分類(lèi)討論,防止因忽略q=1這一特殊情形導(dǎo)致解題失誤. 三種方法 等比數(shù)列的`判斷方法有: (1)定義法:若an+1/an=q(q為非零常數(shù))或an/an-1=q(q為非零常數(shù)且n≥2且n∈N.),則{an}是等比數(shù)列. (2)中項(xiàng)公式法:在數(shù)列{an}中,an≠0且a=an·an+2(n∈N.),則數(shù)列{an}是等比數(shù)列. (3)通項(xiàng)公式法:若數(shù)列通項(xiàng)公式可寫(xiě)成an=c·qn(c,q均是不為0的常數(shù),n∈N.),則{an}是等比數(shù)列. 注:前兩種方法也可用來(lái)證明一個(gè)數(shù)列為等比數(shù)列. 高考數(shù)學(xué)知識(shí)點(diǎn):軌跡方程的求解 符合一定條件的動(dòng)點(diǎn)所形成的圖形,或者說(shuō),符合一定條件的點(diǎn)的全體所組成的集合,叫做滿(mǎn)足該條件的點(diǎn)的軌跡. 軌跡,包含兩個(gè)方面的問(wèn)題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完備性(也叫做充分性). 【軌跡方程】就是與幾何軌跡對(duì)應(yīng)的代數(shù)描述。 一、求動(dòng)點(diǎn)的軌跡方程的基本步驟 、苯⑦m當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo); ⒉寫(xiě)出點(diǎn)M的集合; 、沉谐龇匠=0; 、椿(jiǎn)方程為最簡(jiǎn)形式; ⒌檢驗(yàn)。 二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。 、敝弊g法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。 、捕x法:如果能夠確定動(dòng)點(diǎn)的軌跡滿(mǎn)足某種已知曲線(xiàn)的定義,則可利用曲線(xiàn)的定義寫(xiě)出方程,這種求軌跡方程的方法叫做定義法。 、诚嚓P(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿(mǎn)足的曲線(xiàn)方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。 ⒋參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的`軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。 、到卉壏ǎ簩蓜(dòng)曲線(xiàn)方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線(xiàn)交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。 .直譯法:求動(dòng)點(diǎn)軌跡方程的一般步驟 、俳ㄏ怠⑦m當(dāng)?shù)淖鴺?biāo)系; ②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y); 、哿惺健谐鰟(dòng)點(diǎn)p所滿(mǎn)足的關(guān)系式; ④代換——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡(jiǎn); 、葑C明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。 高考數(shù)學(xué)知識(shí)點(diǎn):排列組合公式 排列組合公式/排列組合計(jì)算公式 排列P------和順序有關(guān) 組合C-------不牽涉到順序的問(wèn)題 排列分順序,組合不分 例如把5本不同的書(shū)分給3個(gè)人,有幾種分法."排列" 把5本書(shū)分給3個(gè)人,有幾種分法"組合" 1.排列及計(jì)算公式 從n個(gè)不同元素中,任取m(m≤n)個(gè)元素按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有排列的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的排列數(shù),用符號(hào)p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(規(guī)定0!=1). 2.組合及計(jì)算公式 從n個(gè)不同元素中,任取m(m≤n)個(gè)元素并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有組合的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的組合數(shù).用符號(hào) c(n,m)表示. c(n,m)=p(n,m)/m!=n!/((n-m)!.m!);c(n,m)=c(n,n-m); 3.其他排列與組合公式 從n個(gè)元素中取出r個(gè)元素的循環(huán)排列數(shù)=p(n,r)/r=n!/r(n-r)!. n個(gè)元素被分成k類(lèi),每類(lèi)的個(gè)數(shù)分別是n1,n2,...nk這n個(gè)元素的全排列數(shù)為 n!/(n1!.n2!.....nk!). k類(lèi)元素,每類(lèi)的個(gè)數(shù)無(wú)限,從中取出m個(gè)元素的組合數(shù)為c(m+k-1,m). 排列(Pnm(n為下標(biāo),m為上標(biāo))) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是階乘符號(hào));Pnn(兩個(gè)n分別為上標(biāo)和下標(biāo))=n!;0!=1;Pn1(n為下標(biāo)1為上標(biāo))=n 組合(Cnm(n為下標(biāo),m為上標(biāo))) Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(兩個(gè)n分別為上標(biāo)和下標(biāo))=1;Cn1(n為下標(biāo)1為上標(biāo))=n;Cnm=Cnn-m 20xx-07-0813:30 公式P是指排列,從N個(gè)元素取R個(gè)進(jìn)行排列。公式C是指組合,從N個(gè)元素取R個(gè),不進(jìn)行排列。N-元素的總個(gè)數(shù)R參與選擇的元素個(gè)數(shù)!-階乘,如9!=9.8.7.6.5.4.3.2.1 從N倒數(shù)r個(gè),表達(dá)式應(yīng)該為n.(n-1).(n-2)..(n-r+1); 因?yàn)閺膎到(n-r+1)個(gè)數(shù)為n-(n-r+1)=r 舉例: Q1:有從1到9共計(jì)9個(gè)號(hào)碼球,請(qǐng)問(wèn),可以組成多少個(gè)三位數(shù)? A1:123和213是兩個(gè)不同的排列數(shù)。即對(duì)排列順序有要求的,既屬于“排列P”計(jì)算范疇。 上問(wèn)題中,任何一個(gè)號(hào)碼只能用一次,顯然不會(huì)出現(xiàn)988,997之類(lèi)的組合,我們可以這么看,百位數(shù)有9種可能,十位數(shù)則應(yīng)該有9-1種可能,個(gè)位數(shù)則應(yīng)該只有9-1-1種可能,最終共有9.8.7個(gè)三位數(shù)。計(jì)算公式=P(3,9)=9.8.7,(從9倒數(shù)3個(gè)的乘積) Q2:有從1到9共計(jì)9個(gè)號(hào)碼球,請(qǐng)問(wèn),如果三個(gè)一組,代表“三國(guó)聯(lián)盟”,可以組合成多少個(gè)“三國(guó)聯(lián)盟”? A2:213組合和312組合,代表同一個(gè)組合,只要有三個(gè)號(hào)碼球在一起即可。即不要求順序的,屬于“組合C”計(jì)算范疇。 上問(wèn)題中,將所有的包括排列數(shù)的個(gè)數(shù)去除掉屬于重復(fù)的個(gè)數(shù)即為最終組合數(shù)C(3,9)=9.8.7/3.2.1 排列、組合的概念和公式典型例題分析 例1設(shè)有3名學(xué)生和4個(gè)課外小組.(1)每名學(xué)生都只參加一個(gè)課外小組;(2)每名學(xué)生都只參加一個(gè)課外小組,而且每個(gè)小組至多有一名學(xué)生參加.各有多少種不同方法? 解(1)由于每名學(xué)生都可以參加4個(gè)課外小組中的任何一個(gè),而不限制每個(gè)課外小組的人數(shù),因此共有種不同方法. (2)由于每名學(xué)生都只參加一個(gè)課外小組,而且每個(gè)小組至多有一名學(xué)生參加,因此共有種不同方法. 點(diǎn)評(píng)由于要讓3名學(xué)生逐個(gè)選擇課外小組,故兩問(wèn)都用乘法原理進(jìn)行計(jì)算. 例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少種? 解依題意,符合要求的排法可分為第一個(gè)排、、中的某一個(gè),共3類(lèi),每一類(lèi)中不同排法可采用畫(huà)“樹(shù)圖”的方式逐一排出: ∴符合題意的不同排法共有9種. 點(diǎn)評(píng)按照分“類(lèi)”的思路,本題應(yīng)用了加法原理.為把握不同排法的規(guī)律,“樹(shù)圖”是一種具有直觀形象的有效做法,也是解決計(jì)數(shù)問(wèn)題的一種數(shù)學(xué)模型. 例3判斷下列問(wèn)題是排列問(wèn)題還是組合問(wèn)題?并計(jì)算出結(jié)果. (1)高三年級(jí)學(xué)生會(huì)有11人:①每?jī)扇嘶ネㄒ环庑,共通了多少封?②每?jī)扇嘶ノ樟艘淮问,共握了多少次? (2)高二年級(jí)數(shù)學(xué)課外小組共10人:①?gòu)闹羞x一名正組長(zhǎng)和一名副組長(zhǎng),共有多少種不同的選法?②從中選2名參加省數(shù)學(xué)競(jìng)賽,有多少種不同的選法? (3)有2,3,5,7,11,13,17,19八個(gè)質(zhì)數(shù):①?gòu)闹腥稳蓚(gè)數(shù)求它們的商可以有多少種不同的商?②從中任取兩個(gè)求它的積,可以得到多少個(gè)不同的積? (4)有8盆花:①?gòu)闹羞x出2盆分別給甲乙兩人每人一盆,有多少種不同的選法?②從中選出2盆放在教室有多少種不同的選法? 分析(1)①由于每人互通一封信,甲給乙的信與乙給甲的信是不同的兩封信,所以與順序有關(guān)是排列;②由于每?jī)扇嘶ノ找淮问,甲與乙握手,乙與甲握手是同一次握手,與順序無(wú)關(guān),所以是組合問(wèn)題.其他類(lèi)似分析. (1)①是排列問(wèn)題,共用了封信;②是組合問(wèn)題,共需握手(次). (2)①是排列問(wèn)題,共有(種)不同的選法;②是組合問(wèn)題,共有種不同的選法. (3)①是排列問(wèn)題,共有種不同的商;②是組合問(wèn)題,共有種不同的積. (4)①是排列問(wèn)題,共有種不同的選法;②是組合問(wèn)題,共有種不同的選法. 例4證明. 證明左式 右式. ∴等式成立. 點(diǎn)評(píng)這是一個(gè)排列數(shù)等式的證明問(wèn)題,選用階乘之商的形式,并利用階乘的性質(zhì),可使變形過(guò)程得以簡(jiǎn)化. 例5化簡(jiǎn). 解法一原式 解法二原式 點(diǎn)評(píng)解法一選用了組合數(shù)公式的階乘形式,并利用階乘的性質(zhì);解法二選用了組合數(shù)的兩個(gè)性質(zhì),都使變形過(guò)程得以簡(jiǎn)化. 例6解方程:(1);(2). 解(1)原方程 解得. (2)原方程可變?yōu)?/p> ∵,, ∴原方程可化為. 即,解得 高三數(shù)學(xué)三角函數(shù)公式 銳角三角函數(shù)公式 sin α=∠α的對(duì)邊 / 斜邊 cos α=∠α的鄰邊 / 斜邊 tan α=∠α的對(duì)邊 / ∠α的鄰邊 cot α=∠α的鄰邊 / ∠α的對(duì)邊 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A) ) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推導(dǎo) sin3a =sin(2a+a) =sin2acosa+cos2asina 輔助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降冪公式 sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) 推導(dǎo)公式 tanα+cotα=2/sin2α tanα-cotα=-2cot2α 1+cos2α=2cos^2α 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα/2)^2 =2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa sin3a=3sina-4sin3a =4sina(3/4-sin2a) =4sina[(√3/2)2-sin2a] =4sina(sin260°-sin2a) =4sina(sin60°+sina)(sin60°-sina) =4sina.2sin[(60+a)/2]cos[(60°-a)/2].2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos3a-3cosa =4cosa(cos2a-3/4) =4cosa[cos2a-(√3/2)2] =4cosa(cos2a-cos230°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa.2cos[(a+30°)/2]cos[(a-30°)/2].{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) 上述兩式相比可得 tan3a=tanatan(60°-a)tan(60°+a) 半角公式 tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 三角和 sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) 兩角和差 cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 和差化積 sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2] sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 1. 函數(shù)的奇偶性 。1)若f(x)是偶函數(shù),那么f(x)=f(-x) ; (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則 f(0)=0(可用于求參數(shù)); (3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或 (f(x)≠0); 。4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性; 。5)奇函數(shù)在對(duì)稱(chēng)的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱(chēng)的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性; 2. 復(fù)合函數(shù)的有關(guān)問(wèn)題 。1)復(fù)合函數(shù)定義域求法:若已知 的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求 f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即 f(x)的定義域);研究函數(shù)的問(wèn)題一定要注意定義域優(yōu)先的原則。 (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定; 3.函數(shù)圖像(或方程曲線(xiàn)的對(duì)稱(chēng)性) 。1)證明函數(shù)圖像的對(duì)稱(chēng)性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱(chēng)中心(對(duì)稱(chēng)軸)的對(duì)稱(chēng)點(diǎn)仍在圖像上; (2)證明圖像C1與C2的對(duì)稱(chēng)性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱(chēng)中心(對(duì)稱(chēng)軸)的對(duì)稱(chēng)點(diǎn)仍在C2上,反之亦然; (3)曲線(xiàn)C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱(chēng)曲線(xiàn)C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0); 。4)曲線(xiàn)C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱(chēng)曲線(xiàn)C2方程為:f(2a-x,2b-y)=0; 。5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線(xiàn)x=a對(duì)稱(chēng); 。6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線(xiàn)x= 對(duì)稱(chēng); 4.函數(shù)的周期性 。1)y=f(x)對(duì)x∈R時(shí),f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>;0)恒成立,則y=f(x)是周期為2a的周期函數(shù); (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線(xiàn)x=a對(duì)稱(chēng),則f(x)是周期為2︱a︱的周期函數(shù); 。3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線(xiàn)x=a對(duì)稱(chēng),則f(x)是周期為4︱a︱的周期函數(shù); (4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱(chēng),則f(x)是周期為2 的周期函數(shù); 。5)y=f(x)的'圖象關(guān)于直線(xiàn)x=a,x=b(a≠b)對(duì)稱(chēng),則函數(shù)y=f(x)是周期為2 的周期函數(shù); 。6)y=f(x)對(duì)x∈R時(shí),f(x+a)=-f(x)(或f(x+a)= ,則y=f(x)是周期為2 的周期函數(shù); 5.方程k=f(x)有解 k∈D(D為f(x)的值域); 6.a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min; 7.(1) (a>;0,a≠1,b>;0,n∈R+); (2) l og a N= ( a>;0,a≠1,b>;0,b≠1); (3) l og a b的符號(hào)由口訣“同正異負(fù)”記憶; (4) a log a N= N ( a>;0,a≠1,N>;0 ); 8. 判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):(1)A中元素必須都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象; 9. 能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。 10.對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論:(1)定義域上的單調(diào)函數(shù)必有反函數(shù);(2)奇函數(shù)的反函數(shù)也是奇函數(shù);(3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);(4)周期函數(shù)不存在反函數(shù);(5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;(5) y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A)。 11.處理二次函數(shù)的問(wèn)題勿忘數(shù)形結(jié)合;二次函數(shù)在閉區(qū)間上必有最值,求最值問(wèn)題用“兩看法”:一看開(kāi)口方向;二看對(duì)稱(chēng)軸與所給區(qū)間的相對(duì)位置關(guān)系; 12. 依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類(lèi)參數(shù)的范圍問(wèn)題 13. 恒成立問(wèn)題的處理方法:(1)分離參數(shù)法;(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解; 【數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)】相關(guān)文章: 數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)02-22 高考數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)02-11 數(shù)學(xué)高考必考知識(shí)點(diǎn)總結(jié)11-12 高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10-03 數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)15篇02-22 數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)(15篇)02-22 高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【精】02-17 【推薦】高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)02-17數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)6
數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)7
數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)8
數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)9
數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)11
數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)12
數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)13
數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)14
數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)15