成年女人色视频在线观看网站_一本久精品无码免费_亚洲成a人片在线观看无码专区_开心婷婷五月综合基地六月

初中數(shù)學(xué)公式總結(jié)

時(shí)間:2023-03-09 13:02:15 總結(jié) 投訴 投稿
  • 相關(guān)推薦

初中數(shù)學(xué)公式總結(jié)7篇

  總結(jié)是對取得的成績、存在的問題及得到的經(jīng)驗(yàn)和教訓(xùn)等方面情況進(jìn)行評價(jià)與描述的一種書面材料,它可以使我們更有效率,我想我們需要寫一份總結(jié)了吧。那么總結(jié)要注意有什么內(nèi)容呢?以下是小編幫大家整理的初中數(shù)學(xué)公式總結(jié),希望對大家有所幫助。

初中數(shù)學(xué)公式總結(jié)7篇

初中數(shù)學(xué)公式總結(jié)1

  1、單價(jià)×數(shù)量=總價(jià)

  2、單產(chǎn)量×數(shù)量=總產(chǎn)量

  3、速度×?xí)r間=路程

  4、工效×?xí)r間=工作總量

  5、加數(shù)+加數(shù)=和一個(gè)加數(shù)=和+另一個(gè)加數(shù)

  6、1公里=1千米1千米=1000米

  1米=10分米1分米=10厘米1厘米=10毫米

  1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米

  1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米

  1噸=1000千克1千克=1000克=1公斤=1市斤1公頃=10000平方米。1畝=666.666平方米。1升=1立方分米=1000毫升1毫升=1立方厘米

  7、什么叫比:兩個(gè)數(shù)相除就叫做兩個(gè)數(shù)的比。如:2÷5或3:6或1/3比的前項(xiàng)和后項(xiàng)同時(shí)乘以或除以一個(gè)相同的數(shù)(0除外),比值不變。

  8、什么叫比例:表示兩個(gè)比相等的式子叫做比例。如3:6=9:18

  9、比例的基本性質(zhì):在比例里,兩外項(xiàng)之積等于兩內(nèi)項(xiàng)之積。

  10、解比例:求比例中的未知項(xiàng),叫做解比例。如3:χ=9:18

  11、正比例:兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應(yīng)的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關(guān)系就叫做正比例關(guān)系。如:y/x=k(k一定)或kx=y

  12、反比例:兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個(gè)數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關(guān)系就叫做反比例關(guān)系。如:x×y=k(k一定)或k/x=y百分?jǐn)?shù):表示一個(gè)數(shù)是另一個(gè)數(shù)的百分之幾的數(shù),叫做百分?jǐn)?shù)。百分?jǐn)?shù)也叫做百分率或百分比。

  13、把小數(shù)化成百分?jǐn)?shù),只要把小數(shù)點(diǎn)向右移動(dòng)兩位,同時(shí)在后面添上百分號。其實(shí),把小數(shù)化成百分?jǐn)?shù),只要把這個(gè)小數(shù)乘以100%就行了。

  把百分?jǐn)?shù)化成小數(shù),只要把百分號去掉,同時(shí)把小數(shù)點(diǎn)向左移動(dòng)兩位。

  14、把分?jǐn)?shù)化成百分?jǐn)?shù),通常先把分?jǐn)?shù)化成小數(shù)(除不盡時(shí),通常保留三位小數(shù)),再把小數(shù)化成百分?jǐn)?shù)。其實(shí),把分?jǐn)?shù)化成百分?jǐn)?shù),要先把分?jǐn)?shù)化成小數(shù)后,再乘以100%就行了。把百分?jǐn)?shù)化成分?jǐn)?shù),先把百分?jǐn)?shù)改寫成分?jǐn)?shù),能約分的要約成最簡分?jǐn)?shù)。

  15、要學(xué)會把小數(shù)化成分?jǐn)?shù)和把分?jǐn)?shù)化成小數(shù)的化發(fā)。

  16、最大公約數(shù):幾個(gè)數(shù)都能被同一個(gè)數(shù)一次性整除,這個(gè)數(shù)就叫做這幾個(gè)數(shù)的最大公約數(shù)。(或幾個(gè)數(shù)公有的約數(shù),叫做這幾個(gè)數(shù)的公約數(shù)。其中最大的一個(gè),叫做最大公約數(shù)。)

  17、互質(zhì)數(shù):公約數(shù)只有1的兩個(gè)數(shù),叫做互質(zhì)數(shù)。

  18、最小公倍數(shù):幾個(gè)數(shù)公有的倍數(shù),叫做這幾個(gè)數(shù)的公倍數(shù),其中最小的一個(gè)叫做這幾個(gè)數(shù)的'最小公倍數(shù)。

  19、通分:把異分母分?jǐn)?shù)的分別化成和原來分?jǐn)?shù)相等的同分母的分?jǐn)?shù),叫做通分。(通分用最小公倍數(shù))

  20、約分:把一個(gè)分?jǐn)?shù)化成同它相等,但分子、分母都比較小的分?jǐn)?shù),叫做約分。(約分用最大公約數(shù))

  21、最簡分?jǐn)?shù):分子、分母是互質(zhì)數(shù)的分?jǐn)?shù),叫做最簡分?jǐn)?shù)。分?jǐn)?shù)計(jì)算到最后,得數(shù)必須化成最簡分?jǐn)?shù)。個(gè)位上是0、2、4、6、8的數(shù),都能被2整除,即能用2進(jìn)行約分。個(gè)位上是0或者5的數(shù),都能被5整除,即能用5進(jìn)行約分。在約分時(shí)應(yīng)注意利用。

  22、偶數(shù)和奇數(shù):能被2整除的數(shù)叫做偶數(shù)。不能被2整除的數(shù)叫做奇數(shù)。

  23、質(zhì)數(shù)(素?cái)?shù)):一個(gè)數(shù),如果只有1和它本身兩個(gè)約數(shù),這樣的數(shù)叫做質(zhì)數(shù)(或素?cái)?shù))。

  24、合數(shù):一個(gè)數(shù),如果除了1和它本身還有別的約數(shù),這樣的數(shù)叫做合數(shù)。1不是質(zhì)數(shù),也不是合數(shù)。

初中數(shù)學(xué)公式總結(jié)2

  1過兩點(diǎn)有且只有一條直線2兩點(diǎn)之間線段最短3同角或等角的補(bǔ)角相等4同角或等角的余角相等

  5過一點(diǎn)有且只有一條直線和已知直線垂直

  6直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

  7平行公理經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩直線平行10內(nèi)錯(cuò)角相等,兩直線平行11同旁內(nèi)角互補(bǔ),兩直線平行12兩直線平行,同位角相等13兩直線平行,內(nèi)錯(cuò)角相等14兩直線平行,同旁內(nèi)角互補(bǔ)

  15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊

  17三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°18推論1直角三角形的兩個(gè)銳角互余

  19推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和20推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角21全等三角形的對應(yīng)邊、對應(yīng)角相等

  22邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個(gè)三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個(gè)三角形全等24推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個(gè)三角形全等25邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個(gè)三角形全等

  26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等27定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

  28定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上29角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

  30等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對等角)31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

  32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°

  34等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)35推論1三個(gè)角都相等的三角形是等邊三角形36推論2有一個(gè)角等于60°的等腰三角形是等邊三角形37在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半38直角三角形斜邊上的中線等于斜邊上的一半

  39定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

  40逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上41線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合42定理1關(guān)于某條直線對稱的兩個(gè)圖形是全等形

  43定理2如果兩個(gè)圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線

  44定理3兩個(gè)圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上45逆定理如果兩個(gè)圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對稱46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2

  47勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2,那么這個(gè)三角形是直角三角形48定理四邊形的內(nèi)角和等于360°49四邊形的外角和等于360°

  50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°51推論任意多邊的外角和等于360°

  52平行四邊形性質(zhì)定理1平行四邊形的對角相等53平行四邊形性質(zhì)定理2平行四邊形的對邊相等54推論夾在兩條平行線間的平行線段相等

  55平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分

  56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60矩形性質(zhì)定理1矩形的四個(gè)角都是直角61矩形性質(zhì)定理2矩形的對角線相等

  62矩形判定定理1有三個(gè)角是直角的四邊形是矩形63矩形判定定理2對角線相等的平行四邊形是矩形64菱形性質(zhì)定理1菱形的四條邊都相等

  65菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角66菱形面積=對角線乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形

  68菱形判定定理2對角線互相垂直的平行四邊形是菱形

  69正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等

  70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角71定理1關(guān)于中心對稱的兩個(gè)圖形是全等的

  72定理2關(guān)于中心對稱的兩個(gè)圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分73逆定理如果兩個(gè)圖形的對應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱

  74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等75等腰梯形的兩條對角線相等

  76等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形77對角線相等的梯形是等腰梯形

  78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79推論1經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰80推論2經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊

  81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半

  82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h

  83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d

  84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)線段成比例

  87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例

  88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

  89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似91相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似93判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)94判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)

  95定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個(gè)直角三角形相似96性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比

  97性質(zhì)定理2相似三角形周長的比等于相似比

  98性質(zhì)定理3相似三角形面積的比等于相似比的平方

  99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

  100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

  101圓是定點(diǎn)的距離等于定長的點(diǎn)的集合

  102圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合104同圓或等圓的半徑相等

  105到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓

  106和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的.垂直平分線

  107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

  108到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線

  109定理不在同一直線上的三點(diǎn)確定一個(gè)圓。

  110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱中心的中心對稱圖形

  114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等116定理一條弧所對的圓周角等于它所對的圓心角的一半

  117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  119推論3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形120定理圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對角121①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r

  122切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線123切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑124推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)125推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

  126切線長定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角127圓的外切四邊形的兩組對邊的和相等

  128弦切角定理弦切角等于它所夾的弧對的圓周角

  129推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等130相交弦定理圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等

  131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)

  132切割線定理從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的比例中項(xiàng)

  133推論從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長的積相等134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上135①兩圓外離d>R+r②兩圓外切d=R+r③兩圓相交R-r<d<R+r(R>r)④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含d<R-r(R>r)136定理相交兩圓的連心線垂直平分兩圓的公共弦137定理把圓分成n(n≥3):⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形⑵經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形138定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓139正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n

  140定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形141正n邊形的面積Sn=pnrn/2p表示正n邊形的周長142正三角形面積√3a/4a表示邊長

  143如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4144弧長計(jì)算公式:L=n兀R/180

  145扇形面積公式:S扇形=n兀R^2/360=LR/2146內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)147完全平方公式:(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2148平方差公式:(a+b)(a-b)=a^2-b^2(還有一些,大家?guī)脱a(bǔ)充吧)

  實(shí)用工具:常用數(shù)學(xué)公式

  公式分類公式表達(dá)式

  乘法與因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b

  |a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

  根與系數(shù)的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達(dá)定理

  判別式

  b2-4ac=0注:方程有兩個(gè)相等的實(shí)根b2-4ac>0注:方程有兩個(gè)不等的實(shí)根

  b2-4ac拋物線標(biāo)準(zhǔn)方程y2=2pxy2=-2pxx2=2pyx2=-2py

  直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積S=c"*h

  正棱錐側(cè)面積S=1/2c*h"正棱臺側(cè)面積S=1/2(c+c")h"圓臺側(cè)面積S=1/2(c+c")l=pi(R+r)l球的表面積S=4pi*r2圓柱側(cè)面積S=c*h=2pi*h圓錐側(cè)面積S=1/2*c*l=pi*r*l

  弧長公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r

  錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h斜棱柱體積V=S"L注:其中,S"是直截面面積,L是側(cè)棱長柱體體積公式V=s*h圓柱體V=pi*r2h

  擴(kuò)展閱讀:

初中數(shù)學(xué)公式總結(jié)3

  三角形的面積=底×高÷2。公式S=a×h÷2正方形的面積=邊長×邊長公式S=a×a長方形的面積=長×寬公式S=a×b平行四邊形的面積=底×高公式S=a×h梯形的面積=(上底+下底)×高÷2公式S=(a+b)h÷2內(nèi)角和:三角形的內(nèi)角和=180度。長方體的體積=長×寬×高公式:V=abh長方體(或正方體)的體積=底面積×高公式:V=abh正方體的體積=棱長×棱長×棱長公式:V=aaa圓的周長=直徑×π公式:L=πd=2πr圓的面積=半徑×半徑×π公式:S=πr2

  圓柱的表(側(cè))面積:圓柱的表(側(cè))面積等于底面的周長乘高。公式:S=ch=πdh=2πrh圓柱的表面積:圓柱的表面積等于底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2

  圓柱的體積:圓柱的體積等于底面積乘高。公式:V=Sh圓錐的體積=1/3底面×積高。公式:V=1/3Sh

  分?jǐn)?shù)的加、減法則:同分母的分?jǐn)?shù)相加減,只把分子相加減,分母不變。異分母的分?jǐn)?shù)相加減,先通分,然后再加減。

  分?jǐn)?shù)的'乘法則:用分子的積做分子,用分母的積做分母。分?jǐn)?shù)的除法則:除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù)。讀懂理解會應(yīng)用以下定義定理性質(zhì)公式

  一、算術(shù)方面

  1、加法交換律:兩數(shù)相加交換加數(shù)的位置,和不變。

  2、加法結(jié)合律:三個(gè)數(shù)相加,先把前兩個(gè)數(shù)相加,或先把后兩個(gè)數(shù)相加,再同第三個(gè)數(shù)相加,和不變。

  3、乘法交換律:兩數(shù)相乘,交換因數(shù)的位置,積不變。

  4、乘法結(jié)合律:三個(gè)數(shù)相乘,先把前兩個(gè)數(shù)相乘,或先把后兩個(gè)數(shù)相乘,再和第三個(gè)數(shù)相乘,它們的積不變。

  5、乘法分配律:兩個(gè)數(shù)的和同一個(gè)數(shù)相乘,可以把兩個(gè)加數(shù)分別同這個(gè)數(shù)相乘,再把兩個(gè)積相加,結(jié)果不變。如:(2+4)×5=2×5+4×5

  6、除法的性質(zhì):在除法里,被除數(shù)和除數(shù)同時(shí)擴(kuò)大(或縮。┫嗤谋稊(shù),商不變。O除以任何不是O的數(shù)都得O。

  簡便乘法:被乘數(shù)、乘數(shù)末尾有O的乘法,可以先把O前面的相乘,零不參加運(yùn)算,有幾個(gè)零都落下,添在積的末尾。

  7、么叫等式?等號左邊的數(shù)值與等號右邊的數(shù)值相等的式子叫做等式。

  等式的基本性質(zhì):等式兩邊同時(shí)乘以(或除以)一個(gè)相同的數(shù),等式仍然成立。

  8、什么叫方程式?答:含有未知數(shù)的等式叫方程式。

  9、什么叫一元一次方程式?答:含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是一次的等式叫做一元一次方程式。

  學(xué)會一元一次方程式的例法及計(jì)算。即例出代有χ的算式并計(jì)算。

  10、分?jǐn)?shù):把單位“1”平均分成若干份,表示這樣的一份或幾分的數(shù),叫做分?jǐn)?shù)。

  11、分?jǐn)?shù)的加減法則:同分母的分?jǐn)?shù)相加減,只把分子相加減,分母不變。異分母的分?jǐn)?shù)相加減,先通分,然后再加減。

  12、分?jǐn)?shù)大小的比較:同分母的分?jǐn)?shù)相比較,分子大的大,分子小的小。異分母的分?jǐn)?shù)相比較,先通分然后再比較;若分子相同,分母大的反而小。

  13、分?jǐn)?shù)乘整數(shù),用分?jǐn)?shù)的分子和整數(shù)相乘的積作分子,分母不變。

  14、分?jǐn)?shù)乘分?jǐn)?shù),用分子相乘的積作分子,分母相乘的積作為分母。

  15、分?jǐn)?shù)除以整數(shù)(0除外),等于分?jǐn)?shù)乘以這個(gè)整數(shù)的倒數(shù)。

  16、真分?jǐn)?shù):分子比分母小的分?jǐn)?shù)叫做真分?jǐn)?shù)。

  17、假分?jǐn)?shù):分子比分母大或者分子和分母相等的分?jǐn)?shù)叫做假分?jǐn)?shù)。假分?jǐn)?shù)大于或等于1。

  18、帶分?jǐn)?shù):把假分?jǐn)?shù)寫成整數(shù)和真分?jǐn)?shù)的形式,叫做帶分?jǐn)?shù)。

  19、分?jǐn)?shù)的基本性質(zhì):分?jǐn)?shù)的分子和分母同時(shí)乘以或除以同一個(gè)數(shù)(0除外),分?jǐn)?shù)的大小不變。

  20、一個(gè)數(shù)除以分?jǐn)?shù),等于這個(gè)數(shù)乘以分?jǐn)?shù)的倒數(shù)。

  21、甲數(shù)除以乙數(shù)(0除外),等于甲數(shù)乘以乙數(shù)的倒數(shù)。

初中數(shù)學(xué)公式總結(jié)4

  時(shí)間單位換算

  1世紀(jì)=100年1年=12月

  大月(31天)有:135781012月

  小月(30天)的有:46911月

  平年2月28天,閏年2月29天

  平年全年365天,閏年全年366天

  1日=24小時(shí)1時(shí)=60分

  1分=60秒1時(shí)=3600秒

  重量單位換算

  1噸=1000千克

  1千克=1000克

  1千克=1公斤

  人民幣單位換算

  1元=10角

  1角=10分

  1元=100分

  體(容)積單位換算

  1立方米=1000立方分米

  1立方分米=1000立方厘米

  1立方分米=1升

  1立方厘米=1毫升

  1立方米=1000升

  面積單位換算

  1平方千米=100公頃

  1公頃=10000平方米

  1平方米=100平方分米

  1平方分米=100平方厘米

  1平方厘米=100平方毫米

  長度單位換算

  1千米=1000米1米=10分米

  1分米=10厘米1米=100厘米

  1厘米=10毫米

  和差問題的公式

  (和+差)÷2=大數(shù)

  (和-差)÷2=小數(shù)

  和倍問題

  和÷(倍數(shù)-1)=小數(shù)

  小數(shù)×倍數(shù)=大數(shù)

  (或者和-小數(shù)=大數(shù))

  利潤與折扣問題

  利潤=售出價(jià)-成本

  利潤率=利潤÷成本×100%=(售出價(jià)÷成本-1)×100%

  漲跌金額=本金×漲跌百分比

  折扣=實(shí)際售價(jià)÷原售價(jià)×100%(折扣<1)

  利息=本金×利率×?xí)r間

  稅后利息=本金×利率×?xí)r間×(1-20%)

  濃度問題

  溶質(zhì)的重量+溶劑的重量=溶液的重量

  溶質(zhì)的重量÷溶液的重量×100%=濃度

  溶液的重量×濃度=溶質(zhì)的重量

  溶質(zhì)的重量÷濃度=溶液的重量

  流水問題

  順流速度=靜水速度+水流速度

  逆流速度=靜水速度-水流速度

  靜水速度=(順流速度+逆流速度)÷2

  水流速度=(順流速度-逆流速度)÷2

  追及問題

  追及距離=速度差×追及時(shí)間

  追及時(shí)間=追及距離÷速度差

  速度差=追及距離÷追及時(shí)間

  相遇問題

  相遇路程=速度和×相遇時(shí)間

  相遇時(shí)間=相遇路程÷速度和

  速度和=相遇路程÷相遇時(shí)間

  盈虧問題

  (盈+虧)÷兩次分配量之差=參加分配的份數(shù)

  (大盈-小盈)÷兩次分配量之差=參加分配的份數(shù)

  (大虧-小虧)÷兩次分配量之差=參加分配的'份數(shù)

  植樹問題

  1.非封閉線路上的植樹問題主要可分為以下三種情形:

  ⑴如果在非封閉線路的兩端都要植樹,那么:

  株數(shù)=段數(shù)+1=全長÷株距-1

  全長=株距×(株數(shù)-1)

  株距=全長÷(株數(shù)-1)

 、迫绻诜欠忾]線路的一端要植樹,另一端不要植樹,那么:

  株數(shù)=段數(shù)=全長÷株距

  全長=株距×株數(shù)

  株距=全長÷株數(shù)

 、侨绻诜欠忾]線路的兩端都不要植樹,那么:

  株數(shù)=段數(shù)-1=全長÷株距-1

  全長=株距×(株數(shù)+1)

  株距=全長÷(株數(shù)+1)

  2.封閉線路上的植樹問題的數(shù)量關(guān)系如下

  株數(shù)=段數(shù)=全長÷株距

  全長=株距×株數(shù)

  株距=全長÷株數(shù)

  差倍問題

  差÷(倍數(shù)-1)=小數(shù)

  小數(shù)×倍數(shù)=大數(shù)

  (或小數(shù)+差=大數(shù))

  小學(xué)數(shù)學(xué)圖形計(jì)算公式

  1.正方形C周長S面積a邊長周長=邊長×4C=4a面積=邊長×邊長S=a×a

  2.正方體V:體積a:棱長表面積=棱長×棱長×6S表=a×a×6體積=棱長×棱長×棱長V=a×a×a

  3.長方形C周長S面積a邊長周長=(長+寬)×2C=2(a+b)面積=長×寬S=ab

  4.長方體V:體積s:面積a:長b:寬h:高(1)表面積(長×寬+長×高+寬×高)×2S=2(ab+ah+bh)(2)體積=長×寬×高V=abh

  5.三角形s面積a底h高面積=底×高÷2s=ah÷2三角形高=面積×2÷底三角形底=面積×2÷高

  6.平行四邊形s面積a底h高面積=底×高s=ah

  7.梯形s面積a上底b下底h高面積=(上底+下底)×高÷2s=(a+b)×h÷2

  8.圓形S面積C周長∏d=直徑r=半徑(1)周長=直徑×∏=2×∏×半徑C=∏d=2∏r(2)面積=半徑×半徑×∏

  9.圓柱體v:體積h:高s;底面積r:底面半徑c:底面周長(1)側(cè)面積=底面周長×高(2)表面積=側(cè)面積+底面積×2(3)體積=底面積×高(4)體積=側(cè)面積÷2×半徑

  10.圓錐體v:體積h:高s;底面積r:底面半徑體積=底面積×高÷3總數(shù)÷總份數(shù)=平均數(shù)

  單位換算

  (1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米

  (2)1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米

  (3)1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米

  (4)1噸=1000千克1千克=1000克=1公斤=1市斤

  (5)1公頃=10000平方米1畝=666.666平方米

  (6)1升=1立方分米=1000毫升1毫升=1立方厘米

  1.

  每份數(shù)×份數(shù)=總數(shù)

  總數(shù)÷每份數(shù)=份數(shù)

  總數(shù)÷份數(shù)=每份數(shù)

  2

  1倍數(shù)×倍數(shù)=幾倍數(shù)

  幾倍數(shù)÷1倍數(shù)=倍數(shù)

  幾倍數(shù)÷倍數(shù)=1倍數(shù)

  3

  速度×?xí)r間=路程

  路程÷速度=時(shí)間

  路程÷時(shí)間=速度

  4

  單價(jià)×數(shù)量=總價(jià)

  總價(jià)÷單價(jià)=數(shù)量

  總價(jià)÷數(shù)量=單價(jià)

  5

  工作效率×工作時(shí)間=工作總量

  工作總量÷工作效率=工作時(shí)間

  工作總量÷工作時(shí)間=工作效率

  6

  加數(shù)+加數(shù)=和

  和-一個(gè)加數(shù)=另一個(gè)加數(shù)

  7

  被減數(shù)-減數(shù)=差

  被減數(shù)-差=減數(shù)

  差+減數(shù)=被減數(shù)

  8

  因數(shù)×因數(shù)=積

  積÷一個(gè)因數(shù)=另一個(gè)因數(shù)

  9

  被除數(shù)÷除數(shù)=商

  被除數(shù)÷商=除數(shù)

  商×除數(shù)=被除數(shù)

初中數(shù)學(xué)公式總結(jié)5

  1過兩點(diǎn)有且只有一條直線2兩點(diǎn)之間線段最短3同角或等角的補(bǔ)角相等4同角或等角的余角相等

  5過一點(diǎn)有且只有一條直線和已知直線垂直

  6直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊

  17三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°18推論1直角三角形的兩個(gè)銳角互余

  19推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和20推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角21全等三角形的對應(yīng)邊、對應(yīng)角相等

  22邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個(gè)三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個(gè)三角形全等24推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個(gè)三角形全等25邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個(gè)三角形全等

  26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等27定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等28定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上29角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

  30等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對等角)31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°

  34等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)

  35推論1三個(gè)角都相等的三角形是等邊三角形36推論2有一個(gè)角等于60°的等腰三角形是等邊三角形

  37在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半38直角三角形斜邊上的中線等于斜邊上的一半

  39定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

  40逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

  41線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合42定理1關(guān)于某條直線對稱的兩個(gè)圖形是全等形

  43定理2如果兩個(gè)圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線44定理3兩個(gè)圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上

  45逆定理如果兩個(gè)圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對稱

  46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形

  48定理四邊形的內(nèi)角和等于360°49四邊形的外角和等于360°

  50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°51推論任意多邊的外角和等于360°

  52平行四邊形性質(zhì)定理1平行四邊形的對角相等53平行四邊形性質(zhì)定理2平行四邊形的對邊相等54推論夾在兩條平行線間的平行線段相等

  55平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分

  56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60矩形性質(zhì)定理1矩形的四個(gè)角都是直角61矩形性質(zhì)定理2矩形的對角線相等

  62矩形判定定理1有三個(gè)角是直角的四邊形是矩形63矩形判定定理2對角線相等的平行四邊形是矩形64菱形性質(zhì)定理1菱形的四條邊都相等

  65菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角66菱形面積=對角線乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形68菱形判定定理2對角線互相垂直的平行四邊形是菱形69正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等

  70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

  71定理1關(guān)于中心對稱的兩個(gè)圖形是全等的

  72定理2關(guān)于中心對稱的兩個(gè)圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分

  73逆定理如果兩個(gè)圖形的對應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱

  74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等75等腰梯形的兩條對角線相等

  76等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形77對角線相等的梯形是等腰梯形

  78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79推論1經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰80推論2經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半

  L=(a+b)÷2S=L×h

  83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),

  那么(a+c+…+m)/(b+d+…+n)=a/b

  86平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)線段成比例

  87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

  89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例

  90定理平行于三角形一邊的`直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

  91相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似93判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)94判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)

  95定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個(gè)直角三角形相似

  96性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比97性質(zhì)定理2相似三角形周長的比等于相似比98性質(zhì)定理3相似三角形面積的比等于相似比的平方

  99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

  101圓是定點(diǎn)的距離等于定長的點(diǎn)的集合

  102圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合104同圓或等圓的半徑相等

  105到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓106和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

  108到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線109定理不在同一直線上的三點(diǎn)確定一個(gè)圓。

  110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧

  ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱中心的中心對稱圖形

  114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

  116定理一條弧所對的圓周角等于它所對的圓心角的一半

  117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑119推論3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形120定理圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對角121①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r122切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線123切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑124推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)125推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

  126切線長定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角

  127圓的外切四邊形的兩組對邊的和相等128弦切角定理弦切角等于它所夾的弧對的圓周角

  129推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等130相交弦定理圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等

  131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)132切割線定理從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的比例中項(xiàng)

  133推論從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長的積相等

  134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上135①兩圓外離d>R+r

  ②兩圓外切d=R+r

  ③兩圓相交R-r<d<R+r(R>r)④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含d<R-r(R>r)

  136定理相交兩圓的連心線垂直平分兩圓的公共弦137定理把圓分成n(n≥3):

 、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

 、平(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形138定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

  (n2)180139正n邊形的每個(gè)內(nèi)角都等于

  n140定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  pnrn141正n邊形的面積Sn=p表示正n邊形的周長

  2142正三角形面積

  32aa表示邊長4143如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,

  k(n2)180360化為(n-2)(k-2)=4因此

  n144弧長計(jì)算公式:L=

  nR180nR2LR145扇形面積公式:S扇形==

  3602146內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)

  公式分類及公式表達(dá)式

  乘法與因式分:a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式:|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解

  bb24ac2a

  根與系數(shù)的關(guān)系:X1+X2=-b/aX1*X2=c/a注:韋達(dá)定理判別式

  b2-4ac=0注:方程有兩個(gè)相等的實(shí)根b2-4ac>0注:方程有兩個(gè)不等的實(shí)根b2-4ac

初中數(shù)學(xué)公式總結(jié)6

  梯形中位線定理

  梯形的中位線平行于兩底,并且等于兩底和的一半 L=(a+b)÷2 S=L×h

  (1)比例的基本性質(zhì) 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d

  (2)合比性質(zhì) 如果a/b=c/d,那么(a±b)/b=(c±d)/d

  (3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  平行線分線段成比例定理 三條平行線截兩條直線,所得的對應(yīng)線段成比例

  推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例

  定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角 形的第三邊

  平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的`三角形的三邊與原三角形三邊對應(yīng)成比例

  看過梯形中位線定理,聰明的同學(xué)都知道梯形的中位線平行于兩底,并且等于兩底和的一半了吧。

初中數(shù)學(xué)公式總結(jié)7

  初中的數(shù)學(xué)公式

  1 過兩點(diǎn)有且只有一條直線

  2 兩點(diǎn)之間線段最短

  3 同角或等角的補(bǔ)角相等

  4 同角或等角的余角相等

  5 過一點(diǎn)有且只有一條直線和已知直線垂直

  6 直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

  7 平行公理 經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行

  8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9 同位角相等,兩直線平行

  10 內(nèi)錯(cuò)角相等,兩直線平行

  11 同旁內(nèi)角互補(bǔ),兩直線平行

  12兩直線平行,同位角相等

  13 兩直線平行,內(nèi)錯(cuò)角相等

  14 兩直線平行,同旁內(nèi)角互補(bǔ)

  15 定理 三角形兩邊的和大于第三邊

  16 推論 三角形兩邊的差小于第三邊

  17 三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180°

  18 推論1 直角三角形的兩個(gè)銳角互余

  19 推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

  20 推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

  21 全等三角形的對應(yīng)邊、對應(yīng)角相等

  22邊角邊公理(SAS) 有兩邊和它們的夾角對應(yīng)相等的兩個(gè)三角形全等

  23 角邊角公理( ASA)有兩角和它們的夾邊對應(yīng)相等的兩個(gè)三角形全等

  24 推論(AAS) 有兩角和其中一角的對邊對應(yīng)相等的兩個(gè)三角形全等

  25 邊邊邊公理(SSS) 有三邊對應(yīng)相等的兩個(gè)三角形全等

  26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等

  27 定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

  28 定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

  29 角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

  30 等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對等角)

  31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊

  32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

  33 推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60°

  34 等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)

  35 推論1 三個(gè)角都相等的三角形是等邊三角形

  36 推論 2 有一個(gè)角等于60°的等腰三角形是等邊三角形

  37 在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半

  38 直角三角形斜邊上的中線等于斜邊上的一半

  39 定理 線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等 ?

  40 逆定理 和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

  41 線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合

  42 定理1 關(guān)于某條直線對稱的兩個(gè)圖形是全等形

  43 定理 2 如果兩個(gè)圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線

  44定理3 兩個(gè)圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上

  45逆定理 如果兩個(gè)圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對稱

  46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2

  47勾股定理的逆定理 如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2 ,那么這個(gè)三角形是直角三角形

  48定理 四邊形的內(nèi)角和等于360°

  49四邊形的外角和等于360°

  50多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180°

  51推論 任意多邊的外角和等于360°

  52平行四邊形性質(zhì)定理1 平行四邊形的對角相等

  53平行四邊形性質(zhì)定理2 平行四邊形的對邊相等

  54推論 夾在兩條平行線間的平行線段相等

  55平行四邊形性質(zhì)定理3 平行四邊形的對角線互相平分

  56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形

  57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形

  58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形

  59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形

  60矩形性質(zhì)定理1 矩形的四個(gè)角都是直角

  61矩形性質(zhì)定理2 矩形的對角線相等

  62矩形判定定理1 有三個(gè)角是直角的四邊形是矩形

  63矩形判定定理2 對角線相等的平行四邊形是矩形

  64菱形性質(zhì)定理1 菱形的四條邊都相等

  65菱形性質(zhì)定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角

  66菱形面積=對角線乘積的一半,即S=(a×b)÷2

  67菱形判定定理1 四邊都相等的四邊形是菱形

  68菱形判定定理2 對角線互相垂直的平行四邊形是菱形

  69正方形性質(zhì)定理1 正方形的四個(gè)角都是直角,四條邊都相等

  70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

  71定理1 關(guān)于中心對稱的兩個(gè)圖形是全等的

  72定理2 關(guān)于中心對稱的兩個(gè)圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分

  73逆定理 如果兩個(gè)圖形的對應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一 點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱

  74等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個(gè)角相等

  75等腰梯形的兩條對角線相等

  76等腰梯形判定定理 在同一底上的兩個(gè)角相等的梯形是等腰梯形

  77對角線相等的梯形是等腰梯形

  78平行線等分線段定理 如果一組平行線在一條直線上截得的線段

  相等,那么在其他直線上截得的線段也相等

  79 推論1 經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰

  80 推論2 經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第 三邊

  81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它 的一半

  82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的 一半 L=(a+b)÷2 S=L×h

  83 (1)比例的基本性質(zhì) 如果a:b=c:d,那么ad=bc

  如果ad=bc,那么a:b=c:d wc呁/S∕?

  84 (2)合比性質(zhì) 如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85 (3)等比性質(zhì) 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么

  (a+c+…+m)/(b+d+…+n)=a/b

  86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應(yīng) 線段成比例

  87 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例

  88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

  89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例

  90 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

  91 相似三角形判定定理1 兩角對應(yīng)相等,兩三角形相似(ASA)

  92 直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似

  93 判定定理2 兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)

  94 判定定理3 三邊對應(yīng)成比例,兩三角形相似(SSS)

  95 定理 如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三 角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個(gè)直角三角形相似

  96 性質(zhì)定理1 相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平 分線的比都等于相似比

  97 性質(zhì)定理2 相似三角形周長的比等于相似比

  98 性質(zhì)定理3 相似三角形面積的比等于相似比的平方

  99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等 于它的余角的正弦值

  100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等 于它的.余角的正切值

  101圓是定點(diǎn)的距離等于定長的點(diǎn)的集合

  102圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  104同圓或等圓的半徑相等

  105到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半 徑的圓

  106和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直 平分線

  107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

  108到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距 離相等的一條直線

  109定理 不在同一直線上的三點(diǎn)確定一個(gè)圓。

  110垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  111推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  112推論2 圓的兩條平行弦所夾的弧相等

  113圓是以圓心為對稱中心的中心對稱圖形

  114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等

  115推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

  116定理 一條弧所對的圓周角等于它所對的圓心角的一半

  117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑

  119推論3 如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形

  120定理 圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它 的內(nèi)對角

  121①直線L和⊙O相交 d<r

 、谥本L和⊙O相切 d=r

 、壑本L和⊙O相離 d>r ?

  122切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  123切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點(diǎn)的半徑

  124推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)

  125推論2 經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

  126切線長定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等, 圓心和這一點(diǎn)的連線平分兩條切線的夾角

  127圓的外切四邊形的兩組對邊的和相等

  128弦切角定理 弦切角等于它所夾的弧對的圓周角

  129推論 如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等

  130相交弦定理 圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積 相等

  131推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的 兩條線段的比例中項(xiàng)

  132切割線定理 從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割 線與圓交點(diǎn)的兩條線段長的比例中項(xiàng)

  133推論 從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長的積相等

  134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

  135①兩圓外離 d>R+r ②兩圓外切 d=R+r

 、蹆蓤A相交 R-r<d<R+r(R>r) ?

  ④兩圓內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含d<R-r(R>r)

  136定理 相交兩圓的連心線垂直平分兩圓的公*弦

  137定理 把圓分成n(n≥3):

 、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

  ⑵經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  138定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

  139正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n

  140定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  141正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長

  142正三角形面積√3a/4 a表示邊長

  143如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  144弧長撲愎?劍篖=n兀R/180

  145扇形面積公式:S扇形=n兀R^2/360=LR/2

  146內(nèi)公切線長= d-(R-r) 外公切線長= d-(R+r)

 。ㄟ有一些,大家?guī)脱a(bǔ)充吧)

  實(shí)用工具:常用數(shù)學(xué)公式

  公式分類 公式表達(dá)式

  乘法與因式分解

  a^2-b^2=(a+b)(a-b)

  a^3+b^3=(a+b)(a^2-ab+b^2) 

  a^3-b^3=(a-b(a^2+ab+b^2)

  三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

  |a-b|≥|a|-|b| -|a|≤a≤|a|

  一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a

  根與系數(shù)的關(guān)系 X1+X2=-b/a X1*X2=c/a 注:韋達(dá)定理

  判別式

  b^2-4ac=0 注:方程有兩個(gè)相等的實(shí)根

  b^2-4ac>0 注:方程有兩個(gè)不等的實(shí)根 ?

  b^2-4ac<0 注:方程沒有實(shí)根,有*軛復(fù)數(shù)根

  三角函數(shù)公式

  兩角和公式

  sin(A+B)=sinAcosB+cosAsinB

  sin(A-B)=sinAcosB-sinBcosA ?

  cos(A+B)=cosAcosB-sinAsinB

  cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB)

  tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  cot(A+B)=(cotAcotB-1)/(cotB+cotA) ?

  cot(A-B)=(cotAcotB+1)/(cotB-cotA)

  倍角公式

  tan2A=2tanA/[1-(tanA)^2]

  cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2

  半角公式

  sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

  cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

  tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

  cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) ?

  和差化積

  2sinAcosB=sin(A+B)+sin(A-B)

  2cosAsinB=sin(A+B)-sin(A-B) )

  2cosAcosB=cos(A+B)-sin(A-B)

  -2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2

  cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosB

  某些數(shù)列前n項(xiàng)和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

  1+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1) 5

  1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

  1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4

  1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

  正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑

  余弦定理 b^2=a^2+c^2-2accosB 注:角B是邊a和邊c的夾角

  圓的標(biāo)準(zhǔn)方程 (x-a)^2+(y-b)^2=^r2 注:(a,b)是圓心坐標(biāo)

  圓的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0

  拋物線標(biāo)準(zhǔn)方程 y^2=2px y^2=-2px x^2=2py x^2=-2py

  直棱柱側(cè)面積 S=c*h 斜棱柱側(cè)面積 S=c'*h

  正棱錐側(cè)面積 S=1/2c*h' 正棱臺側(cè)面積 S=1/2(c+c')h'

  圓臺側(cè)面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2

  圓柱側(cè)面積 S=c*h=2pi*h 圓錐側(cè)面積 S=1/2*c*l=pi*r*l

  弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r

  錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h ?

  斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側(cè)棱長

  柱體體積公式 V=s*h 圓柱體 V=pi*r2h

【初中數(shù)學(xué)公式總結(jié)】相關(guān)文章:

高考數(shù)學(xué)公式總結(jié)10-04

高三數(shù)學(xué)公式總結(jié)10-10

高三數(shù)學(xué)公式總結(jié)02-24

數(shù)學(xué)公式總結(jié)高三10-10

高二數(shù)學(xué)公式總結(jié)08-03

高考數(shù)學(xué)公式總結(jié)3篇10-04

高三數(shù)學(xué)公式總結(jié)6篇10-10

數(shù)學(xué)公式總結(jié)高三6篇10-10

初中教學(xué)總結(jié)04-29

初中數(shù)學(xué)總結(jié)09-23