成年女人色视频在线观看网站_一本久精品无码免费_亚洲成a人片在线观看无码专区_开心婷婷五月综合基地六月

三角形的內(nèi)角和的教學(xué)設(shè)計

時間:2024-09-01 18:29:08 教學(xué)資源 投訴 投稿

三角形的內(nèi)角和的教學(xué)設(shè)計[范例15篇]

  作為一位兢兢業(yè)業(yè)的人民教師,總不可避免地需要編寫教學(xué)設(shè)計,借助教學(xué)設(shè)計可以讓教學(xué)工作更加有效地進行。寫教學(xué)設(shè)計需要注意哪些格式呢?下面是小編整理的三角形的內(nèi)角和的教學(xué)設(shè)計,僅供參考,希望能夠幫助到大家。

三角形的內(nèi)角和的教學(xué)設(shè)計[范例15篇]

三角形的內(nèi)角和的教學(xué)設(shè)計1

  一、說教材

  北師版八年級下冊第六章《證明一》,是在前面對幾何結(jié)論已經(jīng)有了一定的直觀認(rèn)識的基礎(chǔ)上編排的,而前幾冊對有關(guān)幾何結(jié)論都曾進行過簡單的說理,本章內(nèi)容則嚴(yán)格給出這些結(jié)論的證明,并要求學(xué)生掌握證明的一般步驟及書寫表達(dá)格式!度切蝺(nèi)角和定理的證明》則是對前幾節(jié)證明的自然延續(xù)。此外,它的證明中引入了輔助線,這些都為后繼學(xué)習(xí)奠定了基礎(chǔ)。

  二、說目標(biāo)

  1.知識目標(biāo):掌握“三角形內(nèi)角和定理的證明”及其簡單的應(yīng)用。

  2.能力目標(biāo)培養(yǎng)學(xué)生的數(shù)學(xué)語言表達(dá)、邏輯推理、問題思考、組內(nèi)及組間交流、動手實踐等能力。

  3.情感、態(tài)度、價值觀:

  在良好的師生關(guān)系下,建立輕松的學(xué)習(xí)氛圍,使學(xué)生體會獲得知識的.成就感及與他人合作的樂趣,以增強其數(shù)學(xué)學(xué)習(xí)的自信心。

  4.教學(xué)重點、難點

  重點:三角形的內(nèi)角和定理的證明及其簡單應(yīng)用。

  難點:三角形的內(nèi)角和定理的證明方法的討論。

  三、說學(xué)校及學(xué)生現(xiàn)實情況

  我校是藍(lán)田縣一所普通初中,四面非山即嶺,距藍(lán)田縣城四十里之遙。但由于國家對西部教育的大力支持,學(xué)校有遠(yuǎn)程多媒體網(wǎng)絡(luò)教室,為師生提供了良好的學(xué)習(xí)硬件環(huán)境。我校學(xué)生幾乎全部來自本鎮(zhèn)農(nóng)村,而我所教授的八年級四班學(xué)生,大多家庭貧苦,所以學(xué)習(xí)認(rèn)真踏實,有強烈的求知欲;此外,善于鉆研是他們的特點,并且,有較強的合作交流意識。

  四、說教法

  根據(jù)本節(jié)課教學(xué)內(nèi)容特點,我采用啟發(fā)、引導(dǎo)、探索相結(jié)合的教學(xué)方法,使學(xué)生充分發(fā)揮學(xué)習(xí)主動性、創(chuàng)造性。

  五、說教學(xué)設(shè)計

  〈一〉、創(chuàng)設(shè)情景,直入主題

  一堂新課的引入是教師與學(xué)生活動的開始,而一個成功的引入,可使學(xué)生破除畏難心理,對知識在短時間內(nèi)產(chǎn)生濃厚的興趣,接下來的教學(xué)活動就變得順理成章。我的具體做法是:簡單回憶舊知識,“證明的一般步驟是什么?”學(xué)生輕松做答,我肯定之后緊接著說:“本節(jié)課就是用證明的方法學(xué)習(xí)一個熟悉的結(jié)論!是什么呢?請看大屏幕!”。盡量使問題簡單化,這樣更利于學(xué)生投入新課。

  〈二〉、交流對話,引導(dǎo)探索

  1、巧妙提問,合理引導(dǎo)

  證明思想的引入時,問:同學(xué)們,七年級時如何得到此結(jié)論?(留一定時間讓他們討論、交流、達(dá)成共識)學(xué)生回答后,我及時肯定并鼓勵后拋出問題:他們的共同之處是什么?學(xué)生容易回答:湊成一平角。我說:很好!那你們用這樣的思想能證明這個命題是個真命題嗎?趕快試試吧!這樣,既引導(dǎo)了證明的方向,又激發(fā)了學(xué)生的學(xué)習(xí)興趣。接下來學(xué)生做題,我巡視。同時讓一學(xué)生板演。

  2、恰當(dāng)示范,培養(yǎng)學(xué)生正確的書寫能力

  在學(xué)生做完之后,我與他們一道分析板演同學(xué)證明是否合理,并利用多媒體給出正確書寫方法。

  3、一題多解,放手讓學(xué)生走進自主學(xué)習(xí)空間

  正因為學(xué)生的預(yù)習(xí),所以他們證明的方法有所局限,這時,我拋出問題:再想想,還有其他方法嗎?將課堂時間又交還他們,將其思維推向高潮。學(xué)生思考,繼而熱烈討論,此時,我又走到學(xué)生中去,對有困難的學(xué)生多加關(guān)注和指導(dǎo),不放棄任何一個,同時,借此機會增進教師與學(xué)困生之間的情誼,為繼續(xù)學(xué)習(xí)奠定基礎(chǔ)。最后,請有新方法的同學(xué)敘述其思想方法,我用大屏幕展示不同做法的合情推理過程。

  4、展示歸納,合理演繹

  利用多媒體展示三角形內(nèi)角和定理的幾種表達(dá)形式,以促其學(xué)以致用。

  5、反饋練習(xí)

  用隨堂練習(xí)來鞏固學(xué)生所學(xué)新知,另一方面進一步提高學(xué)生的書寫能力。同時,在他們作完之后,多媒體展示正確寫法,加強教學(xué)效果。

  〈三〉、課堂小結(jié)

  1 采用讓學(xué)生感性的談?wù)J識,談收獲。設(shè)計問題:

  2(1)、本節(jié)課我們學(xué)了什么知識?

 。2)、你有什么收獲?

  目的是發(fā)揮學(xué)生主體意識,培養(yǎng)其語言概括能力。

  六、說教學(xué)反思

  本節(jié)課主要是以嚴(yán)謹(jǐn)?shù)倪壿嬜C明方法,驗證三角形內(nèi)角和等于180度。讓學(xué)生充分體會有理有據(jù)的推理才是可靠的。而證明思想、書寫的培養(yǎng),是本節(jié)課的重點。自主學(xué)習(xí)、合作交流是新課程理念,也是我本節(jié)課的設(shè)計意圖。從學(xué)生課堂表現(xiàn)可以看出,教學(xué)效果良好。而學(xué)生的一些出乎意料的做法讓我倍感驚喜!把學(xué)生還給課堂,把課堂還給學(xué)生,也是我一貫的做法。

三角形的內(nèi)角和的教學(xué)設(shè)計2

  教學(xué)目標(biāo):

  1、通過測量一量、拼一拼、折一折三個活動,探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180°。

  2、已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。

  3、經(jīng)歷三角形內(nèi)角和的研究方法,感受數(shù)學(xué)研究方法。

  教學(xué)重點:

  1、探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180°。

  2、已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。

  教學(xué)難點:掌握探究方法(猜想-驗證-歸納總結(jié)),學(xué)會用“轉(zhuǎn)化”的數(shù)學(xué)思想探究三角形內(nèi)角和。

  教學(xué)用具:表格、課件。

  學(xué)具準(zhǔn)備:各種三角形、剪刀、量角器。

  一、創(chuàng)設(shè)情境揭示課題。

  1、一天兩個三角形發(fā)生了爭執(zhí),他們請你們來評評理。大三角形說:“我的個頭大,所以我的內(nèi)角和一定比你大!毙∪切魏懿桓市牡卣f:“我有一個鈍角,我的內(nèi)角和一定比你大。”。誰說得有道理呢?今天讓我們來做一回裁判吧。

  生1:大三角形大(個子大)

  生2:小三角形大(有鈍角)

  (教師不做判斷,讓學(xué)生帶著問題進入新課)

  2、什么是三角形的內(nèi)角和?(板書:內(nèi)角和)

  講解:三角形內(nèi)兩條邊所夾的角就叫做這個三角形的內(nèi)角。每個三角形都有三個內(nèi)角,這三個內(nèi)角的度數(shù)加起來就是三角形的內(nèi)角和。

  二、自主探究,合作交流。

 。ㄒ唬┨岢鰡栴}:

  1、你認(rèn)為誰說得對?你是怎么想的?

  2、你有什么辦法可以比較一下這兩個三角形的內(nèi)角和呢?

  生1:用量角器量一量三個內(nèi)角各是多少度,把它們加起來,再比較。

  生2:用拼一拼的辦法把三個角拼到一起看它們能不能組成平角。

  生3:用折一折的辦法把三個角折到一起看它們能不能組成平角

 。ǘ┨剿髋c發(fā)現(xiàn)

  活動一:量一量

 。1)①了解活動要求:(屏幕顯示)

  A、在練習(xí)本上畫一個三角形,量一量三角形三個內(nèi)角的度數(shù)并標(biāo)注。(測量時要認(rèn)真,力求準(zhǔn)確)

  B、把測量結(jié)果記錄在表格中,并計算三角形內(nèi)角和。

  C、討論:從剛才的測量和計算結(jié)果中,你發(fā)現(xiàn)了什么?

 。ㄒ龑(dǎo)生回顧活動要求)

  ②小組合作。

 、蹍R報交流。

  你們測量了幾個三角形?它們的內(nèi)角和分別是多少?從測量和計算結(jié)果中你們發(fā)現(xiàn)了什么?

 。ㄒ龑(dǎo)學(xué)生發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180°,左右。)

 。2)提出猜想

  剛才我們通過測量和計算發(fā)現(xiàn)了三角形內(nèi)角和都在180度左右,那你能不能大膽的猜測一下:三角形內(nèi)角和是否相等?三角形的內(nèi)角和等于多少度呢?(板書:猜測)

  活動二:拼一拼,驗證猜想

  這個猜想是否成立呢?我們要想辦法來驗證一下。(板書驗證)

  引導(dǎo):180°,跟我們學(xué)過的什么角有關(guān)?我們課前準(zhǔn)備了各種三角形紙片,你能不能利用這些三角形紙片,想辦法把三角形的三個內(nèi)角轉(zhuǎn)換成一個平角呢?

 。1)小組合作,討論驗證方法。(把三個角撕下來,拼在一起,3個角拼成了一個平角,所以三角形內(nèi)角和就是180°)。

  (2)討論:銳角三角形、直角三角形、鈍角三角形是否都能得出相同的結(jié)論呢?

 。3)分組匯報,討論質(zhì)疑

 。4)課件演示,驗證結(jié)果

  活動三:折一折

  師生一起活動,教師先讓學(xué)生看課件演示,然后拿出準(zhǔn)備好的三角形紙艮老師一起折一折。

 。ò讶切蔚慕1折向它的對邊,使頂點落在對邊上,然后另外兩個角相向?qū)φ,使它們的頂點與角1的`頂點互相重合,也證明了三角形內(nèi)角和等于180°,)。

  討論:銳角三角形、直角三角形、鈍角三角形能否得到相同的結(jié)論?

  提問:還有沒有其它的方法?

  3、回顧兩種方法,歸納總結(jié),得出結(jié)論。

 。1)引導(dǎo)學(xué)生得出結(jié)論。

  孩子們,三角形內(nèi)角和到底等于多少度呢?”

  學(xué)生答:“180°!”

  (2)總結(jié)方法,齊讀結(jié)論

  我們通過動作操作,折一折,拼一拼,把三角形的三個內(nèi)角轉(zhuǎn)換成了一個平角,成功的得到了這個結(jié)論,讓我們?yōu)樽约旱某晒恼疲↓R讀結(jié)論。(板書:得到結(jié)論)

 。3)解釋測量誤差

  為什么我們剛才通過測量,計算出來的三角形內(nèi)角和不是180°,呢?

  那是因為我們在測量時,由于測量工具、測量操作等各方面的原因,使我們的測量結(jié)果存在一定的誤差。實際上,三角形內(nèi)角和就等于180°

 。ㄈ┗仡檰栴}:

  現(xiàn)在你知道這兩個三角形誰說得對了嗎?(都不對。

  為什么?請大家一起,自信肯定的告訴我。

  生:因為三角形內(nèi)角和等于1800180°。(齊讀)

  三、鞏固深化,加深理解。

  1、試一試:數(shù)學(xué)書28頁第3題

  ∠A=180°-90°-30°

  2、練一練:數(shù)學(xué)書29頁第一題(生獨立解決)

  ∠A=180°-75°-28°

  3、小法官:數(shù)學(xué)書29頁第二題

  四、回顧課堂,滲透數(shù)學(xué)方法。

  1、總結(jié):猜想—驗證—歸納—應(yīng)用的數(shù)學(xué)方法。

  2、介紹:三角形內(nèi)角和等于180度這個結(jié)論的由來;數(shù)學(xué)領(lǐng)域里還未被證明的其它猜想,如哥德巴赫猜想、霍啟猜想、龐加萊猜想等。

  3、課堂延伸活動:探索——多邊形內(nèi)角和

  板書設(shè)計:

  探索與發(fā)現(xiàn)(一)

  三角形內(nèi)角和等于180°

三角形的內(nèi)角和的教學(xué)設(shè)計3

  教學(xué)內(nèi)容:人教版小學(xué)數(shù)學(xué)第八冊第85頁例5及”做一做”

  教學(xué)目標(biāo):

  1、讓學(xué)生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應(yīng)用這一知識解決生活中簡單的實際問題。

  2、讓學(xué)生在動手獲取知識的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動,向?qū)W生滲透“轉(zhuǎn)化”數(shù)學(xué)思想

  3、在探索中體驗發(fā)現(xiàn)的樂趣,增強學(xué)好數(shù)學(xué)的信心、

  教學(xué)重點

  讓學(xué)生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成、發(fā)展和應(yīng)用的全過程。

  教學(xué)難點 :

  驗證所有三角形的內(nèi)角之和都是180°

  教具準(zhǔn)備:多媒體課件。

  學(xué)具準(zhǔn)備:量角器、正方形、剪刀、各類三角形(包括直角三角形、銳角三角形、鈍角三角形)

  教學(xué)過程:

  一、 設(shè)疑引思

  1、 分小組分別量出直角三角形、銳角三角形、鈍角三角形的三個內(nèi)角的度數(shù)、

  2、 每小組請一位同學(xué)說出自已量的三角形中兩個角的度數(shù)老師迅速”猜出”第三個角的度數(shù)、

  3、 設(shè)問:老師為什么能很快”猜” 出第三個角的度數(shù)呢?

  三角形還有許多奧妙,等待我們?nèi)ヌ剿鳌?導(dǎo)入新課,板書課題>

  二、 探索交流,獲取新知

  1、 量一量:每個學(xué)生將自已剛才量出的三角形的內(nèi)角和的度數(shù)相加,初步得出”三角形的內(nèi)角和是180°”的結(jié)論、

  2、 折一折:將正方形紙沿對角線對折,使之變成兩個完全重合的三角形,發(fā)現(xiàn):一個三角形的內(nèi)角和就是正方形4個角內(nèi)角和的一半,也就是360的一半,即180度, 初步驗證”三角形的內(nèi)角和是180°”的結(jié)論、

  3、 拼一拼:學(xué)生先動手剪拼所準(zhǔn)備的三角形,進一步驗證得出”三角形的內(nèi)角和是180°”的結(jié)論、

  4、 師利用課件演示將一個三角形的三個角拼成一個平角的`過程、

  5、 驗證:FLASH演示三種三角形割補過程

  發(fā)現(xiàn)1: 通過把直角三角形割補后,內(nèi)角∠2,∠3 組成了一個()角,等于()度,∠1等于90度。所以直角三角形的內(nèi)角和等于( )度。

  發(fā)現(xiàn)2:通過把鈍角、銳角三角形割補后,三角組成了一個( )角,而( )角等于( )度。所以銳角三角形和鈍角三角形的內(nèi)角和都是180度。

  6、 小結(jié):剛才能過量一量折一折拼一拼,你發(fā)現(xiàn)了什么?

  生說,師板書:三角形的內(nèi)角和———180°

  三、 應(yīng)用練習(xí),拓展提高

  1、書例5后”做一做”

  思考:為什么不能畫出一個有兩個直角的三角形?(兩個鈍角、一個直角和一個鈍角的三角形?)

  2、下面哪三個角會在同一個三角形中。

 。1)30、60、45、90

 。2)52、46、54、80

 。3)61、38、44、98

  3、走向生活:

  (1)那天,老師去買了一塊三角形的玻璃,我拿著玻璃,剛到校門,一不小心,碰在門上了,摔成這幾塊(撕),哎,只有再去買一塊,但尺寸我記不得了,該怎么辦,你們能不能幫老師想想辦法?我憑哪塊碎片能再去配一塊和原來一樣的三角形玻璃嗎?

 。ńY(jié)合學(xué)生回答進行演示:延長兩條邊,交于一點,形成原來的三角形。所以:兩個角確定了,三角形玻璃形狀和大小也就確定了。)

  四 作業(yè):作業(yè)本

  五 全課總結(jié)

  總結(jié):今天這節(jié)課我們研究了三角形的內(nèi)角和,你們學(xué)到了哪些知識,有什么收獲?

  板書設(shè)計:三角形的內(nèi)角和

  三角形的內(nèi)角和———180°

三角形的內(nèi)角和的教學(xué)設(shè)計4

  【教學(xué)內(nèi)容】

  新課標(biāo)人教版四年級下冊第五單元《三角形》

  【教材分析】

  “三角形內(nèi)角和”這節(jié)課是新課標(biāo)人教版四年級下冊第五單元的教學(xué)內(nèi)容,是在學(xué)生學(xué)習(xí)了三角形的概念及特征之后進行的。教材先給出了量這一思路,繼而讓學(xué)生探索驗證三角形內(nèi)角和是180度這一觀點。在活動過程中,先通過“畫一畫、量一量”,產(chǎn)生初步的發(fā)現(xiàn)和猜想,再“拼一拼、折一折”,引導(dǎo)學(xué)生對已有猜想進行驗證,經(jīng)歷提出猜想——進行驗證的的過程,滲透數(shù)學(xué)學(xué)習(xí)方法和思想。

  【學(xué)生分析】

  學(xué)生已經(jīng)掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識,大多數(shù)學(xué)生已經(jīng)在課前通過不同的途徑知道“三角形的內(nèi)角和是180度”的結(jié)論,但不一定清楚道理,所以本課的設(shè)計意圖不在于了解,而在于驗證,讓學(xué)生在課堂上經(jīng)歷研究問題的過程是本節(jié)課的重點。四年級的學(xué)生已經(jīng)初步具備了動手操作的意識和能力,并形成了一定的空間觀念,能夠在探究問題的過程中,運用已有知識和經(jīng)驗,通過交流、比較、評價尋找解決問題的途徑和策略。

  【學(xué)習(xí)目標(biāo)】

  1.學(xué)生動手操作,通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)“三角形內(nèi)角和等于180度”的規(guī)律。

  2.在探究過程中,經(jīng)歷知識產(chǎn)生、發(fā)展和變化的過程,通過交流、比較,培養(yǎng)策略意識和初步的空間思維能力。

  3.體驗探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。

  【教學(xué)過程】

  一、創(chuàng)設(shè)情境,發(fā)現(xiàn)問題

  1、魔術(shù)導(dǎo)入:把長方形的紙剪兩刀,怎樣拼成一個三角形?

  2、你知道三角形的那些知識?(復(fù)習(xí))

  3、小游戲:猜一猜藏在信封后面的是什么三角形。

  師:我們在猜三角形的時候,看到一個直角,就能斷定它一定是直角三角形;看到一個鈍角,就能斷定他一定是鈍角三角形;但只看到一個銳角,就判斷不出來是哪種三角形?磥碓谝粋三角形中,只能有一個直角或一個鈍角,為什么畫不出有兩個直角或兩個鈍角的三角形呢?

  三角形的這三個角究竟存在什么奧秘呢,我們一起來研究研究。

 。▌(chuàng)設(shè)的不是生活中的情境,而是數(shù)學(xué)化的情境。有的孩子認(rèn)為一個三角形中可能會有兩個鈍角,還有的提出等邊三角形中可能會有直角,這兩個問題顯現(xiàn)出學(xué)生在認(rèn)知上的矛盾,學(xué)生用已經(jīng)學(xué)的三角形的特征只能解釋“不能是這樣”,而不能解釋“為什么不能是這樣”。這樣引入問題恰好可以利用學(xué)生的這種認(rèn)知沖突,激發(fā)學(xué)生的學(xué)習(xí)興趣。)

  二、引導(dǎo)探究,解決問題

  1.介紹內(nèi)角、內(nèi)角和

  師:我們現(xiàn)在研究三角形的三個角,都是它的內(nèi)角,以后到了初中,還會接觸三角形的外角?蠢蠋熓掷锏娜切,關(guān)于它的三個內(nèi)角,除了我們已經(jīng)掌握的知識外,你還知道哪方面的知識?誰能說一說三角形的內(nèi)角和指的是什么?

  已經(jīng)知道三角形的內(nèi)角和是多少的同學(xué),可以把它寫在本上。不知道的同學(xué)想一想,計量內(nèi)角和的單位是度,可以估計一下,各種各樣的三角形的內(nèi)角和是不是一個固定的數(shù),有可能會是多少度,把你的猜想也寫在本上。

  我們這節(jié)課就來一起探究用哪些方法能知道三角形的內(nèi)角和。

  2.確定研究范圍(預(yù)設(shè)約3-5分)

  師:研究三角形的內(nèi)角和,是不是應(yīng)該包括所有的三角形?只研究黑板上這一個行不行?那就隨便畫,挨個研究吧。(學(xué)生反對)

  請你想個辦法吧!

 。ㄍㄟ^引導(dǎo)學(xué)生分析,“研究哪幾類三角形,就能代表所有的三角形”這個問題,來滲透研究問題要全面,也就是完全歸納法的數(shù)學(xué)思想)

  3.動手操作實踐(預(yù)設(shè)約8-10分)

  同桌組成學(xué)習(xí)小組,拿出課前制作的各種各樣的三角形,先找到三個內(nèi)角,把每個角標(biāo)上序號。老師提出要求:先試著研究自己的三角形,然后再共同研究小組里其他同學(xué)的三角形,看看各種三角形內(nèi)角和是不是一樣的。(學(xué)生動手操作試驗,在小組中討論問題)

  (為了滿足學(xué)生的探究欲望,發(fā)揮學(xué)生的主觀能動性,我在設(shè)計學(xué)具的時候,想了幾個不同的方案,最后決定課前讓學(xué)生在學(xué)習(xí)小組里分工合作制作各種不同的三角形,課上就讓學(xué)生就用自己制作的三角形,通過獨立探究和組內(nèi)交流,實現(xiàn)對多種方法的體驗和感悟。)

  4.匯報交流(預(yù)設(shè)約15-20分)

  (1)測量的方法

  學(xué)生匯報量的方法,師請同學(xué)評價這種方法。

  師小結(jié):直接量的方法挺好,雖然測量有誤差,不準(zhǔn),但我們能知道,三角形的內(nèi)角和只能在180°左右,究竟是不是一定就是180度呢,誰還有別的方法?

  (2)剪拼的方法

  學(xué)生匯報后師小結(jié):能想到這個方法不簡單,拼成的看起來像平角,到底是不是平角呢,我們一起來試試看。(教師和學(xué)生剪一剪、拼一拼)

  師:把三角形的三個內(nèi)角湊到了一起,拼成了一個大角,角的兩條邊是不是在一條直線上呢?看起來挺象的,但在操作的過程中難免會產(chǎn)生誤差,有時會差一點點,誰還有別的`方法確定三角形的內(nèi)角和一定是180°?

 。3)折拼的方法

  學(xué)生匯報后師小結(jié):我們要研究三角形的內(nèi)角和,實際上就是想辦法把三角形的三個內(nèi)角湊到一起,像剪和折的方法,看三個內(nèi)角拼到一起是不是180度,都是借助我們學(xué)過的平角解決的問題。

  這三種方法都不錯,在操作的過程中,有時會有誤差,不太有說服力。想一想,你還能不能借助我們學(xué)過的哪種圖形,想辦法說明三角形的內(nèi)角和一定是180度?

 。4)演繹推理的方法

 。ń柚鷮W(xué)過的長方形,把一個長方形沿對角線分成兩個三角形。)

  師:你認(rèn)為這種方法好不好?我們看看是不是這么回事。

  師小結(jié):這種方法避免了在剪拼過程中由于操作出現(xiàn)的誤差,非常準(zhǔn)確的說明了三角形的內(nèi)角和一定是180度。

  (學(xué)生通過小組合作的方式學(xué)到方法,分享經(jīng)驗,更重要的是領(lǐng)悟到科學(xué)研究問題的方法。就學(xué)生的發(fā)展而言,探究的過程比探究獲得的結(jié)論更有價值。)

  學(xué)生用的方法會非常多,怎樣對這些方法進行引導(dǎo),是值得思考的問題。這些方法的思維水平不應(yīng)該是平行的:直接測量的方法是學(xué)生利用已有的知識,測量出每個角的度數(shù),再用加法求和;拼角求和法,也就是間接剪拼和折拼這兩種方法,都是通過拼成一個特殊角,也就是平角來解決問題;而演繹推理,即把兩個完全相同的三角形合二為一,或把長方形一分為二,成為兩個三角形,這是更深層次的思考,是一種批判的思維。前兩種方法是不完全歸納法,能使我們確定研究的范圍只能是180度左右,而不可能是其他任意猜想的度數(shù)。最后一種方法具有演繹推理的色彩,把一個長方形沿對角線分成兩個完全相同的三角形后,因為兩個三角形的內(nèi)角和是原來長方形的四個內(nèi)角之和360度,所以一個三角形的內(nèi)角和就是360°÷2=180°,這種方法從科學(xué)證明的角度闡述了三角形的內(nèi)角和,它有嚴(yán)密性和精確性;谝陨系南敕,我覺得在課上不能停留在學(xué)生對方法的描述上,而應(yīng)引導(dǎo)學(xué)生經(jīng)歷從直觀到抽象、思維程度從低到高的過程,感悟數(shù)學(xué)的嚴(yán)謹(jǐn)性。所以在最后一個環(huán)節(jié)中,教師向全班同學(xué)推薦這種分的方法,大家一起來做一做,不要求全體都掌握,就想起到引導(dǎo)和點撥的作用。學(xué)生在經(jīng)歷量和拼之后,逐漸會在思維發(fā)散的過程中得到集中,集中為分的方法,最后將四邊形一分為二,五邊形一分為三,六邊形一分為四……,又會發(fā)現(xiàn)一些新的規(guī)律!

  5.驗證猜想

  請學(xué)生把剛才研究的三角形舉起來,分別是銳角三角形、直角三角形、鈍角三角形,這三類的三角形內(nèi)角和都是180度,那就可以說,所有的三角形的內(nèi)角和都是180度。

  這個結(jié)論和課前剛才知道的或猜的一樣嗎?

 。ㄔ诤芏嗤瑢W(xué)都知道三角形內(nèi)角和的情況下,要引導(dǎo)學(xué)生領(lǐng)悟有了猜測還要去驗證,這是一種科學(xué)的研究問題的方法,是一種求實精神。)

  6.解釋課前問題

  用內(nèi)角和的知識解釋課前的問題,為什么在三角形中不能有兩個直角或鈍角。

  三、拓展應(yīng)用,深化創(chuàng)新

  1.介紹科學(xué)家帕斯卡(出示帕斯卡的資料)

  師:帕斯卡為科學(xué)作出了巨大的貢獻,在我們以后學(xué)習(xí)的知識中,也有很多是帕斯卡發(fā)現(xiàn)和驗證的,他12歲就發(fā)現(xiàn)三角形內(nèi)角和是180度,我們同學(xué)還沒到12歲,看你能不能通過自己的努力也去探索和發(fā)現(xiàn)。

  2.四邊形內(nèi)角和及多邊形內(nèi)角和(幻燈片)

  你打算用哪種方法知道四邊形的內(nèi)角和?

  你覺得哪種方法更好?

 。ㄔO(shè)計求四邊形的內(nèi)角和,是把這個新問題轉(zhuǎn)化歸結(jié)為求幾個三角形內(nèi)角和的問題上,滲透化歸的數(shù)學(xué)學(xué)習(xí)方法。)

  3.總結(jié)

  我們把四邊形一分為二,用三角形內(nèi)角和的知識知道了四邊形內(nèi)角和,那么五邊形、六邊形……這些多邊形的內(nèi)角和是多少度?有沒有什么規(guī)律可循,希望同學(xué)們能用學(xué)到的知識和方法去探究問題,你還會有一些精彩的發(fā)現(xiàn)。

三角形的內(nèi)角和的教學(xué)設(shè)計5

  【教學(xué)資料】

  《義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)(人教版)》四年級下冊第五單元第85頁

  【教學(xué)目標(biāo)】

  1、透過"量一量","算一算","拼一拼","折一折"的方法,讓學(xué)生推理歸納出三角形內(nèi)角和是180°,并能應(yīng)用這一知識解決一些簡單問題。

  2、透過把三角形的內(nèi)角和轉(zhuǎn)化為平角進行探究實驗,滲透"轉(zhuǎn)化"的數(shù)學(xué)思想、

  3、透過數(shù)學(xué)活動使學(xué)生獲得成功的體驗,增強自信心、培養(yǎng)學(xué)生的創(chuàng)新意識,探索精神和實踐潛力、

  【教學(xué)重難點】

  理解并掌握三角形的內(nèi)角和是180度

  【教具學(xué)具準(zhǔn)備】

  多媒體課件、各類三角形、長方形、正方形、量角器、剪刀、固體膠、活動記錄表等。

  【教學(xué)流程】

 。ㄒ唬﹦(chuàng)設(shè)情境,激發(fā)興趣

  此刻正是春暖花開,萬物復(fù)蘇的季節(jié)。在這完美的日子里,我們相聚在那里,劉老師十分高興認(rèn)識大家,你看把蝴蝶也引來了。(課件)

  師:請大家仔細(xì)觀察,它把這條繩子圍成了什么三角形?

 。ㄕn件)

  師:請大家仔細(xì)想一想,這三個三角形在圍的過程中什么變了?什么沒變?

  生答

  師:這節(jié)課我們一齊來研究三角形的內(nèi)角和。(板書:三角形的內(nèi)角和)

  【評析:以問題情境為出發(fā)點,既豐富了學(xué)生的感官認(rèn)識,又激發(fā)了學(xué)生的學(xué)習(xí)了熱情!

  (二)動手操作,探索新知

  1、揭示“內(nèi)角”和“內(nèi)角和”的概念

 。1)“內(nèi)角”的概念

 。◣熓帜靡粋三角形)這個三角形的內(nèi)角在哪?誰來指給大家看。一個三角形有幾個內(nèi)角?

  每人從學(xué)具筐中任選一個三角形,指出它的內(nèi)角。

 。2)“內(nèi)角和”的概念

  師:大家明白了什么是三角形的內(nèi)角,那什么叫“內(nèi)角和”呢?

  師小結(jié):三角形的內(nèi)角和就是三個內(nèi)角的度數(shù)之和。

  2、猜測內(nèi)角和

  (1)師拿一個銳角三角形問:大家猜一猜這個銳角三角形的內(nèi)角和是多少度?有不同想法嗎?

 。ǎ玻┲苯侨切闻c鈍角三角形同上。

 。ǎ常⿴煟嚎磥泶蠹叶颊J(rèn)為三角形的內(nèi)角和是180o,但這僅僅是我們的一種猜測,有了猜測就能夠下結(jié)論了嗎?我們還需要進一步的驗證.

  3、動手驗證,匯報交流

 。ǎ保┙榻B學(xué)具筐

  劉老師為每個小組準(zhǔn)備了一個學(xué)具筐,里面有不同的學(xué)習(xí)了材料,或許這些材料會對你有所啟發(fā),幫忙你想出好辦法。每人此刻都認(rèn)真的想一想,你打算怎樣來驗證三角形的內(nèi)角和不是180o呢?

 。ǎ玻┥毩⑺伎,動手操作

 。ǎ常┙M內(nèi)交流

  經(jīng)過獨立思考和動手操作,每人都有了自己的驗證方法,先在小組內(nèi)交流各自的驗證方法。

 。4)全班匯報交流

  師:來吧孩子們,該到全班交流的時候了.誰愿意先把自己的方法與大家一齊分享。

  A、測量法

  活動記錄表

  三角形的形狀每個內(nèi)角的度數(shù)三個內(nèi)角和

  ∠1∠2∠3

  學(xué)生匯報測量結(jié)果。

  師:剛才大家都認(rèn)為三角形的內(nèi)角和是180度,但量的結(jié)果有的是180度,有的不是180度,這是怎樣原因呢?

  生發(fā)表觀點

  師小結(jié):看來采用測量的方法會有誤差,學(xué)習(xí)了數(shù)學(xué)要用這種嚴(yán)謹(jǐn)?shù)膽B(tài)度來對待,咱們再看看別的方法。

  B、撕拼法

  請用撕拼方法的學(xué)生上臺展示撕拼的過程。

  師:你是怎樣想到把三角形撕下來拼成一個平角來驗證的呢?

  師評價:你把本不在一齊的三個角,透過移動位置,把它轉(zhuǎn)化成一個平角來驗證,還用了轉(zhuǎn)化的思想,你真了不起。

  師:透過他們?nèi)齻人的驗證,你得到了什么結(jié)論?

 。、其他方法

  師:條條大路通羅馬,還有別的驗證方法嗎?

  如果學(xué)生出現(xiàn)把兩個完全相同的直角三角形拼成一個長方形來驗證。

  師追問:這種方法真的很簡單,但它只能證明哪一類的三角形呢?

  【評析:《標(biāo)準(zhǔn)》指出:“教師應(yīng)激發(fā)學(xué)生的用心性,向?qū)W生帶給充分從事數(shù)學(xué)活動的機會,幫忙他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗。”在教學(xué)設(shè)計中劉老師注意體現(xiàn)這一理念,允許學(xué)生根據(jù)已有的知識經(jīng)驗進行猜測,在猜測后先獨立思考驗證的方法,再進行小組交流。給學(xué)生充分的活動時間和空間,讓學(xué)生動手操作,使學(xué)生在量、剪、拼、折等一系列實驗活動中理解和掌握三角形內(nèi)角和是180°這個圖形性質(zhì)。在探索活動中,使學(xué)生學(xué)會與他人合作,同時也使學(xué)生學(xué)到了怎樣由已知探索未知的思維方式與方法,培養(yǎng)他們主動探索的精神,讓學(xué)生在活動中學(xué)習(xí)了,在活動中發(fā)展!

  4、科學(xué)驗證方法

  師:不同的方法,同樣的精彩,大家發(fā)現(xiàn)了嗎?無論是撕一撕、折一折、還是拼一拼,這些方法都有異曲同工之妙,那就是你們都用了轉(zhuǎn)化的策略。我發(fā)現(xiàn)你們都有數(shù)學(xué)家的頭腦,明白嗎?數(shù)學(xué)家在證明這一猜想時,也用了轉(zhuǎn)化的思想,一齊來看(看課件)

  【評析:一方面使學(xué)生為自己猜想的結(jié)論能被證明而產(chǎn)生滿足感;另一方面使學(xué)生體會到數(shù)學(xué)是嚴(yán)謹(jǐn)?shù),從小就就?yīng)讓學(xué)生養(yǎng)成嚴(yán)謹(jǐn)、認(rèn)真、實事求是的學(xué)習(xí)了態(tài)度!

 。ㄈ┱n外拓展,積淀文化

  師:明白三角形內(nèi)角和的秘密最早是由誰發(fā)現(xiàn)的嗎?(放課件)

  師:善于數(shù)學(xué)發(fā)現(xiàn)和思考使帕斯卡走上了成功的道路。這節(jié)課才10歲的我們也用自己的智慧發(fā)現(xiàn)了帕斯卡12歲時的數(shù)學(xué)發(fā)現(xiàn),我們同樣了不起,劉老師為大家感到驕傲。

  【評析:適當(dāng)?shù)囊胝n外知識,它既能夠激發(fā)學(xué)生的學(xué)習(xí)了興趣,又有機的滲透了向帕斯卡學(xué)習(xí)了,做一個善于思考、善于發(fā)現(xiàn)的孩子,對學(xué)生的情感、態(tài)度、價值觀的構(gòu)成與發(fā)展能起到了潛移默化的作用!

  (四)應(yīng)用新知,解決問題

  明白了這個結(jié)論能夠幫忙我們解決那些問題呢?

 。薄褍蓚小三角形拼成一個大三角形,大三角形的內(nèi)角和是多少度?為什么?

  師:大三角形的內(nèi)角是哪些?指出來

  師:當(dāng)把兩個三角形拼在一齊時,消失了兩個內(nèi)角,正好是180°,所以大三角形的內(nèi)角和還是180度,如果把三角形分成兩個小三角形呢?

  師小結(jié):三角形無論大小,內(nèi)角和都是180°。

  【評析:透過課件動態(tài)演示兩個三角形分與合的過程,讓學(xué)生進一步理解三角形內(nèi)角和等于180度這個結(jié)論,使學(xué)生認(rèn)識到三角形的內(nèi)角和不因三角形的大小而改變!

  2、想一想,做一做

  在一個三角形ABC中,已知A45°,B85o,求с的度數(shù)。

  在一個直角三角形中,已知с52o,求Α的度數(shù)。

  爸爸給小紅買了一個等腰三角形的風(fēng)箏。它的一個底角是70°,它的頂角是多少度?

  【評析:將三角形內(nèi)角和知識與三角形特征有機結(jié)合起來,使學(xué)生綜合運用內(nèi)角和知識和直角三角形、等腰三角形等圖形特征求三角形內(nèi)角的度數(shù)。】

  3、思考:

  你能畫出一個有兩個直角或兩個鈍角的三角形嗎?為什么?

  【評析:將三角形內(nèi)角和知識與三角形的分類知識結(jié)合起來,引導(dǎo)學(xué)生運用三角形內(nèi)角和的知識去解釋直角三角形、鈍角三角形中角的特征,較好地溝通了知識之間的聯(lián)系!

  (五)全課小結(jié),完善新知

  1、學(xué)生談收獲

  2、師小結(jié)

  這天我們收獲的.不僅僅僅是知識上的,還有情感上的,思想方法上的,還認(rèn)識了一位了不起的科學(xué)家帕斯卡,因為他的好奇與不滿足讓我們記住了他。相信在座的每一位只要你擁有善于發(fā)現(xiàn)的眼睛,勤于思考的大腦,勇于實踐的雙手,將來某一天你也會像他一樣偉大。

  【評析:這樣用談話的方式進行總結(jié),不僅僅總結(jié)了所學(xué)知識技能,還體現(xiàn)了學(xué)法的指導(dǎo),增強了情感體驗!

  【總評】整節(jié)課劉老師透過巧妙的設(shè)計,讓學(xué)生經(jīng)歷了觀察、發(fā)現(xiàn)、猜測、驗證、歸納、概括等數(shù)學(xué)活動,切實體現(xiàn)了新課程的核心理念“以學(xué)生為本,以學(xué)生的發(fā)展為本”。具體體此刻以下幾個方面:

  1、精心設(shè)計學(xué)習(xí)了活動,讓每一個學(xué)生經(jīng)歷知識構(gòu)成的過程。劉老師為學(xué)生帶給了豐富的結(jié)構(gòu)化的學(xué)習(xí)了材料,有各類的三角形、相同的三角形等,促使學(xué)生人人動手、人人思考,引導(dǎo)學(xué)生在獨立思考的基礎(chǔ)上進行合作與交流。在這一過程中發(fā)展學(xué)生的動手操作潛力、推理歸納潛力,實現(xiàn)學(xué)生對知識的主動建構(gòu)。

  2、立足長遠(yuǎn),注重長效,不僅僅關(guān)注知識和潛力目標(biāo)的落實,更注重數(shù)學(xué)思想方法的滲透。在驗證三角形內(nèi)角和是180度的過程中,教師有意識地引導(dǎo)學(xué)生認(rèn)識到撕拼的驗證方法其實是把三角形的內(nèi)角和轉(zhuǎn)化成了平角,使學(xué)生對“轉(zhuǎn)化”的數(shù)學(xué)思想有所感悟;在對測量的結(jié)果出現(xiàn)不同答案的交流過程中,使學(xué)生認(rèn)識到測量時會出現(xiàn)誤差,從而培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)、科學(xué)的學(xué)習(xí)了態(tài)度和探究精神。

  3、遵循教材,不唯教材。本節(jié)課上,劉老師延伸了教材,介紹了科學(xué)驗證三角形內(nèi)角和的方法以及這一結(jié)論的發(fā)現(xiàn)者帕斯卡的故事,拓寬了學(xué)生的知識面,把學(xué)生的學(xué)習(xí)了置于更廣闊的數(shù)學(xué)文化背景中,激起了學(xué)生對數(shù)學(xué)的強烈興趣,激發(fā)了學(xué)生積極向上的學(xué)習(xí)了情感。

  整節(jié)課的學(xué)習(xí)了資料,突出了數(shù)學(xué)學(xué)科的實質(zhì),抓住了數(shù)學(xué)的本質(zhì),使學(xué)生在動手“做”數(shù)學(xué)的過程中尋求成功,在成功中享受快樂,在快樂中不斷超越,在超越中體驗成長、

三角形的內(nèi)角和的教學(xué)設(shè)計6

  【教材內(nèi)容】

  北京市義務(wù)教育課程改革實驗教材(北京版)第九冊數(shù)學(xué)

  【教材分析】

  《三角形內(nèi)角和》是北京市義務(wù)教育課程改革實驗教材(北京版)第九冊第三單元的內(nèi)容,屬于空間與圖形的范疇,是在學(xué)生已經(jīng)掌握了三角形的穩(wěn)定性和三角形的三邊關(guān)系相關(guān)知識后對三角形的進一步研究,探索三角形的內(nèi)角和等于180°。教材中安排了學(xué)生對不同形狀的、大小的三角形進行度量,再運用拼、折、剪等方法發(fā)現(xiàn)三角形的內(nèi)角和是180°。讓學(xué)生在自主探索中發(fā)現(xiàn)三角形的又一特性,更加深入的培養(yǎng)了學(xué)生的空間觀念。

  【學(xué)生分析】

  在四年級學(xué)生已經(jīng)掌握了角的概念、角的分類和角的度量等知識。在本課之前,學(xué)生又掌握了三角形的穩(wěn)定性研究了三角形的分類。這些都為進一步研究三角形內(nèi)角和作了知識儲備和心理準(zhǔn)備,為本課內(nèi)容的教學(xué)作了鋪墊。三角形的內(nèi)角和是三角形的一個重要性質(zhì)。它有助于理解三角形的三個內(nèi)角之間的關(guān)系,是進一步學(xué)習(xí)、研究幾何問題的基礎(chǔ)。

  【教學(xué)目標(biāo)】

  1、通過量、拼、折、剪等方法探索和發(fā)現(xiàn)三角形的內(nèi)角和等于180°掌握并會應(yīng)用這一規(guī)律解決實際的問題。

  2、通過討論、爭辯、操作、推理發(fā)展學(xué)生動手操作、觀察比較和抽象概括的能力。

  3、使學(xué)生掌握由特殊到一般的邏輯思辨方法和先猜想后研究問題的方法。

  【教學(xué)重點】

  讓學(xué)生經(jīng)歷“三角形內(nèi)角和是180度”這一知識的形成發(fā)展和應(yīng)用的全過程。

  【教學(xué)難點】

  能利用學(xué)到的知識進行合情的推理。

  【教具學(xué)具準(zhǔn)備】

  課件、各種各樣的直角三角形、長方形、剪刀、量角器、數(shù)學(xué)紙

  【教學(xué)過程】

  一、學(xué)具三角板,引入新課

  1、(出示兩個直角三角板),問:這是咱們同學(xué)非常熟悉的一種學(xué)習(xí)工具,是什么呀?(三角板)它們的外形是什么形狀的?(三角形)(課件:抽象出三角形)

  2、顧名思義一個三角形都有幾個角呀?(三個)

  3、認(rèn)識內(nèi)角

 。1)在三角形的內(nèi)部相臨兩條邊之間所夾的角叫做三角形的內(nèi)角。(課件閃爍∠1)(板書:三角形內(nèi)角)∠1就叫做三角形的什么?這兩條邊夾的角∠2呢?∠3呢?

 。2)這個三角形內(nèi)有幾個內(nèi)角?(三個)這個呢?(三個)

 。ㄔO(shè)計意圖:由學(xué)生最熟悉的三角板引入新課,激發(fā)學(xué)生興趣的同時為后面的學(xué)習(xí)做準(zhǔn)備)

  二、動手操作,探索新知

 。ㄒ唬┲苯侨切蝺(nèi)角和

 、、特殊直角三角形內(nèi)角和

  1、根據(jù)我們以往對三角板的了解,你還記得每個三角形上每個內(nèi)角各是多少度嗎?(生說度數(shù),師課件上在相應(yīng)角出示度數(shù):①90°、60°、30°,②90°、45°、45°)。

  2、觀察這兩個三角形的度數(shù),你有什么發(fā)現(xiàn)?

  生1:都有一個直角,師:那我們就可以說他們是什么三角形?(板書:直角三角形)

  生2:我還發(fā)現(xiàn)他們內(nèi)角加起來是180度。師:他真會觀察,你發(fā)現(xiàn)了嗎?快算一算是不是他說的那樣?

  (課件):(1)90°+60°+30°=180°)

  那么另一個三角板的三個內(nèi)角的總度數(shù)是多少?

  (生回答,師課件:(2)90°+45°+45°=180)

  3、你指的哪是180度?(生:這三個內(nèi)角合起來是180度)

  4、在三角形內(nèi)三個內(nèi)角的總度數(shù)又簡稱為三角形的內(nèi)角和。(板書:和)

  5、這個直角三角形的內(nèi)角和是多少度?另一個呢?

  6、你還記得180度是我們學(xué)過的是什么角嗎?(平角)趕快在你的數(shù)學(xué)紙上畫一個平角。

 。◣煶鍪疽粋平角)問:平角是什么樣的?

  7、師述:角的兩邊形成一條直線就是平角。也就是180度,哦,這兩個直角三角形的內(nèi)角和就組成這樣的一個角呀。

 、、一般直角三角形內(nèi)角和

  1、老師還為你們準(zhǔn)備了各種各樣的直角三角形,快拿出來看看。

  2、剛才的那兩個直角三角形的內(nèi)角和是180度,你們手中的直角三角形的內(nèi)角和是多少度呢?老師還為你們準(zhǔn)備了一些學(xué)具,你能充分地利用這些學(xué)具,想辦法來研究直角三角形的內(nèi)角和是多少度嗎?下面我們以小組為單位來研究,注意小組同學(xué)要明確分工可以一個人填表,另外的人一起動手實驗看一看哪一組想出研究方法最多。

 。1)小組活動(2)匯報

  哪個組愿意把你們的研究成果向大家展示?每個小組派代表發(fā)言。(在實物展臺上演示)

  三角形的種類

  驗證方法

  驗證結(jié)果

  *“量一量”的方法:

  板書:有一點誤差的度數(shù)

  *“剪一剪”的方法:

  我們在剪的時候要注意什么?剪完之后怎樣拼?拼成的是什么?你怎么知道是平角?(提示:可以在我們畫的平角上拼)(課件展示)

  現(xiàn)在我們也用這種方法試一試,看能不能拼成平角?(小組實驗)

  你們的直角三角形的內(nèi)角和拼成的是平角嗎?也就是內(nèi)角和是多少度?

  還有其他方法嗎?

  *“折一折”的方法:

  預(yù)設(shè):①生:我是折的。師:怎樣折的?你能給大家演示嗎?

  學(xué)生演示(課件:折的過程)

 、趯W(xué)生沒有說出來,師:你們看老師還有一種方法請看:(課件:折的過程)其實折的方法和剪、撕的道理是一樣的,最后都是把三個內(nèi)角拼成平角。(板書:折)

  *推理:

  你們有用長方形來研究直角三角形內(nèi)角和度數(shù)的嗎?(課件:長方形)快想一想用長方形怎樣去研究?(課件:長方形驗證的過程)

  這種方法就叫做推理,一般到中學(xué)以后我們經(jīng)常會用到。(板書:推理)

  3、小結(jié)

 。1)通過我們剛才的研究,我們發(fā)現(xiàn)直角三角形的內(nèi)角和都是多少度呀?(板書:內(nèi)角和是180°)剛才我們在測量的時候為什么會出現(xiàn)179度183度呢?看來只要是測量不可避免的會產(chǎn)生誤差。

  (2)在我們?nèi)切蔚氖澜缰,是只有直角三角形嗎?還有什么?(板書:銳角三角形、鈍角三角形)

  (設(shè)計意圖:引導(dǎo)學(xué)生通過量、拼、推理等實踐操作活動,自主探究直角三角形的內(nèi)角和是180度,體驗解決問題策略的多樣化。通過這些過程使學(xué)生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達(dá)到結(jié)論的統(tǒng)一,從而使學(xué)生明白獲得探究問題的方法比獲得結(jié)論更為重要。)

 。ǘ、銳角三角形、鈍角三角形的內(nèi)角和

  1、請你們?nèi)我猱嬕粋鈍角三角形,一個銳角三角形

  2、直角三角形的內(nèi)角和是180度,銳角三角形、鈍角三角形的.內(nèi)角和又是多少度呢?你能利用我們剛才學(xué)到的知識來研究你所畫的三角形的內(nèi)角和是多少度嗎?快試試,可以同桌討論。(學(xué)生操作,匯報,課件演示)我們是用什么方法來研究的?

  3、學(xué)生模仿老師操作說理

  4、由此我們得到了銳角三角形的內(nèi)角和是多少度?鈍角三角形的內(nèi)角和呢?我們就可以說所有三角形的內(nèi)角和都是180度。

  師:這也是三角形的一個特性,現(xiàn)在你對三角形的這一特性有疑問嗎?如果沒有的話請你用自信、肯定的語氣讀一讀(板書:三角形的內(nèi)角和是180°)。

  (設(shè)計意圖:引導(dǎo)學(xué)生通過直角三角形的內(nèi)角和是180度來推導(dǎo)出銳角和鈍角三角形的內(nèi)角和是180度,使學(xué)生初步掌握由特殊到一般的邏輯思辨方法。)

  三、鞏固新知,拓展應(yīng)用

  我們就用三角形的這一特性來解決一些問題

  1、兩個三角形拼成大三角形

 。1)每個三角形的內(nèi)角和都是少度?

 。2)(課件把兩個三角形拼在一起)它的內(nèi)角和是多少度?(這時學(xué)生答案又出現(xiàn)了180°和360°兩種。)師:究竟誰對呢

  2、一個三角形去掉一部分

  (1)這是一個三角形,他的內(nèi)角和是多少度?我從中剪去一個三角形他的內(nèi)角和是多少度?

  再剪去一個三角形呢?(課件演示)

  你們看這兩個三角形他們的大小、形狀都怎么樣?但內(nèi)角和都是180度,看來三角形的內(nèi)角和的度數(shù)和他的大小形狀都無關(guān)。

 。2)我再把這個三角形剪去一部分,它的內(nèi)角和是多少度?(課件:剪成四邊形)

  你能利用我們?nèi)切蔚膬?nèi)角和是180度來研究這個四邊形的內(nèi)角和是多少度嗎?

 。3)如果五邊形,你還能求出他的度數(shù)嗎?

 。ㄔO(shè)計意圖:充分利用多媒體資源幫助學(xué)生理解、消化、新的知識,能夠靈活的運用三角形的內(nèi)角和等于180度。在此基礎(chǔ)上滲透數(shù)學(xué)的“轉(zhuǎn)化”思想和“分割”思想提高學(xué)生靈活運用和推理等各方面的能力。)

  四、總結(jié)評價、延伸知識

  通過這節(jié)課的學(xué)習(xí)研究你掌握了哪些知識?我們是怎樣研究的呢?

  師:先研究的是特殊直角三角形的內(nèi)角和是180度,接著通過量、拼等方法得到了直角三角形的內(nèi)角和是180度,再利用直角三角形通過推理研究出銳角三角形和鈍角三角形的內(nèi)角和是180度。

 。ㄔO(shè)計意圖:幫助學(xué)生梳理本節(jié)課的知識脈絡(luò)。)

三角形的內(nèi)角和的教學(xué)設(shè)計7

  教學(xué)內(nèi)容:

  北師版小學(xué)數(shù)學(xué)四年級下冊《探索與發(fā)現(xiàn)(一)—三角形內(nèi)角和》

  教材分析:

  《三角形內(nèi)角和》是北師大版小學(xué)數(shù)學(xué)四年級下冊第二單元第三節(jié)的內(nèi)容,是在學(xué)生認(rèn)識了直角三角形、銳角三角形、鈍角三角形、等腰三角形和等邊三角形的特點的基礎(chǔ)上進一步探究三角形有關(guān)性質(zhì)中的三個內(nèi)角和的性質(zhì),是“空間與圖形”領(lǐng)域的重要內(nèi)容之一。教材在呈現(xiàn)教學(xué)內(nèi)容時,不但重視知識的形成過程,而且注意留給學(xué)生充分進行自主探索和交流的空間。三角形的內(nèi)角和的性質(zhì)沒有直接給出,而是提供了豐富多彩的動手實踐的素材,讓學(xué)生通過探索、實驗、討論、交流而獲得,從而讓學(xué)生在動手操作,積極探索的活動過程中掌握知識,積累數(shù)學(xué)經(jīng)驗,同時發(fā)展空間觀念和推理能力,不斷提高自己的思維水平。

  學(xué)情分析:

  本節(jié)課是在學(xué)生學(xué)過角的度量、三角形的特征和分類等知識的基礎(chǔ)上進行教學(xué)的,學(xué)生已經(jīng)具備一定的關(guān)于三角形的認(rèn)識的直接經(jīng)驗,也已具備了一些相應(yīng)的三角形知識,這為感受、理解、抽象“三角形的內(nèi)角和”的性質(zhì),打下了堅實的基礎(chǔ)。同時,通過近四年的數(shù)學(xué)學(xué)習(xí),學(xué)生已初步掌握了一些學(xué)習(xí)數(shù)學(xué)的`基本方法,具備了一定的動手操作、觀察比較和合作交流的能力。能在小組長帶領(lǐng)下,圍繞數(shù)學(xué)問題開展初步的討論活動,能比較清楚的表達(dá)自己的意見,認(rèn)真傾聽他人的發(fā)言,具備了初步的數(shù)學(xué)交流能力。

  教學(xué)目標(biāo):

  1、讓學(xué)生經(jīng)歷“猜想、驗證、歸納、應(yīng)用”等知識形成的全過程,探索并發(fā)現(xiàn)“三角形內(nèi)角和等于1800,”,并能應(yīng)用規(guī)律解決一些實際問題。

  2、在探索過程中培養(yǎng)學(xué)生的動手實踐能力、協(xié)作能力及創(chuàng)新意識和探究精神,發(fā)展學(xué)生的空間思維能力,同時使學(xué)生養(yǎng)成獨立思考的習(xí)慣。

  3、在活動中,讓學(xué)生體驗主動探究數(shù)學(xué)規(guī)律的樂趣,體驗學(xué)數(shù)學(xué)的價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情。

  教學(xué)重點:

  讓學(xué)生經(jīng)歷“猜想、驗證、歸納、應(yīng)用”等知識形成的全過程,探索并發(fā)現(xiàn)三角形內(nèi)角和等于1800,,并能應(yīng)用規(guī)律解決一些實際問題。

  教學(xué)難點:

  掌握探究方法(猜想-驗證-歸納總結(jié)),學(xué)會用“轉(zhuǎn)化”的數(shù)學(xué)思想探究三角形內(nèi)角和。

  教學(xué)用具:

  表格、課件。

  學(xué)具準(zhǔn)備:

  各種三角形、剪刀、量角器。

  一、創(chuàng)設(shè)情境揭示課題。

  1、復(fù)習(xí)

  提問:前面我們已經(jīng)學(xué)習(xí)了三角形的一些知識,誰能介紹一下呢?

  生回憶三角形的特征,三角形分類,三角形具有穩(wěn)定性等內(nèi)容。

  2、引入

  三角形具有穩(wěn)定形,三角形家族是一個團結(jié)的家族,但今天家族內(nèi)部卻發(fā)生了激勵的爭論。

  播放課件,提問:它們在爭論什么?

  什么是三角形的內(nèi)角和?(板書:內(nèi)角和)

  講解:三角形內(nèi)兩條邊所夾的角就叫做這個三角形的內(nèi)角。每個三角形都有三個內(nèi)角,這三個內(nèi)角的度數(shù)加起來就是三角形的內(nèi)角和。

  二、自主探究,合作交流。

 。ㄒ唬┨岢鰡栴}:

  1、你認(rèn)為誰說得對?你是怎么想的?

  2、你有什么辦法可以比較一下這兩個三角形的內(nèi)角和呢?

  學(xué)生可能會說:用量角器量一量三個內(nèi)角各是多少度,把它們加起來,再比較。

 。ǘ┨剿髋c發(fā)現(xiàn)

  1、初步探索,提出猜想。

 。1)量一量

  ①了解活動要求:(屏幕顯示)

  A、在練習(xí)本上畫一個三角形,量一量三角形三個內(nèi)角的度數(shù)并標(biāo)注。(測量時要認(rèn)真,力求準(zhǔn)確)

  B、把測量結(jié)果記錄在表格中,并計算三角形內(nèi)角和。

  C、討論:從剛才的測量和計算結(jié)果中,你發(fā)現(xiàn)了什么?

 。ㄒ龑(dǎo)生回顧活動要求)

  ②、小組合作。

 、、匯報交流。

  你們測量了幾個三角形?它們的內(nèi)角和分別是多少?從測量和計算結(jié)果中你們發(fā)現(xiàn)了什么?

 。ㄒ龑(dǎo)學(xué)生發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在1800,左右。)

  (2)提出猜想

  剛才我們通過測量和計算發(fā)現(xiàn)了三角形內(nèi)角和都在180度左右,那你能不能大膽的猜測一下:三角形內(nèi)角和是否相等?三角形的內(nèi)角和等于多少度呢?(板書:猜測)

  2、動手操作,驗證猜想

  這個猜想是否成立呢?我們要想辦法來驗證一下。(板書驗證)

  引導(dǎo):1800,跟我們學(xué)過的什么角有關(guān)?我們課前準(zhǔn)備了各種三角形紙片,你能不能利用這些三角形紙片,想辦法把三角形的三個內(nèi)角轉(zhuǎn)換成一個平角呢?

 。1)、小組合作,討論驗證方法。

 。2)分組匯報,討論質(zhì)疑

  學(xué)生可能會出現(xiàn)的方法:

  A、撕拼的方法

  把三個角撕下來,拼在一起,3個角拼成了一個平角,所以三角形內(nèi)角和就是1800,。

  討論:銳角三角形、直角三角形、鈍角三角形是否都能得出相同的結(jié)論呢?

  B、折一折的方法

  把三角形的角1折向它的對邊,使頂點落在對邊上,然后另外兩個角相向?qū)φ,使它們的頂點與角1的頂點互相重合,也證明了三角形內(nèi)角和等于1800。

  討論:銳角三角形、直角三角形、鈍角三角形能否得到相同的結(jié)論?

  C提問:還有沒有其它的方法?

  3、回顧兩種方法,歸納總結(jié),得出結(jié)論。

 。1)課件演示:兩種方法的展示。

 。2)引導(dǎo)學(xué)生得出結(jié)論。

  孩子們,三角形內(nèi)角和到底等于多少度呢?”

  學(xué)生一定會高興地喊:“1800!

 。3)總結(jié)方法,齊讀結(jié)論

  我們通過動作操作,折一折,拼一拼,把三角形的三個內(nèi)角轉(zhuǎn)換成了一個平角,成功的得到了這個結(jié)論,讓我們?yōu)樽约旱某晒恼!齊讀結(jié)論。(板書:得到結(jié)論)

  (4)解釋測量誤差

  為什么我們剛才通過測量,計算出來的三角形內(nèi)角和不是1800,呢?

  那是因為我們在測量時,由于測量工具、測量操作等各方面的原因,使我們的測量結(jié)果存在一定的誤差。實際上,三角形內(nèi)角和就等于1800

 。ㄈ⒒仡檰栴}:

  現(xiàn)在你知道這兩個三角形誰說得對了嗎?(都不對。

  為什么?請大家一起,自信肯定的告訴我。

  生:因為三角形內(nèi)角和等于1800,。(齊讀)

  三、鞏固深化,加深理解。

  1、試一試:數(shù)學(xué)書28頁第3題

  ∠A=180°— 90°—30°

  2、練一練:數(shù)學(xué)書29頁第一題(生獨立解決)

  ∠A=180°— 75°— 28°

  3、小法官:數(shù)學(xué)書29頁第二題

  4、拓展創(chuàng)新

  A D G

  B C E F H R

  ABC的內(nèi)角和是()

  DEF的內(nèi)角和是()

  GHR的內(nèi)角和呢?

  小結(jié):三角形的形狀和大小雖然不同,但是三角形的內(nèi)角和都是180度。

  四、回顧課堂,滲透數(shù)學(xué)方法。

  1、總結(jié):猜想—驗證—歸納—應(yīng)用的數(shù)學(xué)方法。

  2、介紹:三角形內(nèi)角和等于180度這個結(jié)論的由來;數(shù)學(xué)領(lǐng)域里還未被證明的其它猜想,如哥德巴赫猜想、霍啟猜想、龐加萊猜想等。

  3、課堂延伸活動:探索——多邊形內(nèi)角和

  板書設(shè)計:

  三角形內(nèi)角和等于1800。

  猜想驗證得出結(jié)論應(yīng)用

三角形的內(nèi)角和的教學(xué)設(shè)計8

  教學(xué)內(nèi)容:

  教材第67頁例6、“做一做”及教材第69頁練習(xí)十六第1~3題。

  教學(xué)目標(biāo):

  1.通過動手操作,使學(xué)生理解并掌握三角形的內(nèi)角和是180°的結(jié)論。

  2.能運用三角形的內(nèi)角和是180°這一結(jié)論,求三角形中未知角的度數(shù)。

  3.培養(yǎng)學(xué)生動手動腦及分析推理能力。

  重點難點:

  掌握三角形的內(nèi)角和是180°。

  教學(xué)準(zhǔn)備:

  三角形卡片、量角器、直尺。

  導(dǎo)學(xué)過程

  一、復(fù)習(xí)

  1、什么是平角?平角是多少度?

  2、計算角的度數(shù)。

  3、回憶三角形的相關(guān)知識。(出示直角三角形、銳角三角形、鈍角三角形)

  二、新知

 。ㄔO(shè)計意圖:讓學(xué)生經(jīng)歷質(zhì)疑驗證結(jié)論這樣的思維過程,真正整體感知三角形內(nèi)角和的知識,真正驗證了“實踐出真知” 的道理,這樣的教學(xué),將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中,拓展了三角形內(nèi)角和的數(shù)學(xué)知識背景,滲透數(shù)學(xué)知識之間的聯(lián)系,有效地避免了新知識的“橫空出現(xiàn)”。同時,培養(yǎng)學(xué)生的綜合素養(yǎng))

  1、讀學(xué)卡的學(xué)習(xí)目標(biāo)、任務(wù)目標(biāo),做到心里有數(shù)。

  2、揭題:課件演示什么是三角形的內(nèi)角和。

  3、猜想:三角形的內(nèi)角和是多少度。

  4、驗證:

  (1)初證:用一副三角板說明直角三角形的內(nèi)角和是180°。

  (2)質(zhì)疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。

 。3)再證:請按學(xué)卡提示,拿出學(xué)具,選擇自己喜歡的方式驗證三角形的內(nèi)角和 是180°(師巡視)

 。4)匯報結(jié)論(清楚明白的給小組加優(yōu)秀10分)

  5、結(jié)論:修改板書,把“?”去掉,寫“是”。

  6、追問:把兩塊三角板拼在一起,拼成的大三角形的內(nèi)角和是多少?說明三角形無論大小它的內(nèi)角和都是180°(課件演示)

  7、看微課感知“偉大的發(fā)現(xiàn)”(設(shè)計意圖:讓學(xué)生感受自己所做的和帕斯卡發(fā)現(xiàn)三角形內(nèi)角和是180°的過程是一樣的,從而培養(yǎng)孩子的自信心和創(chuàng)造力。)

  三、知識運用(課件出示練習(xí)題,生解答)

  1、填空

  (1)一個三角形,它的兩個內(nèi)角度數(shù)之和是110 ,第三個內(nèi)角是( ).

 。2)一個直角三角形的一個銳角是50,則另一個銳角是( )。

 。3)等邊三角形的3個內(nèi)角都是( )。

  (4)一個等腰三角形,它的一個底角是50,那么它的頂角是( )。

 。5)一個等腰三角形的頂角是60,這個三角形也是( )三角形。

  2、判斷

 。1)一個三角形中最多有兩個直角。 ( )

  (2)銳角三角形任意兩個內(nèi)角的和大于90。 ( )

  (3)有一個角是60的等腰三角形不一定是等邊三角形。 ( )

 。4)三角形任意兩個內(nèi)角的和都大于第三個內(nèi)角。 ( )

 。5)直角三角形中的兩個銳角的和等于90。 ( )

  四、拓展探究

  根據(jù)所學(xué)的知識,你能想辦法求出四邊形、五邊形的內(nèi)角和嗎?

  1、小組討論。2、匯報結(jié)果。3、課件提示幫助理解。

  五、自我評價根據(jù)學(xué)卡要求給自己評出“優(yōu)”“良好”“合格”。

  六、談?wù)勛约罕竟?jié)課的收獲。

  教學(xué)反思

  今天我講了《三角形內(nèi)角和》這部分內(nèi)容,學(xué)生其實通過不同途徑已經(jīng)知道三角形內(nèi)角和是180°,是不是說這節(jié)課的重難點就已經(jīng)突破了,只要學(xué)生能應(yīng)用知識解決問題就算是達(dá)到這節(jié)課的教學(xué)目標(biāo)了呢?我想應(yīng)該好好思考教材背后要傳遞的東西。

  任何規(guī)律的發(fā)現(xiàn)都要經(jīng)過一個猜測、驗證的過程,不經(jīng)歷這個探究的過程,學(xué)生對于這一內(nèi)容的認(rèn)識就不深刻,聰明的'孩子還會懷疑三角形內(nèi)角和是180°嗎?。因此這個結(jié)論必須由實踐操作得出結(jié)論。所以最終我把本課定為一個實踐探究課。

  如何開篇點題,是我這次要解決的第一個問題。怎樣才能讓學(xué)生由已知順利轉(zhuǎn)向?qū)ξ粗奶角螅鯓又苯愚D(zhuǎn)向研究三個角的“和”的問題呢?因此我只設(shè)計了三個簡單的問題然學(xué)生快速進入主題。

  如何驗證內(nèi)角和是180°,是我一直比較糾結(jié)的環(huán)節(jié)。由于小學(xué)生的知識背景有限,無法利用證明給予嚴(yán)格的驗證。只能通過動手操作、空間想象來讓孩子體會,這些都有“實驗”的特點,那么就都會有誤差,其實都無法嚴(yán)格的證明。但是這節(jié)課我們除了要尊重知識的嚴(yán)謹(jǐn)還應(yīng)該尊重孩子的認(rèn)知。如果通過剪拼、折疊、想象后,還有的孩子認(rèn)為三角形內(nèi)角和是180°值得懷疑的話,這無非也是件好事,說明孩子體會到了這些方法的不嚴(yán)謹(jǐn),同時對知識有一種尊重,對自己的操作結(jié)果充滿自信,否則拼個差不多也可以簡單的認(rèn)同了內(nèi)角和是180°。

  本節(jié)課的練習(xí)的設(shè)置也是努力做到有梯度、有趣味、有拓展。從開始的搶答內(nèi)角和體會三角形內(nèi)角和跟大小無關(guān)、跟形狀無關(guān),到已知兩個角的度數(shù)求第三個角,這些都是鞏固。之后的,求拼接兩個完全一樣的直角三角形后,得到的圖形的內(nèi)角和是多少度,求被剪開的三角形,形成的新圖形的內(nèi)角和是多少度,這些都是對三角形內(nèi)角和的一次拓展。讓學(xué)生的認(rèn)知發(fā)生沖突,提出挑戰(zhàn)。

  給學(xué)生一個平臺,她會給你一片精彩。通過動手操作來驗證內(nèi)角和是否是180°,學(xué)生最容易出現(xiàn)的就是把3個角剪下來拼一拼,個別人可能會想到折的方法。而這節(jié)課上有個小姑娘研究的是直角三角形,她的折法很巧妙,將兩個銳角折過來,剛好拼成一個直角,這個直角和原來三角形已有的直角就重疊在了一起,兩個直角就180°。雖然我知道這樣的方法,但是通過試講,孩子們沒有這樣的表現(xiàn),我就沒有奢求什么。但是今天的課堂太豐富多元了。這樣的方法都出現(xiàn)了讓我覺得特別值得肯定。為什么會這樣呢?我想還是因為我給了他們足夠的時間去思考。當(dāng)有了空間,孩子才會施展他們的才華。這是我的一大收獲。

  前邊驗證時間過多,到練習(xí)時間就有些少,特別是求四邊形和六邊形內(nèi)角和時,給的時間過短,學(xué)生沒有充分思維。

  總而言之,這次的公開課,給了我一次學(xué)習(xí)和鍛煉的機會。在教案設(shè)計時,該怎么樣把每一個環(huán)節(jié)落實到位,怎么樣說好每一句話,預(yù)設(shè)好每一個環(huán)節(jié),在教研中聽取各位教師的點評,讓我有了茅塞頓開的感覺。在此,我衷心感謝數(shù)學(xué)團隊教師對我中肯的評價,感謝他們對我的直言不諱,無私奉獻自己的想法,讓我在教學(xué)中,能夠在一個輕松和諧的教學(xué)氛圍中與學(xué)生共同去探討,去發(fā)現(xiàn),去學(xué)習(xí)。

三角形的內(nèi)角和的教學(xué)設(shè)計9

  【教材內(nèi)容】:

  北師大版四年級數(shù)學(xué)下冊

  【教學(xué)目標(biāo)】:

  1、探索與發(fā)現(xiàn)三角形的內(nèi)角和是180°,已知三角形的兩個角度,會求出第三個角度。

  2、培養(yǎng)學(xué)生動手操作和合作交流的能力,促進掌握學(xué)習(xí)數(shù)學(xué)的方法。

  3、培養(yǎng)學(xué)生自主學(xué)習(xí)、積極探索的好習(xí)慣,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)應(yīng)用數(shù)學(xué)的興趣。

  【教學(xué)重點和難點】:

  重點掌握三角形的內(nèi)角和是180°,會應(yīng)用三角形的內(nèi)角和解決實際問題;難點是探索性質(zhì)的過程。

  【教材分析】

  《三角形內(nèi)角和》屬于空間與圖形的范疇,是在學(xué)生已經(jīng)接觸了三角形的穩(wěn)定性和三角形的分類相關(guān)知識后對三角形的進一步研究,探索三個內(nèi)角的和。教材中安排了學(xué)生對不同形狀的、大小的三角形進行進行度量,運用折疊、拼湊等方法發(fā)現(xiàn)三角形的內(nèi)角和是180°。擴充了學(xué)生認(rèn)識圖形的一般規(guī)律從直觀感性的認(rèn)識到具體的性質(zhì)探索,更加深入的培養(yǎng)了學(xué)生的空間觀念。

  【教學(xué)過程】

  一、創(chuàng)設(shè)情境,激發(fā)興趣。

  出示課件,提出兩個兩個疑問:

  1、兩個大小不一樣的兩個三角形的對話我比你大,所以我的內(nèi)角和比你大,是這樣的嗎?

  2、三個形狀不一樣的三角形的爭論。我們的形狀不一樣,所以我們的內(nèi)角和各不相同,是這樣的嗎?老師發(fā)現(xiàn)它們爭論的焦點是三角形的內(nèi)角和的問題,那什么是三角形的內(nèi)角?什么又是三角形的內(nèi)角和呢?

  二、初建模型,實際驗證自己的猜想

  在第一步的基礎(chǔ)上學(xué)生自然想到要量出三角形每個角的度數(shù)就能夠求出三角形的內(nèi)角和,從而證明三角形的內(nèi)角和與三角形的大小和形狀沒有關(guān)系都接近180度。這時教師要組織學(xué)生進行小組合作,每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形、等腰三角形、等邊三角形)的三個內(nèi)角,并計算出它們的總和是多少?把小組的測量結(jié)果和討論結(jié)果記錄下來以便全班進行交流。

  三角形的形狀

  三角形每個內(nèi)角的度數(shù)

  內(nèi)角和

  銳角三角形

  鈍角三角形

  直角三角形

  等腰三角形

  等邊三角形

  三、再建模型,徹底的得出正確的結(jié)論

  因為在上一環(huán)節(jié)學(xué)生已經(jīng)得出三角形的內(nèi)角和大約都是或接近180度。因為我們在測量時由于測量人不同、測量工具不同可能產(chǎn)生一些誤差。有的同學(xué)難免可能猜想三角形的內(nèi)角和就是180度呢?我們繼續(xù)研究和探索。除了測量外我們是否可以利用我們手中的三角形通過拼一拼、折一折、畫一畫的方法來證明三角形的內(nèi)角和都是180度呢?教師放手讓學(xué)生去思考、去動手操作,對有困難和有疑問的同學(xué)進行提示和指導(dǎo)。然后讓學(xué)生到前面演示驗證的方法,教師借助多媒體進行演示。

  四、應(yīng)用新知,鞏固練習(xí)

  1、算一算,對于不同形狀的三角形給出其中的兩個角求第三個角的度數(shù)。(1小題屬于基本練習(xí))

  2、試一試,在直角三角形中已知其中的'一個角求另一個角的度數(shù)

  3、想一想,已知等腰三角形的頂角如何算出它的兩個底角;已知等腰三角形的一個底角的度數(shù)求三角形的頂角。

  4、說一說,判斷三角形的兩個銳角的和大于90度;直角三角形的兩個兩個銳角的和等90度;等腰三角形沿著高對折,每個三角形的內(nèi)角和是90度。這些說法是否正確?由兩個三角形拼成一個大的三角形,大三角形的內(nèi)角和是360度,對嗎?

  五、拓展與延伸

  通過三角形的內(nèi)角和是180度的事實來探討四邊形、五邊行的內(nèi)角和。

三角形的內(nèi)角和的教學(xué)設(shè)計10

  一、教學(xué)目標(biāo):

  1、理解掌握三角形內(nèi)角和是180°,并運用這一性質(zhì)解決一些簡單的問題。

  2、通過直觀操作的方法,引導(dǎo)學(xué)生探索并發(fā)現(xiàn)三角形內(nèi)角和等于180°,在實驗活動中,體驗探索的過程和方法。

  3、在探索和發(fā)現(xiàn)三角形內(nèi)角和的過程中獲得成功的體驗。

  二、教學(xué)重、難點:

  重點:探索并發(fā)現(xiàn)三角形內(nèi)角和等于180°。

  難點:運用三角形內(nèi)角和等于180°的性質(zhì)解決一些實際問題。

  教具:課件、三角形若干。

  學(xué)具:量角器、直角三角形、銳角三角形和鈍角三角形各一個。

  三、教學(xué)過程

 。ㄒ唬﹦(chuàng)設(shè)情境,導(dǎo)入新課

  我們已經(jīng)學(xué)過了三角形的知識,我們來復(fù)習(xí)一下,看看大屏幕,各是什么三角形?誰能說說什么是銳角三角形、直角三角形、鈍角三角形?追問:不管是什么三角形它們都有幾個角呢?這三個角都叫做三角形的內(nèi)角,而這三個內(nèi)角的和就是這個三角形的內(nèi)角和。那么誰來說一說什么是三角形的內(nèi)角和?三角形有大有小,形狀也各不相同,那么它們的內(nèi)角和有沒有什么特點和規(guī)律呢?我們來看一個小片段,仔細(xì)聽它們都說了什么?

  教師放課件。

  課件內(nèi)容說明:一個大的直角三角形說:“我的'個頭大,我的內(nèi)角和一定比你們大!币粋鈍角三角形說:“我有一個鈍角,我的內(nèi)角和才是最大的)一個小的銳角三角形很委屈的樣子說“是這樣嗎?”

  都聽清它們在爭論什么嗎?(它們在爭論誰的內(nèi)角和大。)誰能說一說你的想法?(學(xué)生各抒己見,是不評價)果真是這樣嗎?下面我們就來研究“三角形內(nèi)角和”。

  (板書課題:三角形內(nèi)角和)

 。ǘ┳灾魈骄,發(fā)現(xiàn)規(guī)律

  1、探究三角形內(nèi)角和的特點。

 。1)檢查作業(yè),并提出要求:

  昨天老師讓每位學(xué)生都分別剪出了銳角三角形、直角三角形和鈍角三角形,并量出了每個角的度數(shù),都完成了嗎?拿出來吧,一會我們要算出三角形的內(nèi)角和填在下面的表格里。我們來看一下表格以及要求。出示小組活動記錄表。

  小組活動記錄表

  小組成員的姓名

  三角形的形狀

  每個內(nèi)角的度數(shù)

  三角形內(nèi)角的和

 。ㄒ螅禾钔瓯砗螅埿〗M成員仔細(xì)觀察你發(fā)現(xiàn)了什么?)

  ②小組合作。

  會使用表格了嗎?下面我們就以小組為單位,按照要求把結(jié)果填在小組長手中的表格內(nèi)。

  各組長進行匯報。發(fā)現(xiàn)了三角形的內(nèi)角和都是180°左右。

  師:實際上,三角形三個內(nèi)角和就是180°,只是因為測量有誤差,所以我們才得到剛才得到的數(shù)據(jù)。

  2、驗證推測。

  那么同學(xué)們有沒有什么辦法知道三角形的內(nèi)角和就是180°呢?大家可以討論一下,學(xué)生可能會想到用折拼或剪拼的方法來看一看三角形的三個角和起來是不是180°,也就是說三角形的三個角能不能拼成一個平角。師生先演示撕下三個角拼在一起是否是平角,同學(xué)們在下面操作進行體驗,再用課件演示把三個內(nèi)角折疊在一起(這時要注意平行折,把一個頂點放在邊上)學(xué)生也動手試一試。

  通過我們的驗證我們可以得出三角形的內(nèi)角和是180°。

  板書:(三角形內(nèi)角和等于180°。)

  3、師談話:三個三角形討論的問題現(xiàn)在能解決了嗎?你現(xiàn)在想對這三個三角形說點什么嗎?(讓學(xué)生暢所欲言,對得出的三角形內(nèi)角和是180°做系統(tǒng)的整理。)

  4、同學(xué)們還有什么疑問嗎?大家想一想我們知道了三角形內(nèi)角和是180°可以干什么呢?(知道三角形中兩個角,可以求出第三個角)

  出示書28頁,試一試第3題,并講解。

  說明:在直角三角形中一個銳角等于30°,求另一個銳角。

  生獨立做,再訂正格式、以及強調(diào)不要忘記寫度。

  小結(jié):同學(xué)們有沒有不明白的地方?如果沒有我們來做練習(xí)。

 。ㄈ╈柟叹毩(xí),拓展應(yīng)用

  1、出示書29頁第一題。說明:第一幅圖是銳角三角形已知一個銳角是75°,另一個銳角是28°,求第三個銳角?第二幅圖是直角三角形已知一個銳角是35°,求另一個銳角?第三幅圖是鈍角三角形已知一個銳角是20°,另一個銳角是45°,求鈍角?

  完成,并填在書上。講一講直角三角形還有什么解法。

  2、出示29頁第2題。

  說明:一個鈍角三角形說:我的兩個銳角之和大于90°。

  一個直角三角形說:我的兩個銳角之和正好等于90°。讓學(xué)生判斷。

  3、畫一畫:

  出示四邊形和六邊形。運用三角形內(nèi)角和是180°計算出各自的內(nèi)角和。你能推算出多邊形的內(nèi)角和嗎?

  三角形內(nèi)角和180度是科學(xué)家帕斯卡12歲時發(fā)現(xiàn)的。我們同學(xué)還沒到12歲,看你能不能通過自己的努力也去探索和發(fā)現(xiàn)。

 。ㄋ模┱n堂總結(jié)

  讓學(xué)生說說在這節(jié)課上的收獲!

三角形的內(nèi)角和的教學(xué)設(shè)計11

  教學(xué)要求

  1、通過動手操作,使學(xué)生理解并掌握三角形的內(nèi)角和是180°的結(jié)論。

  2、能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。

  3、培養(yǎng)學(xué)生動手動腦及分析推理能力。

  教學(xué)重點

  三角形的內(nèi)角和是180°的規(guī)律。

  教學(xué)難點

  使學(xué)生理解三角形的內(nèi)角和是180°這一規(guī)律。

  教學(xué)用具

  每個學(xué)生準(zhǔn)備銳角三角形、直角三角形、鈍角三角形紙片各一張,量角器。

  教學(xué)過程:

  一、出示預(yù)習(xí)提綱

  1、三角形按角的不同可以分成哪幾類?

  2、一個平角是多少度?1個平角等于幾個直角?

  3、如圖,已知∠1=35°,∠2=75°,求∠3的度數(shù)。

  二、展示匯報交流

  1、投影出示一組三角形:(銳角三角形、鈍角三角形、直角三角形)。三角形有幾個角?老師指出:三角形的這三個角,就叫做三角形的三個內(nèi)角。(板書:內(nèi)角)

  2、三角形三個內(nèi)角的度數(shù)和叫做三角形的內(nèi)角和。(板書課題:三角形的.內(nèi)角和)今天我們一起來研究三角形的內(nèi)角和有什么規(guī)律。

  3、以小組為單位先畫4個不同類型的三角形,利用手中的工具分別計算三角形三個內(nèi)角的和各是多少度?

  4、指名學(xué)生匯報各組度量和計算的結(jié)果。你有什么發(fā)現(xiàn)?

  5、大家算出的三角形的內(nèi)角和都接近180°,那么,三角形的內(nèi)角和與180°究竟是怎樣的關(guān)系呢?就讓我們一起來動手實驗研究,我們一定能弄清這個問題的。

  6、剛才我們計算三角形的內(nèi)角和都是先測量每個角的度數(shù)再相加的。在量每個內(nèi)角度數(shù)時只要有一點誤差,內(nèi)角和就有誤差了。我們能不能換一種方法,減少度量的次數(shù)呢?

  提示學(xué)生,可以把三個內(nèi)角拼成一個角,就只需測量一次了。

  7、請拿出桌上的直角三角形紙片,想一想,怎樣折可以把三個角拼在一起,試一試。

  8、三個角拼在一起組成了一個什么角?我們可以得出什么結(jié)論?(直角三角形的內(nèi)角和是180°)

  9、拿一個銳角三角形紙片試試看,折的方法一樣。再拿鈍角三角形折折看,你發(fā)現(xiàn)了什么?(直角三角形和鈍角三角形的內(nèi)角和也是180°)

  10、那么,我們能不能說所有三角形的內(nèi)角和都是180°呢?為什么?(能,因為這三種三角形就包括了所有三角形)11。老師板書結(jié)論:三角形的內(nèi)角和是180°。

  12、一個三角形中如果知道了兩個內(nèi)角的度數(shù),你能求出另一個角是多少度嗎?怎樣求?

  13、出示教材85頁做一做。讓學(xué)生試做。

  14、指名匯報怎樣列式計算的。兩種方法均可。

  ∠2=180°—140°—25°=15°

  ∠2=180°(140°+25°)=15°

  課后反思:

  對于三角形的內(nèi)角和,學(xué)生并不陌生,在平時的做題中已經(jīng)涉及到了?墒菍W(xué)生并不知道如何去驗證,所以本節(jié)課,重點讓孩子們經(jīng)歷體驗,感悟圖形。從而收獲了經(jīng)驗。特別是動手操作將三角形拼成一個直角時,有的孩子將角剪得非常小,很不好拼,在此進行了重點的提示。

三角形的內(nèi)角和的教學(xué)設(shè)計12

  【教學(xué)內(nèi)容】

  《人教版九年義務(wù)教育教科書 數(shù)學(xué)》四年級下冊《三角形的內(nèi)角和》

  【教學(xué)目標(biāo)】

  1.使學(xué)生知道三角形的內(nèi)角和是180 ,并能運用三角形的內(nèi)角和是180 解決生活中常見的問題。

  2.讓學(xué)生經(jīng)歷量一量、折一折、拼一拼等動手操作的過程。通過觀察、 判斷、 交流和推理探索用多種方法證明三角形的內(nèi)角和是180 。

  3.培養(yǎng)學(xué)生自主學(xué)習(xí)、互動交流、合作探究的能力和習(xí)慣,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣,感受學(xué)習(xí)數(shù)學(xué)的樂趣。

  【教學(xué)重點】

  使學(xué)生知道三角形的內(nèi)角和是180 ,并能運用它解決生活中常見的問題。

  【教學(xué)難點】

  通過多種方法驗證三角形的內(nèi)角和是180 。

  【教學(xué)準(zhǔn)備】

  課件。四組教學(xué)用三角板。鉛筆。大帆布兜子。固體膠。剪刀。筷子若干。

  【教學(xué)過程】

  一、激趣導(dǎo)入,提煉學(xué)習(xí)方法

  1.課程開始,教師耳朵上別著一根鉛筆,肩背大帆布兜子,里面裝著一個量角器和幾把缺了直角的三角板,手拿一張不規(guī)則的白紙,以一位老木匠的身份出現(xiàn)在學(xué)生面前。激發(fā)學(xué)生的好奇心。然后自述:“你們好,我是一個有三十多年工作經(jīng)驗的老木匠了。我收了三個徒弟,他們已經(jīng)從師學(xué)藝三年了,今天我想讓他們下山掙錢,可又不放心,想出幾道題考驗考驗他們,又不知我的題合不合適,大家想不想先當(dāng)一會我的徒弟試試這幾道題呢?”

  2.繼續(xù)以老木匠的身份說:前幾天我造了一架柁,徒弟們能不能用我手中的工具驗證一下橫木和立柱是不是成直角的。

  3.選擇工具,總結(jié)方法。

  讓選擇不同工具的同學(xué)用自己的方法驗證。教師隨機板書:量一量、拼一拼、折一折。

  師:你們真是愛動腦筋的好徒弟,那么請聽好師傅的第二個問題。

  4.導(dǎo)入新課。

  圖中有很多三角形,不論什么樣的三角形都有三個角,這三個角就叫做三角形的內(nèi)角,徒弟們能不能用學(xué)過的方法或者你喜歡的方法求一求三角形三個內(nèi)角的和是多少?(板書課題:三角形的內(nèi)角和)

  二、動手操作,探索交流新知

  1.分組活動,探索新知

  根據(jù)學(xué)生的選擇把學(xué)生分成三組,分別采用量一量、折一折和拼一拼的方法探索新知。

  量一量組同學(xué)發(fā)給以下幾種學(xué)具:

  折一折組同學(xué)發(fā)給上面的三角形一組。

  拼一拼組同學(xué)發(fā)給上面的三角形一組、剪刀一把還有下面這樣的白紙一張。

  在學(xué)生探索的過程中教師要走近學(xué)生,與他們共同交流探討,在學(xué)生有困難的時候要適當(dāng)給予引導(dǎo)。

  2.多方互動,交流新知

  師:請我的大徒弟(量一量組)的同學(xué)先來匯報你們的研究成果。

  (1)首先要求學(xué)生說一說你們小組是怎樣進行探究的。

  (2)說出你們組的探究結(jié)果怎樣。(在此過程中教師不能急于糾正學(xué)生不正確的結(jié)論,因為這是知識的形成過程。)

  (3)請學(xué)生說說通過探究活動你們組得出的結(jié)論是什么。

  師:大徒弟就是大徒弟,匯報的真不錯。二徒弟(折一折組)你們有沒有更好的`辦法呢?

  引導(dǎo)這一組從探究的過程和結(jié)論與同學(xué)、老師交流。

  師:別看小徒弟(拼一拼組)這么小,方法可能是最好的?靵戆涯銈兊姆椒ńo大家匯報匯報。

  同樣引導(dǎo)這一組從探究的過程和結(jié)論與同學(xué)、老師交流。

  3.思想碰撞,夯實新知

  師:三個徒弟你們能說說誰的方法最好嗎?

  學(xué)生都會說自己的方法最好,再讓其他同學(xué)發(fā)表自己的意見,此時生生之間,師生之間交流。(教師要引導(dǎo)學(xué)生說出量一量的方法可能由于量的不夠準(zhǔn)確,所以結(jié)果可能比180 大一些,或小一些。而其他兩種方法沒有改變角的大小,所以他們的是正確的。)

  師:不論你量的怎樣認(rèn)真都會有不準(zhǔn)確的地方,這就叫誤差。而其他兩組同學(xué)的方法更準(zhǔn)確。三角形的內(nèi)角和就是180 。(板書:三角形的內(nèi)角和是180 )

  四、走進生活,提升運用能力

  1.出示課前那架柁標(biāo)出它的頂角是120 ,求它的一個底角是多少度?

  2.給你三根木條,能做出一個有兩個直角的三角形嗎?

  五、總結(jié)

  師:徒弟們你們經(jīng)過三年的苦學(xué),終于學(xué)有所成了。今天,能說說你們在我這里都學(xué)到了什么手藝嗎?

  六、拓展新知,課外延伸

  師:俗話說“活到老,學(xué)到老!蹦銈兿律胶筮要繼續(xù)探索,所以我要把我畢生都沒有完成的任務(wù)交給你們?nèi)パ芯俊?/p>

  大屏幕出示:

  能用你今天學(xué)過的知識和方法探索一下四邊形的內(nèi)角和是多少度嗎?

三角形的內(nèi)角和的教學(xué)設(shè)計13

  三角形內(nèi)角和教學(xué)設(shè)計

  一、教學(xué)目標(biāo)

  1、通過小組猜想、探索、驗證三角形的內(nèi)角和等于180°,并能運用知識解決簡單問題。

  2、經(jīng)歷三角形內(nèi)角和的探究過程,體驗“猜想——驗證——應(yīng)用”的學(xué)習(xí)模式。

  3、通過各種實踐活動,激發(fā)學(xué)習(xí)興趣,體驗學(xué)習(xí)成功感,并在教學(xué)中,感受數(shù)學(xué)與生活的密切聯(lián)系。

  二、教學(xué)重難點

  教學(xué)重點:學(xué)生運用各種方法,探索三角形的內(nèi)角和是180度這一知識的全過程

  教學(xué)難點:運用三角形的內(nèi)角和解決實際問題。

  三、教具、學(xué)具準(zhǔn)備:

  課件、一副三角尺、幾個三角形。學(xué)生準(zhǔn)備一副三角尺。

  四、教學(xué)過程:

  一、創(chuàng)設(shè)情境揭示課題。

  師:猜謎語形狀似座山,穩(wěn)定性能堅;三竿首尾連,學(xué)問不簡單。(打一幾何圖形)生:三角形

  師:前面我們已經(jīng)認(rèn)識三角形,誰能給大家介紹一下?學(xué)生講學(xué)過的三角形知識。分類

  師:我們在討論三角形知識的時候,三角形中的三個兄弟卻吵了起來,想知道怎么回事嗎?讓我們一起去看看吧!

  師:呦,瞧,三個兄弟在爭論呢。(播放課件)它們在爭論什么呀?生:它們在爭論誰的內(nèi)角和大。

  師:哦,原來如此。那么,你們知道什么是三角形的內(nèi)角?三角形的內(nèi)角和又是指什么嗎?(生:三角形的內(nèi)角就是三角形里面的三個角。內(nèi)角和就是三個內(nèi)角的度數(shù)和。)

  師:這個同學(xué)說得真好,(課件)我們把三角形里面的這三個角,就叫做三角形的內(nèi)角,而這三個角的度數(shù)和,我們就稱為三角形的內(nèi)角和。

  今天我們就來研究有關(guān)三角形內(nèi)角和的知識。(板書課題)

  二、探索交流,解決問

  (一)、大膽猜想,產(chǎn)生分歧

  師:理解了三角形的內(nèi)角和,那請你們給評評理:這三個大小不一樣的三角形,到底是誰的內(nèi)角和大啊?(這位同學(xué)手舉得最高,請你來說。)

  生1:我認(rèn)為是這樣的,因為大三角形大,所以它的內(nèi)角和更大。(哦,你是這樣認(rèn)為的,請坐。還有不同意見嗎?這位同學(xué)很著急,好,你來。)

  生2:我不同意,我認(rèn)為兩個三角形內(nèi)角和的度數(shù)都是一樣的。(很好,這是你的想法。還有同學(xué)想說,你來。)

  生3:當(dāng)然是大三角形的內(nèi)角和大了。(你回答的聲音真響亮。請坐)生4:我同意第二個同學(xué)的意見,兩個三角形的內(nèi)角和一樣大。

  師:現(xiàn)在出現(xiàn)了兩種不同的'意見,有的同學(xué)認(rèn)為大三角形的內(nèi)角和大,還有部分同學(xué)認(rèn)為兩個三角形的內(nèi)角和的度數(shù)都是一樣的。那么到底誰說得對呢?

  (二)驗證猜想,解決問題

  師拿出兩個三角尺,問:它們是什么三角形?生:直角三角形。

  師:請大家拿出自己的兩個三角尺,同桌之間說說每一個三角尺上三個角的度數(shù),并求出這兩個直角三角形的內(nèi)角和。(學(xué)生們能夠很快求出每塊三角尺的3個角的和都是180°)

  師:你們算出來,這兩個三角尺的內(nèi)角和是多少度?生齊:180°。

  師:那??其他三角形的內(nèi)角和也是180°嗎?(這位同學(xué)手舉得真端正,你來說。)生1:其他三角形的內(nèi)角和也是180°(好,還有誰想說?)生2:其他三角形的內(nèi)角和不是180°

  師:看來呀,大家都有不同的看法。我們學(xué)過三角形的分類,知道直角、銳角、鈍角三角形可以代表所有的三角形。那下面就請同學(xué)們小組合作,從組里找出這

  三類三角形,量一量每個三角形內(nèi)角的度數(shù),并求出它們的內(nèi)角和,把結(jié)果填在表格里。(板書:測量)師:你們發(fā)現(xiàn)了什么?

  生1:通過測量我們發(fā)現(xiàn)每個三角形的內(nèi)角和都是180°。生2:不對,應(yīng)該是180°左右,因為我們組算出來也有175°的。

  師:噢!是呀,因為我們在測量時可能會出現(xiàn)一些誤差,所以測量出的結(jié)果不是很準(zhǔn)確,因此我們只能猜測三角形的內(nèi)角和可能是180°。

  師:那么,同學(xué)們能發(fā)揮你們的聰明才智,通過動手操作,想辦法來驗證自己的猜想嗎?請同學(xué)們先獨立思考一下,再在小組內(nèi)把你的想法與同伴進行交流,然后每組選一種方法進行驗證,看哪組最先發(fā)現(xiàn)其中的“奧秘”。(1)小組合作,討論驗證方法(2)匯報驗證方法、結(jié)果。

  師:誰愿意第一個向大家介紹你們組的驗證方法?

  組1:我們小組是用剪拼的方法(板書:剪拼),將三角形的三個角剪下來,拼成一個平角,得到三角形的內(nèi)角和是180度。

  師:上來展示給大家瞧一瞧。(投影儀)你們看這位同學(xué)多細(xì)心呀,為了方便、不混淆,在剪之前,他先給3個角標(biāo)上了符號。

  師:現(xiàn)在請同學(xué)們看大屏幕,老師在電腦里把剛才剪拼的過程重播一遍。你們看,成功了,3個角拼成了一個平角?墒牵瑒偛偶羝吹氖且粋銳角三角形,那還有直角三角形、鈍角三角形呢,它們能不能拼成一個平角?生齊:能!

  師:好。那就是說,剛才這種剪拼的方法可以不用再一個角一個角來量,就能證明三角形的內(nèi)角和是180°了。你們覺得這種方法好不好啊?那我們把掌聲送給剛才這個小組。還有其他方法嗎?

  組2:我們小組是用折的方法(板書:折圖),同樣得到三角形的內(nèi)角和是180度。(這個小組真了不起,竟能想出如此獨特的方法,很有新意,非常好。⿴煟郝犉饋碛悬c抽象,請這位同學(xué)上來折給大家看看好不好呀?(投影儀展示)

  (展示:3個角折成了一個平角。)

  師:真是個手巧的孩子。不過呢,他剛才折的是一個直角三角形,那其他兩類三角形呢,是不是也能折出平角呢,誰來告訴大家?

  組3:可以,這三類三角形都能折出平角。(這一組探索數(shù)學(xué)的能力也真棒。⿴熜〗Y(jié):剛才同學(xué)們用量、剪、拼、折等方法證明了,無論是什么樣的三角形,內(nèi)角和都是1800,(板書:三角形的內(nèi)角和是180°)現(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是1800”。師:(出示一個大三角形)它的內(nèi)角和是多少度?生:180 °

  師:(出示一個很小的三角形)它呢?生:180 °

  師:一個三角形的內(nèi)角和是180°,那兩個同樣的三角形拼成一個大三角形,它的內(nèi)角和又是多少呢?

 。ㄉ械拇360°,有的180 °。)

  師:咦?有兩種不同的聲音哦。那到底哪一種是正確的呢?

  師:(學(xué)生個個臉上露出疑問)大家可以在小組內(nèi)拼一拼,并討論討論。(經(jīng)過一翻激烈的討論探究后,學(xué)生開始舉手回答。)

  生1:180°,因為兩個三角形拼在一起,就變成了一個三角形了,每個三角形的內(nèi)角和總是180°。(想一想,做一做,數(shù)學(xué)之門就被這組同學(xué)打開了,真棒!哈,還有同學(xué)要說,好,你再說。)

  生2:我發(fā)現(xiàn)兩個小三角形拼成一個大三角形,拼接在一起的兩條邊上的兩個角沒有了,就比原來兩個三角形少180 °,所以大三角形的內(nèi)角和還是180°,不是360°。

  師:你分析問題這么透徹,老師真希望每節(jié)課都能聽到你的發(fā)言,F(xiàn)在,老師把剛才這位同學(xué)說的用課件演示一遍,注意看哦。(課件演示)

  師:好,這個問題解決了。那么,把大三角形平均分成兩份。它的(指均分后的一個小三角形)內(nèi)角和是多少度?生齊:180°。

  師:哈,看來已經(jīng)騙不倒我們班的同學(xué)勒。答案還是180°,不是90°哦。師總結(jié):所以說,三角形不論位置、大小、形狀如何,它的內(nèi)角和總是180°

  三、鞏固應(yīng)用,內(nèi)化提高

  1、解決問題:

  學(xué)會了知識,我們就要懂得去運用。下面,我們就根據(jù)三角形內(nèi)角和的知識來解決一些相關(guān)的數(shù)學(xué)問題。(課件演示練習(xí)題)(1)在能組成三角形的三個角后面畫“√”(2)判斷下列說法對嗎?(3)你能求出被遮住的角嗎?(4)67頁的做一做。(5)你會求下面圖形的角嗎?

  四、回顧整理,反思提升

  通過今天的學(xué)習(xí),大家有什么收獲?

  拓展創(chuàng)新

  小明不小心將鏡框上的一塊三角形玻璃摔成了兩半,玻璃裂成了兩塊。一塊只有原來的一個角,另一塊有原來的兩個角。他想重新買一塊玻璃安上,小明非常聰明,只帶了其中的一塊到玻璃店去,就配到了和原來一模一樣的玻璃了。你知道他帶的是哪一塊嗎?

三角形的內(nèi)角和的教學(xué)設(shè)計14

  【教材分析】

  《三角形內(nèi)角和》是北師大版《數(shù)學(xué)》四年級下冊的內(nèi)容。是在學(xué)生學(xué)習(xí)了三角形的概念及特征之后進行的,它是掌握多邊形內(nèi)角和及其他實際問題的基礎(chǔ),因此,掌握“三角形的內(nèi)角和是180度”這一規(guī)律具有重要意義。教材首先出示了兩個三角形比內(nèi)角和這一情境,讓學(xué)生通過測量、折疊、拼湊等方法,發(fā)現(xiàn)三角形的內(nèi)角和是180度。教材還安排了“試一試”,“練一練”的內(nèi)容。已知三角形兩個內(nèi)角的度數(shù),求出第三個角的度數(shù)。

  【學(xué)生分析】

  經(jīng)過近四年的課改實驗,孩子們已經(jīng)有了一定的自主探究,合作交流的能力。他們喜歡在實踐中感悟,在實踐中發(fā)表自己的見解,對數(shù)學(xué)產(chǎn)生了濃厚的興趣。1.知識方面:學(xué)生已經(jīng)掌握了三角形的概念、分類,熟悉了鈍角、直角、銳角、平角這些角的知識。2.能力方面:已具備了初步的動手操作能力和探究能力,并且能夠進行簡單的微機操作。

  【學(xué)習(xí)目標(biāo)】

  知識目標(biāo):掌握三角形內(nèi)角和是180度這一規(guī)律,并能實際應(yīng)用。

  能力目標(biāo): 培養(yǎng)學(xué)生主動探索、動手操作的能力。培養(yǎng)學(xué)生收集、整理、歸納信息的能力。使學(xué)生養(yǎng)成良好的合作習(xí)慣。

  情感目標(biāo): 讓學(xué)生體會幾何圖形內(nèi)在的結(jié)構(gòu)美。

  【教學(xué)過程】

  一、 情景激趣,質(zhì)疑猜想。

  播放動畫片:在圖形王國中,有一天三角形大家庭里為“三角形內(nèi)角和的大小”爆發(fā)了一場激烈的爭吵。

  鈍角三角形大聲叫著:“我的鈍角大,我的內(nèi)角和一定比你們的內(nèi)角和大!变J角三角形也不示弱:“我的銳角雖然比鈍角小,但我的內(nèi)角和并不比你小。”直角三角形說:“別爭了,三角形的內(nèi)角和都是180°。我們的內(nèi)角和是一樣大的。”

  師:想一想,什么是三角形的三個內(nèi)角的和。

  生:三角形的三個內(nèi)角的度數(shù)和。

  師:同學(xué)們剛才看了動畫片你們知道誰說對了嗎?不知道的話想一想,猜一猜誰說的對?

  學(xué)生進行猜想,自由發(fā)言。

 。ㄔO(shè)計意圖:教師借助多媒體技術(shù)創(chuàng)設(shè)問題情境,架起數(shù)學(xué)學(xué)習(xí)與現(xiàn)實生活,抽象數(shù)學(xué)與具體問題之間的橋梁,激發(fā)了學(xué)生的學(xué)習(xí)興趣。鼓勵學(xué)生主動質(zhì)疑猜想是培養(yǎng)學(xué)生學(xué)會學(xué)習(xí)的重要途徑。)

  二、自主探究,驗證猜想

  師:剛才大部分同學(xué)都猜直角三角形說的對。三角形的三個內(nèi)角的.和都是 180°,你能設(shè)法驗證這個猜想嗎?

  生1:能。我量出三角形的三個內(nèi)角和度數(shù),加起來是否接近180°(量的時候可能會有些誤差)。

  生2:我把三角形的三個角剪下來拼一拼是否能拼成一個平角。

  生3:我把三角形的三個角撕下來,拼一拼是否180°。

  生4:我把三角形的三個角往里折,看一看這三個角是否折成一個平角。

  ……

  師:上面你們說了不少的驗證猜想的方法,請大家用準(zhǔn)備好的材料用你喜歡的方法,動手驗證自己的猜想吧。▽W(xué)生把三角形的三個內(nèi)角分別標(biāo)上∠1、∠2、∠3,以免在剪拼時把內(nèi)角搞混了。)

  學(xué)生邊實驗邊整理信息,完成實驗報告單后,學(xué)習(xí)小組內(nèi)進行交流討論。

 。ㄔO(shè)計意圖:驗證猜想為學(xué)生提供了“做數(shù)學(xué)”的機會,讓每個學(xué)生圍繞自己的猜想、決定自己的探索方向、選擇自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,讓學(xué)生在操作中自主探究數(shù)學(xué)知識的產(chǎn)生發(fā)展過程。驗證自己的猜想,鼓勵學(xué)生用不同的方法進行驗證,促進學(xué)生創(chuàng)新能力的發(fā)展。)

  三、交流評價,歸納結(jié)論。

  學(xué)生操作驗證,完成實驗報告單后,利用投影儀展示學(xué)生填寫的實驗報告單。

  實驗報告單

  實驗名稱

  三角形內(nèi)角和

  實驗?zāi)康?/p>

  探究三角形內(nèi)角和是多少度。

  實驗材料

  尺子

  剪刀

  量角器

  銳角三角形紙片

  直角三角形紙片

  鈍角三角形紙片

  我的方法

  我的發(fā)現(xiàn)

  我的表現(xiàn)

  自評

  互評

  學(xué)生在展示過程中,充分交流和討論實驗中各自使用的方法和發(fā)現(xiàn),教師要對學(xué)生的閃光點及時進行表揚和鼓勵。

  師生共同歸納,得出結(jié)論:

  三角形內(nèi)角和等于180°

 。ㄔO(shè)計意圖:各學(xué)習(xí)小組匯報自己的驗證過程,展示探究的成果。對學(xué)生探索發(fā)現(xiàn)的方法、策略進行總結(jié)歸納,集思廣益,取長補短達(dá)到共識。在交流、歸納過程中,及時肯定其中的閃光點給予表揚和鼓勵,使他們體驗到成功的愉悅,促使他們獲得更大的成功。)

  四、分層練習(xí),鞏固創(chuàng)新。

 、僬n件出示:

  師:這個三角形是什么三角形?知道幾個內(nèi)角的度數(shù)?

  生:直角三角形,知道一個角是30°,還有一個角是90°!螦=90°-30°=60°。

  師:根據(jù)今天所學(xué)的知識,誰能求出A的度數(shù)?大家自己試一試。

  學(xué)生做完后反饋講評時讓學(xué)生說說自己的方法。

  生1:用三角形內(nèi)角的和(180°)減去30°再減去90°,算出∠A是60°。

  ∠A=180°-30°-90°=60°。

  生2:先用30°加上90°得120°再用180°減去120°也可得∠A =60°。

 、趯W(xué)生完成完成P29的第一題。

  引導(dǎo)學(xué)生按照前面的方法獨立完成,教師巡視,集體訂正。

 、鄄乱徊氯切蔚牧硗鈨蓚角可能各是多少度。

  同桌同學(xué)互相說一說。(答案不唯一)

  ④小組操作探究活動。

  讓學(xué)生剪出幾個不同的四邊形,按表中所給的方法以做一做,并填一填。

  方 法

  四邊形內(nèi)角和

  用量角器量出每個內(nèi)角的度數(shù),并相加。

  把四邊形四個角剪下來,拼在一起。

  把四邊形分為兩個三角形。

  填表后讓學(xué)生想一想、互相說一說,四邊形內(nèi)角和是多少度?

  (設(shè)計意圖:引導(dǎo)學(xué)生將探究學(xué)習(xí)活動中所獲得的結(jié)論經(jīng)驗和方法運用于探索解決簡單的實際問題。組織學(xué)生參與具有趣味性、操作性和開放性的練習(xí)活動,讓學(xué)生在鞏固練習(xí)中培養(yǎng)動手能力、實踐能力和創(chuàng)新思維。)

三角形的內(nèi)角和的教學(xué)設(shè)計15

  教學(xué)內(nèi)容:本節(jié)課的教學(xué)內(nèi)容是義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)四年級下冊第五單位的第四課時《三角形的內(nèi)角和》,主要內(nèi)容是:驗證三角形的內(nèi)角和是180°等。

  教學(xué)內(nèi)容分析:三角形的內(nèi)角和是180是三角形的一個重要性質(zhì),它有助于學(xué)生理解三角形的三個內(nèi)角之間的關(guān)系,也是進一步學(xué)習(xí)的基礎(chǔ)。

  教學(xué)對象分析:作為四年級的學(xué)生已有一定的生活經(jīng)驗,在平時的生活中已經(jīng)接觸到三角形,在尊重學(xué)生已有的知識的基礎(chǔ)上和利用他們已掌握的學(xué)習(xí)方法,教師把課堂教學(xué)組織生動、活潑,突出知識性、趣味性和生活性,使學(xué)生能在輕松愉快的氣氛中學(xué)習(xí)。

  教學(xué)目標(biāo):

  1、知識目標(biāo):學(xué)生通過量、剪、拼、擺等操作學(xué)具活動,找到新舊知識之間的聯(lián)系,主動掌握三角形內(nèi)角和是180°,并運用所學(xué)知識解決簡單的實際問題。

  2、能力目標(biāo):培養(yǎng)學(xué)生的觀察、歸納、概括能力和初步的空間想象力。

  3、情感目標(biāo):培養(yǎng)學(xué)生的創(chuàng)新意識、探索精神和實踐能力,在學(xué)生親自動手和歸納中,感受到理性的美。

  教學(xué)重點:理解并掌握三角形的內(nèi)角和是180°。

  教學(xué)難點:驗證所有三角形的內(nèi)角之和都是180°。

  教具準(zhǔn)備:多媒體課件、各種三角形等。

  學(xué)具準(zhǔn)備:三角形、剪刀、量角器等。

  教學(xué)過程:

  一、出示課題,復(fù)習(xí)舊知

  1、認(rèn)識三角形的內(nèi)角。

 。ǎ保⿵(fù)習(xí)三角形的概念。

 。ǎ玻┙榻B三角形的“內(nèi)角”。

  2、理解三角形的內(nèi)角“和”。

  【設(shè)計理念】通過復(fù)習(xí)三角形的概念的過程,不僅可以鞏固學(xué)生的舊知識而且可以為新知識教學(xué)提供知識鋪墊。

  二、動手操作,探究新知

  1、通過預(yù)習(xí),認(rèn)識結(jié)論,提出疑問

  2、驗證三角形的'內(nèi)角和

 。1)用“量一量、算一算”的方法進行驗證

 、賲R報測量結(jié)果

 、诋a(chǎn)生疑問:為什么結(jié)果不統(tǒng)一?

 、劢鉀Q疑問:因為存在測量誤差。

 。2)用“剪一剪、拼一拼”的方法進行驗證

  ①指導(dǎo)剪法。

  ①分別拼:銳角三角形、直角三角形、鈍角三角形。

 、垓炞C得出:三角形的內(nèi)角和是180°。

 。3)用“折一折”的方法進行驗證

 、僦笇(dǎo)折法。

 、俜謩e折:銳角三角形、直角三角形、鈍角三角形。

 、墼俅悟炞C得出:三角形的內(nèi)角和是180°。

  3、看書質(zhì)疑

  【設(shè)計理念】此過程采用直觀教學(xué)手段。通過讓學(xué)生動手量、拼等直觀演示操作直接作用于學(xué)生的感官,激活學(xué)生的思維,有助于學(xué)生的認(rèn)識由具體到抽象的轉(zhuǎn)化。從而明確三角形的內(nèi)角和是180°。

  三、實踐應(yīng)用,解決問題:

  1、在一個三角形中,∠1=140°,∠3=25°,求∠2的度數(shù)。

  2、求出三角形各個角的度數(shù)。(圖略)

  3、爸爸給小紅買了一個等腰三角形的風(fēng)箏。它的一個底角是

  70°,它的頂角是多少度?

  4、根據(jù)三角形的內(nèi)角和是180°,你能求出下面的四邊形和正六邊形的內(nèi)角和嗎?(圖略)

  5、數(shù)學(xué)游戲。

  【設(shè)計理念】練習(xí)設(shè)計的優(yōu)化是優(yōu)化教學(xué)過程的一個重要方向,所以在新授后的鞏固練習(xí)中注意設(shè)計層層遞進,既有坡度、又注意變式,更有一練一得之妙,從而使學(xué)生牢固掌握新知。

  四、總結(jié)全課、延伸知識:

  1、今天你們學(xué)到了哪些知識?是怎樣獲取這些知識的?你感覺學(xué)得怎樣?

  2、知識延伸:給學(xué)生介紹一種更科學(xué)的驗證方法——轉(zhuǎn)化。

  【設(shè)計理念】課堂總結(jié)不僅要關(guān)注學(xué)生學(xué)會了什么,更要關(guān)注用什么方法學(xué),要有意識的促進學(xué)生反思。

  板書設(shè)計: 三角形的內(nèi)角和是180°

  方法:①量一量 拼角(略)

 、谄匆黄

 、壅垡徽

  【設(shè)計理念】此板書設(shè)計我力求簡明扼要、布局合理、條理分明,體現(xiàn)了簡潔美和形象美,把知識的重點充分地展現(xiàn)在學(xué)生的眼前,起了畫龍點睛的作用。

【三角形的內(nèi)角和的教學(xué)設(shè)計】相關(guān)文章:

三角形內(nèi)角和教學(xué)設(shè)計09-19

《三角形內(nèi)角和》教學(xué)設(shè)計10-07

《三角形內(nèi)角和》教學(xué)設(shè)計04-07

三角形的內(nèi)角和的教學(xué)設(shè)計07-24

三角形內(nèi)角和教學(xué)設(shè)計04-12

三角形的內(nèi)角和教學(xué)設(shè)計03-01

《三角形的內(nèi)角和〉教學(xué)設(shè)計10-07

《三角形內(nèi)角和》的教學(xué)設(shè)計10-07

《三角形的內(nèi)角和》教學(xué)設(shè)計03-14

三角形內(nèi)角和教學(xué)設(shè)計03-09