成年女人色视频在线观看网站_一本久精品无码免费_亚洲成a人片在线观看无码专区_开心婷婷五月综合基地六月

因式分解教案

時(shí)間:2023-03-07 16:41:24 教案 投訴 投稿

因式分解教案模板7篇

  作為一位兢兢業(yè)業(yè)的人民教師,時(shí)常要開展教案準(zhǔn)備工作,借助教案可以更好地組織教學(xué)活動(dòng)。教案應(yīng)該怎么寫呢?以下是小編整理的因式分解教案7篇,僅供參考,歡迎大家閱讀。

因式分解教案模板7篇

因式分解教案1

  第十五章 整式的乘除與因式分解

  根據(jù)定義,我們不難得出a+b+c、t-5、3x+5+2z、 ab-3.12r2、x2+2x+18都是多項(xiàng)式.請(qǐng)分別指出它們的項(xiàng)和次數(shù).

  15.1.2 整式的加減

 。3)x-(1-2x+x2)+(-1-x2) (4)(8x-3x2)-5x-2(3x-2x2)

  四、提高練習(xí):

  1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,問C是什么樣的.多項(xiàng)式?

  2、設(shè)A=2x2-3x+2-x+2,B=4x2-6x+22-3x-,若│x-2a│+(+3)2=0,且B-2A=a,求A的值。

  3、已知有理數(shù)a、b、c在數(shù)軸上(0為數(shù)軸原點(diǎn))的對(duì)應(yīng)點(diǎn)如圖:

  試化簡:│a│-│a+b│+│c-a│+│b+c│

  小 結(jié):要善于在圖形變化中發(fā)現(xiàn)規(guī)律,能熟練的對(duì)整式加減進(jìn)行運(yùn)算。

  作 業(yè):課本P14習(xí)題1.3:1(2)、(3)、(6),2。

  《課堂感悟與探究》

因式分解教案2

  學(xué)習(xí)目標(biāo)

  1、 學(xué)會(huì)用公式法因式法分解

  2、綜合運(yùn)用提取公式法、公式法分解因式

  學(xué)習(xí)重難點(diǎn) 重點(diǎn):

  完全平方公式分解因式.

  難點(diǎn):綜合運(yùn)用兩種公式法因式分解

  自學(xué)過程設(shè)計(jì)

  完全平方公式:

  完全平方公式的逆運(yùn)用:

  做一做:

  1.(1)16x2-8x+_______=(4x-1)2;

  (2)_______+6x+9=(x+3)2;

  (3)16x2+_______+9y2=(4x+3y)2;

  (4)(a-b)2-2(a-b)+1=(______-1)2.

  2.在代數(shù)式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序號(hào))

  3.下列因式分解正確的是( )

  A.x2+y2=(x+y)2 B.x2-xy+x2=(x-y)2

  C.1+4x-4x2=(1-2x)2 D.4-4x+x2=(x-2)2

  4.分解因式:(1)x2-22x+121 (2)-y2-14y-49 (3)(a+b)2+2(a+b)+1

  5.計(jì)算:20062-40102006+20052=___________________.

  6.若x+y=1,則 x2+xy+ y2的值是_________________.

  想一想

  你還有哪些地方不是很懂?請(qǐng)寫出來。

  ____________________________________________________________________________________ 預(yù)習(xí)展示一:

  1.判別下列各式是不是完全平方式.

  2、把下列各式因式分解:

  (1)-x2+4xy-4y2

  (2)3ax2+6axy+3ay2

  (3)(2x+y)2-6(2x+y)+9

  應(yīng)用探究:

  1、用簡便方法計(jì)算

  49.92+9.98 +0.12

  拓展提高:

  (1)( a2+b2)( a2+b2 10)+25=0 求a2+b2

  (2)4x2+y2-4xy-12x+6y+9=0

  求x、y關(guān)系

  (3)分解因式:m4+4

  教后反思 考察利用公式法因式分解的題目不會(huì)很難,但是需要學(xué)生記住公式的形式,之后利用公式把式子進(jìn)行變形,從而達(dá)到進(jìn)行因式分解的目的`,但是這里有用到實(shí)際中去的例子,對(duì)學(xué)生來說會(huì)難一些。

因式分解教案3

  第6.4因式分解的簡單應(yīng)用

  背景材料:

  因式分解是初中數(shù)學(xué)中的一個(gè)重點(diǎn)內(nèi)容,也是一項(xiàng)重要的基本技能和基礎(chǔ)知識(shí),更是一種數(shù)學(xué)的變形方法,在今后的學(xué)習(xí)中有著重要的作用。因此,除了單純的因式分解問題外,因式分解在解某些數(shù)學(xué)問題中有著廣泛的作用,因式分解在三角形中的應(yīng)用,因式分解可以用來證明代數(shù)問題,用于代數(shù)式的求值,用于求不定方程,用于解應(yīng)用題解決有關(guān)復(fù)雜數(shù)值的計(jì)算,本節(jié)課的例題因式分解在數(shù)學(xué)題中的簡單應(yīng)用。

  教材分析:

  本節(jié)課是本章的最后一節(jié),是學(xué)生學(xué)習(xí)因式分解初步應(yīng)用,首先要使學(xué)生體會(huì)到因式分解在數(shù)學(xué)中應(yīng)用,其次給學(xué)生提供更多機(jī)會(huì)體驗(yàn)主動(dòng)學(xué)習(xí)和探索的“過程”與“經(jīng)歷”,使多數(shù)學(xué)里擁有一定問題解決的經(jīng)驗(yàn)。

  教學(xué)目標(biāo):

  1、在整除的情況下,會(huì)應(yīng)用因式分解,進(jìn)行多項(xiàng)式相除。

  2、會(huì)應(yīng)用因式分解解簡單的一元二次方程。

  3、體驗(yàn)數(shù)學(xué)問題中的矛盾轉(zhuǎn)化思想。

  4、培養(yǎng)觀察和動(dòng)手能力,自主探索與合作交流能力。

  教學(xué)重點(diǎn):

  學(xué)會(huì)應(yīng)用因式分解進(jìn)行多項(xiàng)式除法和解簡單一元二次方程。

  教學(xué)難點(diǎn):

  應(yīng)用因式分解解簡單的一元二次方程。

  設(shè)計(jì)理念:

  根據(jù)本節(jié)課的內(nèi)容特點(diǎn),主要采用師生合作控討式課堂教學(xué)方法,以教師為主導(dǎo),學(xué)生為主體,動(dòng)手實(shí)踐訓(xùn)練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標(biāo),引導(dǎo)學(xué)生自主探索,動(dòng)手實(shí)踐,合作交流。注重使學(xué)生經(jīng)辦觀察、操作、推理等探索過程。這種教學(xué)理念,反映了時(shí)代精神,有利于提高學(xué)生的數(shù)學(xué)素養(yǎng),能有效地激發(fā)學(xué)生的思維積極性,學(xué)生在學(xué)習(xí)過程中調(diào)動(dòng)各種感官,進(jìn)行觀察與抽象、操作與思考、自主與交流等,進(jìn)而改進(jìn)學(xué)生的學(xué)習(xí)方法。

  教學(xué)過程:

  一、創(chuàng)設(shè)情境,復(fù)習(xí)提問

  1、將正式各式因式分解

 。1)(a+b)2-10(a+b)+25 (2)-xy+2x2y+x3y

 。3)2 a2b-8a2b (4)4x2-9

  [四位同學(xué)到黑板上演板,本課時(shí)用復(fù)習(xí)“練習(xí)引入”也不失為一種好方法,既先復(fù)習(xí)因式分解的提取分因式和公式法,又為下面解決多項(xiàng)式除法運(yùn)算作鋪墊]

  教師訂正

  提出問題:怎樣計(jì)算(2 a2b-8a2b)÷(4a-b)

  二、導(dǎo)入新課,探索新知

 。ㄏ茸寣W(xué)生思考上面所提出的問題,教師從旁啟發(fā))

  師:如果出現(xiàn)豎式計(jì)算,教師可以給予肯定;可能出現(xiàn)(2 a2b-8a2b)÷(4a-b)= ab-8a2追問學(xué)生怎么得來的,運(yùn)算的依據(jù)是什么?這樣暴露學(xué)生的思維,讓學(xué)生自己發(fā)現(xiàn)錯(cuò)誤之處;觀察2 a2b-8a2b=2 ab(b-4a),其中一個(gè)因式正好是除式4a-b的'相反數(shù),如果用“換元”思想,我們就可以把問題轉(zhuǎn)化為單項(xiàng)式除以單項(xiàng)式。

 。2 a2b-8a2b)÷(4a-b)

  =-2ab(4a-b)÷(4a-b)

  =-2ab

 。ㄗ寣W(xué)生自己比較哪種方法好)

  利用上面的數(shù)學(xué)解題思路,同學(xué)們嘗試計(jì)算

 。4x2-9)÷(3-2x)

  學(xué)生總結(jié)解題步驟:1、因式分解;2、約去公因式)

 。ㄈw學(xué)生動(dòng)手動(dòng)腦,然后叫學(xué)生回答,及時(shí)表揚(yáng),講練結(jié)合, [運(yùn)用多項(xiàng)式的因式分解和換元的思想,可以把兩個(gè)多項(xiàng)式相除,轉(zhuǎn)化為單項(xiàng)式的除法]

  練習(xí)計(jì)算

 。1)(a2-4)÷(a+2)

 。2)(x2+2xy+y2)÷(x+y)

 。3)[(a-b)2+2(b-a)] ÷(a-b)

  三、合作學(xué)習(xí)

  1、以四人為一組討論下列問題

  若A?B=0,下面兩個(gè)結(jié)論對(duì)嗎?

 。1)A和B同時(shí)都為零,即A=0且B=0

 。2)A和B至少有一個(gè)為零即A=0或B=0

  [合作學(xué)習(xí),四個(gè)小組討論,教師逐步引導(dǎo),讓學(xué)生講自己的想法,及解題步驟,培養(yǎng)語言表達(dá)能力,體會(huì)運(yùn)用因式分解的實(shí)際運(yùn)用作用,增加學(xué)習(xí)興趣]

  2、你能用上面的結(jié)論解方程

 。1)(2x+3)(2x-3)=0 (2)2x2+x=0

  解:

  ∵(2x+3)(2x-3)=0

  ∴2x+3=0或2x-3=0

  ∴方程的解為x=-3/2或x=3/2

  解:x(2x+1)=0

  則x=0或2x+1=0

  ∴原方程的解是x1=0,x2=-1/2

  [讓學(xué)生先獨(dú)立完成,再組織交流,最后教師針對(duì)性地講解,讓學(xué)生總結(jié)步驟:1、移項(xiàng),使方程一邊變形為零;2、等式左邊因式分解;3、轉(zhuǎn)化為解一元一次方程]

  3、練習(xí),解下列方程

 。1)x2-2x=0 4x2=(x-1)2

  四、小結(jié)

 。1)應(yīng)用因式分解和換元思想可以把某些多項(xiàng)式除法轉(zhuǎn)化為單項(xiàng)式除法。

 。2)如果方程的等號(hào)一邊是零,另一邊含有未知數(shù)x的多項(xiàng)式可以分解成若干個(gè)x的一次式的積,那么就可以應(yīng)用因式分解把原方程轉(zhuǎn)化成幾個(gè)一元一次方程來解。

  設(shè)計(jì)理念:

  根據(jù)本節(jié)課的內(nèi)容特點(diǎn),主要采用師生合作討論式課堂教學(xué)方法,以教師為主導(dǎo),學(xué)生為主體,動(dòng)手實(shí)踐訓(xùn)練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標(biāo),引導(dǎo)學(xué)生自主探索,動(dòng)手實(shí)踐,合作交流。注重使學(xué)生經(jīng)辦觀察、操作、推理等探索過程。這種教學(xué)理念,反映了時(shí)代精神,有利于提高學(xué)生的數(shù)學(xué)素養(yǎng),能有效地激發(fā)學(xué)生的思維積極性,學(xué)生在學(xué)習(xí)過程中調(diào)動(dòng)各種感官,進(jìn)行觀察與抽象、操作與思考、自主與交流等,進(jìn)而改進(jìn)學(xué)生的學(xué)習(xí)方法。

因式分解教案4

  教學(xué)設(shè)計(jì)思想:

  本小節(jié)依次介紹了平方差公式和完全平方公式,并結(jié)合公式講授如何運(yùn)用公式進(jìn)行多項(xiàng)式的因式分解。第一課時(shí)的內(nèi)容是用平方差公式對(duì)多項(xiàng)式進(jìn)行因式分解,首先提出新問題:x2-4與y2-25怎樣進(jìn)行因式分解,讓學(xué)生自主探索,通過整式乘法的平方差公式,逆向得出用公式法分解因式的方法,發(fā)展學(xué)生的逆向思維和推理能力,然后讓學(xué)生獨(dú)立去做例題、練習(xí)中的題目,并對(duì)結(jié)果通過展示、解釋、相互點(diǎn)評(píng),達(dá)到能較好的運(yùn)用平方差公式進(jìn)行因式分解的目的。第二課時(shí)利用完全平方公式進(jìn)行多項(xiàng)式的`因式分解是在學(xué)生已經(jīng)學(xué)習(xí)了提取公因式法及利用平方差公式分解因式的基礎(chǔ)上進(jìn)行的,因此在教學(xué)設(shè)計(jì)中,重點(diǎn)放在判斷一個(gè)多項(xiàng)式是否為完全平方式上,采取啟發(fā)式的教學(xué)方法,引導(dǎo)學(xué)生積極思考問題,從中培養(yǎng)學(xué)生的思維品質(zhì)。

  教學(xué)目標(biāo)

  知識(shí)與技能:

  會(huì)用平方差公式對(duì)多項(xiàng)式進(jìn)行因式分解;

  會(huì)用完全平方公式對(duì)多項(xiàng)式進(jìn)行因式分解;

  能夠綜合運(yùn)用提公因式法、平方差公式、完全平方公式對(duì)多項(xiàng)式進(jìn)行因式分解;

  提高全面地觀察問題、分析問題和逆向思維的能力。

  過程與方法:

  經(jīng)歷用公式法分解因式的探索過程,進(jìn)一步體會(huì)這兩個(gè)公式在因式分解和整式乘法中的不同方向,加深對(duì)整式乘法和因式分解這兩個(gè)相反變形的認(rèn)識(shí),體會(huì)從正逆兩方面認(rèn)識(shí)和研究事物的方法。

  情感態(tài)度價(jià)值觀:

  通過學(xué)習(xí)進(jìn)一步理解數(shù)學(xué)知識(shí)間有著密切的聯(lián)系。

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):①運(yùn)用平方差公式分解因式;②運(yùn)用完全平方式分解因式。

  難點(diǎn):①靈活運(yùn)用平方差公式分解因式,正確判斷因式分解的徹底性;②靈活運(yùn)用完全平方公式分解因式

  關(guān)鍵:把握住因式分解的基本思路,觀察多項(xiàng)式的特征,靈活地運(yùn)用換元和劃歸思想。

因式分解教案5

  教學(xué)目標(biāo):

  1.知識(shí)與技能:掌握運(yùn)用提公因式法、公式法分解因式,培養(yǎng)學(xué)生應(yīng)用因式分解解決問題的能力.

  2.過程與方法:經(jīng)歷探索因式分解方法的過程,培養(yǎng)學(xué)生研討問題的方法,通過猜測、推理、驗(yàn)證、歸納等步驟,得出因式分解的方法.

  3.情感態(tài)度與價(jià)值觀:通過因式分解的學(xué)習(xí),使學(xué)生體會(huì)數(shù)學(xué)美,體會(huì)成功的自信和團(tuán)結(jié)合作精神,并體會(huì)整體數(shù)學(xué)思想和轉(zhuǎn)化的數(shù)學(xué)思想.

  教學(xué)重、難點(diǎn):用提公因式法和公式法分解因式.

  教具準(zhǔn)備:多媒體課件(小黑板)

  教學(xué)方法:活動(dòng)探究法

  教學(xué)過程:

  引入:在整式的變形中,有時(shí)需要將一個(gè)多項(xiàng)式寫成幾個(gè)整式的乘積的形式,這種變形就是因式分解.什么叫因式分解?

  知識(shí)詳解

  知識(shí)點(diǎn)1 因式分解的定義

  把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項(xiàng)式因式分解,也叫做把這個(gè)多項(xiàng)式分解因式.

  【說明】 (1)因式分解與整式乘法是相反方向的變形.

  例如:

  (2)因式分解是恒等變形,因此可以用整式乘法來檢驗(yàn).

  怎樣把一個(gè)多項(xiàng)式分解因式?

  知識(shí)點(diǎn)2 提公因式法

  多項(xiàng)式ma+mb+mc中的各項(xiàng)都有一個(gè)公共的因式m,我們把因式m叫做這個(gè)多項(xiàng)式的公因式.ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成兩個(gè)因式乘積的形式,其中一個(gè)因式是各項(xiàng)的公因式m,另一個(gè)因式(a+b+c)是ma+mb+mc除以m所得的`商,像這種分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1).

  探究交流

  下列變形是否是因式分解?為什么?

  (1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;

  (3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn.

  典例剖析 師生互動(dòng)

  例1 用提公因式法將下列各式因式分解.

  (1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);

  分析:(1)題直接提取公因式分解即可,(2)題首先要適當(dāng)?shù)淖冃? 再把b-a化成-(a-b),然后再提取公因式.

  小結(jié) 運(yùn)用提公因式法分解因式時(shí),要注意下列問題:

  (1)因式分解的結(jié)果每個(gè)括號(hào)內(nèi)如有同類項(xiàng)要合并,而且每個(gè)括號(hào)內(nèi)不能再分解.

  (2)如果出現(xiàn)像(2)小題需統(tǒng)一時(shí),首先統(tǒng)一,盡可能使統(tǒng)一的個(gè)數(shù)少。這時(shí)注意到(a-b)n=(b-a)n(n為偶數(shù)).

  (3)因式分解最后如果有同底數(shù)冪,要寫成冪的形式.

  學(xué)生做一做 把下列各式分解因式.

  (1) (2a+b)(2a-3b)+(2a+5b)(2a+b) ;(2) 4p(1-q)3+2(q-1)2

  知識(shí)點(diǎn)3 公式法

  (1)平方差公式:a2-b2=(a+b)(a-b).即兩個(gè)數(shù)的平方差,等于這兩個(gè)數(shù)的和與這個(gè)數(shù)的差的積.例如:4x2-9=(2x)2-32=(2x+3)(2x-3).

  (2)完全平方公式:a2±2ab+b2=(a±b)2.其中,a2±2ab+b2叫做完全平方式.即兩個(gè)數(shù)的平方和加上(或減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或差)的平方.例如:4x2-12xy+9y2=(2x)2-2·2x·3y+(3y)2=(2x-3y)2.

  探究交流

  下列變形是否正確?為什么?

  (1)x2-3y2=(x+3y)(x-3y);(2)4x2-6xy+9y2=(2x-3y)2;(3)x2-2x-1=(x-1)2.

  例2 把下列各式分解因式.

  (1) (a+b)2-4a2;(2)1-10x+25x2;(3)(m+n)2-6(m+n)+9.

  分析:本題旨在考查用完全平方公式分解因式.

  學(xué)生做一做 把下列各式分解因式.

  (1)(x2+4)2-2(x2+4)+1; (2)(x+y)2-4(x+y-1).

  綜合運(yùn)用

  例3 分解因式.

  (1)x3-2x2+x; (2) x2(x-y)+y2(y-x);

  分析:本題旨在考查綜合運(yùn)用提公因式法和公式法分解因式.

  小結(jié) 解因式分解題時(shí),首先考慮是否有公因式,如果有,先提公因式;如果沒有公因式是兩項(xiàng),則考慮能否用平方差公式分解因式. 是三項(xiàng)式考慮用完全平方式,最后,直到每一個(gè)因式都不能再分解為止.

  探索與創(chuàng)新題

  例4 若9x2+kxy+36y2是完全平方式,則k= .

  分析:完全平方式是形如:a2±2ab+b2即兩數(shù)的平方和與這兩個(gè)數(shù)乘積的2倍的和(或差).

  學(xué)生做一做 若x2+(k+3)x+9是完全平方式,則k= .

  課堂小結(jié)

  用提公因式法和公式法分解因式,會(huì)運(yùn)用因式分解解決計(jì)算問題.

  各項(xiàng)有"公"先提"公",首項(xiàng)有負(fù)常提負(fù),某項(xiàng)提出莫漏"1",括號(hào)里面分到"底"。

  自我評(píng)價(jià) 知識(shí)鞏固

  1.若x2+2(m-3)x+16是完全平方式,則m的值等于( )

  A.3 B.-5 C.7. D.7或-1

  2.若(2x)n-81=(4x2+9)(2x+3)(2x-3),則n的值是( )

  A.2 B.4 C.6 D.8

  3.分解因式:4x2-9y2= .

  4.已知x-y=1,xy=2,求x3y-2x2y2+xy3的值.

  5.把多項(xiàng)式1-x2+2xy-y2分解因式

  思考題 分解因式(x4+x2-4)(x4+x2+3)+10.

因式分解教案6

  一、教材分析

  1、教材的地位與作用

  “整式的乘法”是整式的加減的后續(xù)學(xué)習(xí)從冪的運(yùn)算到各種整式的乘法,整章教材都突出了學(xué)生的自主探索過程,依據(jù)原有的知識(shí)基礎(chǔ),或運(yùn)用乘法的各種運(yùn)算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運(yùn)算的基本法則、兩個(gè)主要的.乘法公式及因式分解的基本方法學(xué)生自己對(duì)知識(shí)內(nèi)容的探索、認(rèn)識(shí)與體驗(yàn),完全有利于學(xué)生形成合理的知識(shí)結(jié)構(gòu),提高數(shù)學(xué)思維能力.利用公式法進(jìn)行因式分解時(shí),注意把握多項(xiàng)式的特點(diǎn),對(duì)比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。

  因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項(xiàng)式乘法公式的逆向變形,它是將一個(gè)多項(xiàng)式變形為多項(xiàng)式與多項(xiàng)式的乘積。

  2、教學(xué)目標(biāo)

 。1)會(huì)推導(dǎo)乘法公式

 。2)在應(yīng)用乘法公式進(jìn)行計(jì)算的基礎(chǔ)上,感受乘法公式的作用和價(jià)值。

  (3)會(huì)用提公因式法、公式法進(jìn)行因式分解。

 。4)了解因式分解的一般步驟。

 。5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。

  3、重點(diǎn)、難點(diǎn)和關(guān)鍵

  重點(diǎn):乘法公式的意義、分式的由來和正確運(yùn)用;用提公因式法和公式法進(jìn)行因式分解。

  難點(diǎn):正確運(yùn)用乘法公式;正確分解因式。

  關(guān)鍵:正確理解乘法公式和因式分解的意義。

  二、本單元教學(xué)的方法和策略:

  1.注重知識(shí)形成的探索過程,讓學(xué)生在探索過程中領(lǐng)悟知識(shí),在領(lǐng)悟過程中建構(gòu)體系,從而更好地實(shí)現(xiàn)知識(shí)體系的更新和知識(shí)的正向遷移.

  2.知識(shí)內(nèi)容的呈現(xiàn)方式力求與學(xué)生已有的知識(shí)結(jié)構(gòu)相聯(lián)系,同時(shí)兼顧學(xué)生的思維水平和心理特征.

  3.讓學(xué)生掌握基本的數(shù)學(xué)事實(shí)與數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),減輕不必要的記憶負(fù)擔(dān).

  4.注意從生活中選取素材,給學(xué)生提供一些交流、討論的空間,讓學(xué)生從中體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,逐步養(yǎng)成談數(shù)學(xué)、想數(shù)學(xué)、做數(shù)學(xué)的良好習(xí)慣.

  三、課時(shí)安排:

  2.1平方差公式 1課時(shí)

  2.2完全平方公式 2課時(shí)

  2.3用提公因式法進(jìn)行因式分解 1課時(shí)

  2.4用公式法進(jìn)行因式分解 2課時(shí)

因式分解教案7

  一、教學(xué)目標(biāo)

  【知識(shí)與技能】

  了解運(yùn)用公式法分解因式的意義,會(huì)用平方差分解因式;知道提公因式法分解因式是首先考慮的方法,再考慮用平方差分解因式。

  【過程與方法】

  通過對(duì)平方差特點(diǎn)的辨析,培養(yǎng)觀察、分析能力,訓(xùn)練對(duì)平方差公式的應(yīng)用能力。

  【情感態(tài)度價(jià)值觀】

  在逆用乘法公式的過程中,培養(yǎng)逆向思維能力,在分解因式時(shí)了解換元的思想方法。

  二、教學(xué)重難點(diǎn)

  【教學(xué)重點(diǎn)】

  運(yùn)用平方差公式分解因式。

  【教學(xué)難點(diǎn)】

  靈活運(yùn)用公式法或已經(jīng)學(xué)過的提公因式法分解因式;正確判斷因式分解的徹底性。

  三、教學(xué)過程

  (一)引入新課

  我們學(xué)習(xí)了因式分解的定義,還學(xué)習(xí)了提公因式法分解因式。如果一個(gè)多項(xiàng)式的各項(xiàng),不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,大家知道因式分解與多項(xiàng)式乘法是互逆關(guān)系,能否利用這種關(guān)系找到新的.因式分解的方法呢?

  大家先觀察下列式子:

  (1)(x+5)(x-5)=,(2)(3x+y)(3x-y)=,(3)(1+3a)(1-13a)=

  他們有什么共同的特點(diǎn)?你可以得出什么結(jié)論?

  (二)探索新知

  學(xué)生獨(dú)立思考或者與同桌討論。

  引導(dǎo)學(xué)生得出:①有兩項(xiàng)組成,②兩項(xiàng)的符號(hào)相反,③兩項(xiàng)都可以寫成數(shù)或式的平方的形式。

  提問1:能否用語言以及數(shù)學(xué)公式將其特征表述出來?

因式分解教案8

  【教學(xué)目標(biāo)】

  1、了解因式分解的概念和意義;

  2、認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——相反變形,并會(huì)運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。

  【教學(xué)重點(diǎn)、難點(diǎn)】

  重點(diǎn)是因式分解的概念,難點(diǎn)是理解因式分解與整式乘法的相互關(guān)系,并運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。

  【教學(xué)過程】

 、、情境導(dǎo)入

  看誰算得快:(搶答)

  (1)若a=101,b=99,則a2-b2=___________;

  (2)若a=99,b=-1,則a2-2ab+b2=____________;

  (3)若x=-3,則20x2+60x=____________。

 、、探究新知

  1、請(qǐng)每題答得最快的同學(xué)談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;

  (2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;

  (3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

  2、觀察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2, 20x2+60x=20x(x+3),找出它們的特點(diǎn)。(等式的左邊是一個(gè)什么式子,右邊又是什么形式?)

  3、類比小學(xué)學(xué)過的因數(shù)分解概念,得出因式分解概念。(學(xué)生概括,老師補(bǔ)充。)

  板書課題:§6.1 因式分解

  因式分解概念:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的'形式叫做因式分解,也叫分解因式。

 、、前進(jìn)一步

  1、讓學(xué)生繼續(xù)觀察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2, 20x(x+3)= 20x2+60x,它們是什么運(yùn)算?與因式分解有何關(guān)系?它們有何聯(lián)系與區(qū)別?

  2、因式分解與整式乘法的關(guān)系:

  因式分解

  結(jié)合:a2-b2 (a+b)(a-b)

  整式乘法

  說明:從左到右是因式分解其特點(diǎn)是:由和差形式(多項(xiàng)式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點(diǎn)是:由整式積的形式轉(zhuǎn)化成和差形式(多項(xiàng)式)。

  結(jié)論:因式分解與整式乘法的相互關(guān)系——相反變形。

 、、鞏固新知

  1、 下列代數(shù)式變形中,哪些是因式分解?哪些不是?為什么?

  (1)x2-3x+1=x(x-3)+1 ;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);

  (3)2m(m-n)=2m2-2mn; (4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);

  (6)x2-4+3x=(x-2)(x+2)+3x; (7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。

  2、你能寫出整式相乘(其中至少一個(gè)是多項(xiàng)式)的兩個(gè)例子,并由此得到相應(yīng)的兩個(gè)多項(xiàng)式的因式分解嗎?把結(jié)果與你的同伴交流。

 、、應(yīng)用解釋

  例 檢驗(yàn)下列因式分解是否正確:

  (1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).

  分析:檢驗(yàn)因式分解是否正確,只要看等式右邊幾個(gè)整式相乘的積與右邊的多項(xiàng)式是否相等。

  練習(xí) 計(jì)算下列各題,并說明你的算法:(請(qǐng)學(xué)生板演)

  (1)872+87×13

  (2)1012-992

 、、思維拓展

  1.若 x2+mx-n能分解成(x-2)(x-5),則m= ,n=

  2.機(jī)動(dòng)題:(填空)x2-8x+m=(x-4)( ),且m=

 、、課堂回顧

  今天這節(jié)課,你學(xué)到了哪些知識(shí)?有哪些收獲與感受?說出來大家分享。

 、、布置作業(yè)

  作業(yè)本(1) ,一課一練

 。ň牛┙虒W(xué)反思:

因式分解教案9

 。ㄒ唬學(xué)習(xí)目標(biāo)

  1、會(huì)用因式分解進(jìn)行簡單的多項(xiàng)式除法

  2、會(huì)用因式分解解簡單的方程

  (二)學(xué)習(xí)重難點(diǎn)重點(diǎn):因式分解在多項(xiàng)式除法和解方程中兩方面的應(yīng)用。

  難點(diǎn):應(yīng)用因式分解解方程涉及到的.較多的推理過程是本節(jié)課的難點(diǎn)。

 。ㄈ教學(xué)過程設(shè)計(jì)

  看一看

  1.應(yīng)用因式分解進(jìn)行多項(xiàng)式除法.多項(xiàng)式除以多項(xiàng)式的一般步驟:

 、賍_______________②__________

  2.應(yīng)用因式分解解簡單的一元二次方程.

  依據(jù)__________,一般步驟:__________

  做一做

  1.計(jì)算:

  (1)(-a2b2+16)÷(4-ab);

  (2)(18x2-12xy+2y2)÷(3x-y).

  2.解下列方程:

  (1)3x2+5x=0;

  (2)9x2=(x-2)2;

  (3)x2-x+=0.

  3.完成課后練習(xí)題

  想一想

  你還有哪些地方不是很懂?請(qǐng)寫出來。

  ____________________________________

  (四)預(yù)習(xí)檢測

  1.計(jì)算:

  2.先請(qǐng)同學(xué)們思考、討論以下問題:

  (1)如果A×5=0,那么A的值

  (2)如果A×0=0,那么A的值

  (3)如果AB=0,下列結(jié)論中哪個(gè)正確( )

 、貯、B同時(shí)都為零,即A=0,

  且B=0;

 、贏、B中至少有一個(gè)為零,即A=0,或B=0;

  (五)應(yīng)用探究

  1.解下列方程

  2.化簡求值:已知x-y=-3,-x+3y=2,求代數(shù)式x2-4xy+3y2的值

  (六)拓展提高:

  解方程:

  1、(x2+4)2-16x2=0

  2、已知a、b、c為三角形的三邊,試判斷a2-2ab+b2-c2大于零?小于零?等于零?

  (七)堂堂清練習(xí)

  1.計(jì)算

  2.解下列方程

 、7x2+2x=0

 、趚2+2x+1=0

 、踴2=(2x-5)2

 、躼2+3x=4x

因式分解教案10

  教學(xué)目標(biāo)

  1、 會(huì)運(yùn)用因式分解進(jìn)行簡單的多項(xiàng)式除法。

  2、 會(huì)運(yùn)用因式分解解簡單的方程。

  二、教學(xué)重點(diǎn)與難點(diǎn)教學(xué)重點(diǎn):

  教學(xué)重點(diǎn)

  因式分解在多項(xiàng)式除法和解方程兩方面的應(yīng)用。

  教學(xué)難點(diǎn):

  應(yīng)用因式分解解方程涉及較多的推理過程。

  三、教學(xué)過程

  (一)引入新課

  1、 知識(shí)回顧(1) 因式分解的幾種方法: ①提取公因式法: ma+mb=m(a+b) ②應(yīng)用平方差公式: = (a+b) (a—b)③應(yīng)用完全平方公式:a 2ab+b =(ab) (2) 課前熱身: ①分解因式:(x +4) y — 16x y

  (二)師生互動(dòng),講授新課

  1、運(yùn)用因式分解進(jìn)行多項(xiàng)式除法例1 計(jì)算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3

  一個(gè)小問題 :這里的x能等于3/2嗎 ?為什么?

  想一想:那么(4x —9) (3—2x) 呢?練習(xí):課本P162課內(nèi)練習(xí)

  合作學(xué)習(xí)

  想一想:如果已知 ( )( )=0 ,那么這兩個(gè)括號(hào)內(nèi)應(yīng)填入怎樣的數(shù)或代數(shù)式子才能夠滿足條件呢? (讓學(xué)生自己思考、相互之間討論。┦聦(shí)上,若AB=0 ,則有下面的結(jié)論:(1)A和B同時(shí)都為零,即A=0,且B=0(2)A和B中有一個(gè)為零,即A=0,或B=0

  試一試:你能運(yùn)用上面的結(jié)論解方程(2x+1)(3x—2)=0 嗎?3、 運(yùn)用因式分解解簡單的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0則x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 則3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一個(gè)未知數(shù)的方程的`解也叫做根,當(dāng)方程的根多于一個(gè)時(shí),常用帶足標(biāo)的字母表示,比如:x1 ,x2

  等練習(xí):課本P162課內(nèi)練習(xí)2

  做一做!對(duì)于方程:x+2=(x+2) ,你是如何解該方程的,方程左右兩邊能同時(shí)除以(x+2)嗎?為什么?

  教師總結(jié):運(yùn)用因式分解解方程的基本步驟(1)如果方程的右邊是零,那么把左邊分解因式,轉(zhuǎn)化為解若干個(gè)一元一次方程;(2)如果方程的兩邊都不是零,那么應(yīng)該先移項(xiàng),把方程的右邊化為零以后再進(jìn)行解方程;遇到方程兩邊有公因式,同樣需要先進(jìn)行移項(xiàng)使右邊化為零,切忌兩邊同時(shí)除以公因式!4、知識(shí)延伸解方程:(x +4) —16x =0解:將原方程左邊分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接著繼續(xù)解方程,5、 練一練 ①已知 a、b、c為三角形的三邊,試判斷 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c為三角形的三邊 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑戰(zhàn)極限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx

  (三)梳理知識(shí),總結(jié)收獲因式分解的兩種應(yīng)用:

 。1)運(yùn)用因式分解進(jìn)行多項(xiàng)式除法

 。2)運(yùn)用因式分解解簡單的方程

  (四)布置課后作業(yè)

  作業(yè)本6、42、課本P163作業(yè)題(選做)

因式分解教案11

  整式乘除與因式分解

  一.回顧知識(shí)點(diǎn)

  1、主要知識(shí)回顧:

  冪的運(yùn)算性質(zhì):

  aman=am+n(m、n為正整數(shù))

  同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.

  =amn(m、n為正整數(shù))

  冪的乘方,底數(shù)不變,指數(shù)相乘.

  (n為正整數(shù))

  積的乘方等于各因式乘方的積.

  =am-n(a≠0,m、n都是正整數(shù),且m>n)

  同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.

  零指數(shù)冪的概念:

  a0=1(a≠0)

  任何一個(gè)不等于零的數(shù)的零指數(shù)冪都等于l.

  負(fù)指數(shù)冪的概念:

  a-p=(a≠0,p是正整數(shù))

  任何一個(gè)不等于零的數(shù)的-p(p是正整數(shù))指數(shù)冪,等于這個(gè)數(shù)的p指數(shù)冪的倒數(shù).

  也可表示為:(m≠0,n≠0,p為正整數(shù))

  單項(xiàng)式的乘法法則:

  單項(xiàng)式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,則連同它的指數(shù)作為積的一個(gè)因式.

  單項(xiàng)式與多項(xiàng)式的乘法法則:

  單項(xiàng)式與多項(xiàng)式相乘,用單項(xiàng)式和多項(xiàng)式的每一項(xiàng)分別相乘,再把所得的積相加.

  多項(xiàng)式與多項(xiàng)式的乘法法則:

  多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)與另一個(gè)多項(xiàng)式的每一項(xiàng)相乘,再把所得的積相加.

  單項(xiàng)式的除法法則:

  單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式:對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式.

  多項(xiàng)式除以單項(xiàng)式的法則:

  多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以這個(gè)單項(xiàng)式,再把所得的商相加.

  2、乘法公式:

 、倨椒讲罟剑(a+b)(a-b)=a2-b2

  文字語言敘述:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差相乘,等于這兩個(gè)數(shù)的平方差.

 、谕耆椒焦剑(a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  文字語言敘述:兩個(gè)數(shù)的和(或差)的平方等于這兩個(gè)數(shù)的平方和加上(或減去)這兩個(gè)數(shù)的積的2倍.

  3、因式分解:

  因式分解的定義.

  把一個(gè)多項(xiàng)式化成幾個(gè)整式的乘積的形式,這種變形叫做把這個(gè)多項(xiàng)式因式分解.

  掌握其定義應(yīng)注意以下幾點(diǎn):

  (1)分解對(duì)象是多項(xiàng)式,分解結(jié)果必須是積的形式,且積的因式必須是整式,這三個(gè)要素缺一不可;

  (2)因式分解必須是恒等變形;

  (3)因式分解必須分解到每個(gè)因式都不能分解為止.

  弄清因式分解與整式乘法的內(nèi)在的關(guān)系.

  因式分解與整式乘法是互逆變形,因式分解是把和差化為積的形式,而整式乘法是把積化為和差的形式.

  二、熟練掌握因式分解的常用方法.

  1、提公因式法

  (1)掌握提公因式法的概念;

  (2)提公因式法的關(guān)鍵是找出公因式,公因式的.構(gòu)成一般情況下有三部分:①系數(shù)一各項(xiàng)系數(shù)的最大公約數(shù);②字母——各項(xiàng)含有的相同字母;③指數(shù)——相同字母的最低次數(shù);

  (3)提公因式法的步驟:第一步是找出公因式;第二步是提取公因式并確定另一因式.需注意的是,提取完公因式后,另一個(gè)因式的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)一致,這一點(diǎn)可用來檢驗(yàn)是否漏項(xiàng).

  (4)注意點(diǎn):①提取公因式后各因式應(yīng)該是最簡形式,即分解到“底”;②如果多項(xiàng)式的第一項(xiàng)的系數(shù)是負(fù)的,一般要提出“-”號(hào),使括號(hào)內(nèi)的第一項(xiàng)的系數(shù)是正的.

  2、公式法

  運(yùn)用公式法分解因式的實(shí)質(zhì)是把整式中的乘法公式反過來使用;

  常用的公式:

 、倨椒讲罟剑篴2-b2=(a+b)(a-b)

 、谕耆椒焦剑篴2+2ab+b2=(a+b)2

  a2-2ab+b2=(a-b)2

因式分解教案12

  教學(xué)目標(biāo):運(yùn)用平方差公式和完全平方公式分解因式,能說出平方差公式和完全平方公式的特點(diǎn),會(huì)用提公因式法與公式法分解因式.培養(yǎng)學(xué)生的觀察、聯(lián)想能力,進(jìn)一步了解換元的思想方法.并能說出提公因式在這類因式分解中的作用,能靈活應(yīng)用提公因式法、公式法分解因式以及因式分解的.標(biāo)準(zhǔn).

  教學(xué)重點(diǎn)和難點(diǎn):1.平方差公式;2.完全平方公式;3.靈活運(yùn)用3種方法.

  教學(xué)過程:

  一、提出問題,得到新知

  觀察下列多項(xiàng)式:x24和y225

  學(xué)生思考,教師總結(jié):

  (1)它們有兩項(xiàng),且都是兩個(gè)數(shù)的平方差;(2)會(huì)聯(lián)想到平方差公式.

  公式逆向:a2b2=(a+b)(ab)

  如果多項(xiàng)式是兩數(shù)差的形式,并且這兩個(gè)數(shù)又都可以寫成平方的形式,那么這個(gè)多項(xiàng)式可以運(yùn)用平方差公式分解因式.

  二、運(yùn)用公式

  例1:填空

 、4a2=()2②b2=()2③0.16a4=()2

 、1.21a2b2=()2⑤2x4=()2⑥5x4y2=()2

  解答:①4a2=(2a)2;②b2=(b)2③0.16a4=(0.4a2)2

 、1.21a2b2=(1.1ab)2⑤2x4=(x2)2⑥5x4y2=(x2y)2

  例2:下列多項(xiàng)式能否用平方差公式進(jìn)行因式分解

 、1.21a2+0.01b2②4a2+625b2③16x549y4④4x236y2

  解答:①1.21a2+0.01b2能用

 、4a2+625b2不能用

 、16x549y4不能用

 、4x236y2不能用

因式分解教案13

  學(xué)習(xí)目標(biāo)

  1、學(xué)會(huì)用平方差公式進(jìn)行因式法分解

  2、學(xué)會(huì)因式分解的而基本步驟.

  學(xué)習(xí)重難點(diǎn)重點(diǎn)

  用平方差公式進(jìn)行因式法分解.

  難點(diǎn)

  因式分解化簡的過程

  自學(xué)過程設(shè)計(jì)教學(xué)過程設(shè)計(jì)

 看一看

 平方差公式:

  平方差公式的逆運(yùn)用:

  做一做:

 1.填空題.

  (1)25a2-_______=(5a+2b)(5a-2b);(2)x2-=(x-)(________).

  (3)-a2+b2=(b+a)(________);(4)36x2-81y2=9(_______)(_______).

  2.把下列各式分解因式結(jié)果為-(x-2y)(x+2y)的多項(xiàng)式是()

  A.x2-4yB.x2+4y2C.-x2+4y2D.-x2-4y2

  3.多項(xiàng)式-1+0.04a2分解因式的結(jié)果是()

  A.(-1+0.2a)2B.(1+0.2a)(1-0.2a)

  C.(0.2a+1)(0.2a-1)D.(0.04a+1)(0.04a-1)

  4.把下列各式分解因式:

  (1)4x2-25y2;(2)0.81m2-n2;

  (3)a3-9a;(4)8x3y3-2xy.

  5.把下列各式分解因式:

  (1)(3a+2b)2-(a-b)2;(2)4(x+2y)2-25(x-y)2.

  6.用簡便方法計(jì)算:3492-2512.

  想一想

 你還有哪些地方不是很懂?請(qǐng)寫出來。

  ____________________________________________________________________________________

  Xkb1.com預(yù)習(xí)展示一:

  1、下列多項(xiàng)式能否用平方差公式分解因式?

  說說你的'理由。

  4x2+y2

  4x2-(-y)2

  -4x2-y2-4x2+y2

  a2-4a2+3

  2.把下列各式分解因式:

  (1)16-a2

  (2)0.01s2-t2

  (4)-1+9x2

  (5)(a-b)2-(c-b)2

  (6)-(x+y)2+(x-2y)2

  應(yīng)用探究:

 1、分解因式

  4x3y-9xy3

  變式:把下列各式分解因式

 、賦4-81y4

  ②2a-8a

  2、從前有一位張老漢向地主租了一塊“十字型”土地(尺寸如圖)。為便于種植,他想換一塊相同面積的長方形土地。同學(xué)們,你能幫助張老漢算出這塊長方形土地的長和寬嗎?w

  3、在日常生活中如上網(wǎng)等都需要密碼.有一種因式分解法產(chǎn)生的密碼方便記憶又不易破譯.

  例如用多項(xiàng)式x4-y4因式分解的結(jié)果來設(shè)置密碼,當(dāng)取x=9,y=9時(shí),可得一個(gè)六位數(shù)的密碼“018162”.你想知道這是怎么來的嗎?

  小明選用多項(xiàng)式4x3-xy2,取x=10,y=10時(shí)。用上述方法產(chǎn)生的密碼是什么?(寫出一個(gè)即可)

  拓展提高:

若n為整數(shù),則(2n+1)2-(2n-1)2能被8整除嗎?請(qǐng)說明理由.

  教后反思考察利用公式法因式分解的題目不會(huì)很難,但是需要學(xué)生記住公式的形式,之后利用公式把式子進(jìn)行變形,從而達(dá)到進(jìn)行因式分解的目的。

因式分解教案14

  一、背景介紹

  因式分解是代數(shù)式中的重要內(nèi)容,它與前一章整式和后一章分式聯(lián)系極為密切。因式分解的教學(xué)是在整式四則運(yùn)算的基礎(chǔ)上進(jìn)行的,因式分解方法的理論依據(jù)就是多項(xiàng)式乘法的逆變形。它不僅在多項(xiàng)式的除法、簡便運(yùn)算中有直接的應(yīng)用,也為以后學(xué)習(xí)分式的約分與通分、解方程(組)及三角函數(shù)式的恒等變形提供了必要的基礎(chǔ)。因此,學(xué)好因式分解對(duì)于代數(shù)知識(shí)的后續(xù)學(xué)習(xí),具有相當(dāng)重要的意義。

  二、教學(xué)設(shè)計(jì)

  【教學(xué)內(nèi)容分析】

  因式分解的概念是把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,它是因式分解方法的理論基礎(chǔ),也是本章中一個(gè)重要概念。教材在引入中是結(jié)合剪紙拼圖來闡述這一概念的,也可以與小學(xué)數(shù)學(xué)里因數(shù)分解的概念類比予以說明。在教學(xué)時(shí)對(duì)因式分解這一概念不宜要求學(xué)生一次徹底了解,應(yīng)該在講授因式分解的三種基本方法時(shí),結(jié)合具體例題的分解過程和分解結(jié)果,說明這一概念的意義,以達(dá)到逐步了解這一概念的教學(xué)目的。

  【教學(xué)目標(biāo)】

  1、認(rèn)知目標(biāo):(1)理解因式分解的概念和意義

 。2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——相反變形,并會(huì)運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。

  2、能力目標(biāo):由學(xué)生自行探求解題途徑,培養(yǎng)學(xué)生觀察、分析、判斷能力和創(chuàng)新能力,發(fā)展學(xué)生智能,深化學(xué)生逆向思維能力和綜合運(yùn)用能力。

  3、情感目標(biāo):培養(yǎng)學(xué)生接受矛盾的對(duì)立統(tǒng)一觀點(diǎn),獨(dú)立思考,勇于探索的精神和實(shí)事求是的科學(xué)態(tài)度。

  【教學(xué)重點(diǎn)、難點(diǎn)】

  重點(diǎn)是因式分解的概念,難點(diǎn)是理解因式分解與整式乘法的相互關(guān)系,并運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。

  【教學(xué)準(zhǔn)備】

  實(shí)物投影儀、多媒體輔助教學(xué)。

  【教學(xué)過程】

 、、情境導(dǎo)入

  看誰算得快:(搶答)

  (1)若a=101,b=99,則a2-b2=___________;

  (2)若a=99,b=-1,則a2-2ab+b2=____________;

  (3)若x=-3,則20x2+60x=____________。

  【初一年級(jí)學(xué)生活波好動(dòng),好表現(xiàn),爭強(qiáng)好勝。情境導(dǎo)入借助搶答的方式進(jìn)行,引進(jìn)競爭機(jī)制,可以使學(xué)生在參與的過程中提高興趣,并增強(qiáng)競爭意識(shí)和探究欲望!

 、、探究新知

  1、請(qǐng)每題答得最快的同學(xué)談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;

  (2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;

  (3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

  【“與其拉馬喝水,不如讓它口渴”。探索最佳解題方法的過程,就是學(xué)生“口渴”的地方。由此引起學(xué)生的求知欲!

  2、觀察:a2-b2=(a+b)(a-b) ,

  a2-2ab+b2 = (a-b)2 ,

  20x2+60x=20x(x+3),找出它們的特點(diǎn)。(等式的左邊是一個(gè)什么式子,右邊又是什么形式?)

  【利用教師的主導(dǎo)作用,把學(xué)生的無意識(shí)的觀察轉(zhuǎn)變?yōu)橛幸庾R(shí)的觀察,同時(shí)教師應(yīng)鼓勵(lì)學(xué)生大膽描述自己的觀察結(jié)果,并及時(shí)予以肯定!

  3、類比小學(xué)學(xué)過的因數(shù)分解概念,得出因式分解概念。(學(xué)生概括,老師補(bǔ)充。)

  【讓學(xué)生自己概括出所感知的知識(shí)內(nèi)容,有利于學(xué)生在實(shí)踐中感悟知識(shí)的生成過程,培養(yǎng)學(xué)生的語言表達(dá)能力!

  板書課題:§6.1因式分解

  因式分解概念:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式叫做因式分解,也叫分解因式。

 、、前進(jìn)一步

  1、讓學(xué)生繼續(xù)觀察:(a+b)(a-b)= a2-b2 ,

  (a-b)2= a2-2ab+b2,

  20x(x+3)= 20x2+60x,它們是什么運(yùn)算?與因式分解有何關(guān)系?它們有何聯(lián)系與區(qū)別?

 。ㄒ⒁庾寣W(xué)生區(qū)分因式分解與整式乘法的區(qū)別,防止學(xué)生出現(xiàn)在進(jìn)行因式分解當(dāng)中,半路又做乘法的錯(cuò)誤。)

  【注重?cái)?shù)學(xué)知識(shí)間的聯(lián)系,給學(xué)生提供探索與交流的空間,讓學(xué)生經(jīng)歷數(shù)學(xué)知識(shí)的生成過程,由學(xué)生發(fā)現(xiàn)整式乘法與因式分解的相互關(guān)系,培養(yǎng)學(xué)生觀察、分析問題的能力和逆向思維能力及創(chuàng)新能力!

  2、因式分解與整式乘法的關(guān)系:

  因式分解

  結(jié)合:a2-b2=========(a+b)(a-b)

  整式乘法

  說明:從左到右是因式分解其特點(diǎn)是:由和差形式(多項(xiàng)式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點(diǎn)是:由整式積的形式轉(zhuǎn)化成和差形式(多項(xiàng)式)。

  結(jié)論:因式分解與整式乘法的相互關(guān)系——相反變形。(多媒體展示學(xué)生得出的成果)

 、、鞏固新知

  1、 下列代數(shù)式變形中,哪些是因式分解?哪些不是?為什么?

  (1)x2-3x+1=x(x-3)+1 ;

  (2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);

  (3)2m(m-n)=2m2-2mn;

  (4)4x2-4x+1=(2x-1)2;

  (5)3a2+6a=3a(a+2);

  (6)x2-4+3x=(x-2)(x+2)+3x;

  (7)k2+ +2=(k+ )2;

  (8)18a3bc=3a2b?6ac。

  【針對(duì)學(xué)生易犯的錯(cuò)誤,制造認(rèn)知沖突,讓學(xué)生充分暴露錯(cuò)誤,然后通過分析、討論,達(dá)到理解的效果!

  2、你能寫出整式相乘(其中至少一個(gè)是多項(xiàng)式)的兩個(gè)例子,并由此得到相應(yīng)的兩個(gè)多項(xiàng)式的因式分解嗎?把結(jié)果與你的同伴交流。

  【學(xué)生出題熱情、積極性高,因初一學(xué)生好表現(xiàn),因而能激發(fā)學(xué)生學(xué)習(xí)興趣,激活學(xué)生的.思維!

 、、應(yīng)用解釋

  例 檢驗(yàn)下列因式分解是否正確:

  (1)x2y-xy2=xy(x-y);

  (2)2x2-1=(2x+1)(2x-1);

  (3)x2+3x+2=(x+1)(x+2).

  分析:檢驗(yàn)因式分解是否正確,只要看等式右邊幾個(gè)整式相乘的積與右邊的多項(xiàng)式是否相等。

  練習(xí) 計(jì)算下列各題,并說明你的算法:(請(qǐng)學(xué)生板演)

  (1)872+87×13

  (2)1012-992

 、、思維拓展

  1.若 x2+mx-n能分解成(x-2)(x-5),則m= ,n=

  2.機(jī)動(dòng)題:(填空)x2-8x+m=(x-4)( ),且m=

  【進(jìn)一步拓展學(xué)生在數(shù)學(xué)領(lǐng)域內(nèi)的視野,增強(qiáng)學(xué)生對(duì)數(shù)學(xué)的興趣,使學(xué)生從小熱衷于數(shù)學(xué)的學(xué)習(xí)和探索。通過機(jī)動(dòng)題,了解學(xué)生對(duì)概念的熟練程度和思維的靈敏性、深刻性、廣闊性及探研創(chuàng)造能力,及時(shí)評(píng)價(jià),及時(shí)矯正!

 、、課堂回顧

  今天這節(jié)課,你學(xué)到了哪些知識(shí)?有哪些收獲與感受?說出來大家分享。

  【課堂小結(jié)交給學(xué)生, 讓學(xué)生總結(jié)本節(jié)課中概念的發(fā)現(xiàn)過程,運(yùn)用概念分析問題的過程,養(yǎng)成學(xué)生學(xué)習(xí)——總結(jié)——學(xué)習(xí)的良好習(xí)慣。唯有總結(jié)反思,才能控制思維操作,才能促進(jìn)理解,提高認(rèn)知水平,從而促進(jìn)數(shù)學(xué)觀點(diǎn)的形成和發(fā)展,更好地進(jìn)行知識(shí)建構(gòu),實(shí)現(xiàn)良性循環(huán)!

  ㈧、布置作業(yè)

  教科書第153的作業(yè)題。

  【設(shè)計(jì)思想】

  葉圣陶先生曾說過課堂教學(xué)的最高藝術(shù)是看學(xué)生,而不是看教師,看學(xué)生能否在課堂中煥發(fā)生命的活力。因此本教學(xué)是按“投疑——感知——概括——鞏固、應(yīng)用和拓展”的敘述模式呈現(xiàn)教學(xué)內(nèi)容的,這種呈現(xiàn)方式符合七年級(jí)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)規(guī)律,使學(xué)生從被動(dòng)的學(xué)習(xí)到主動(dòng)探索和發(fā)現(xiàn)的轉(zhuǎn)化中感受到學(xué)習(xí)與探索的樂趣。本堂課先采用以設(shè)疑探究的引課方式,激發(fā)學(xué)生的求知欲望,提高學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性,再把因式分解概念及其與整式乘法的關(guān)系作為主線,訓(xùn)練學(xué)生思維,使學(xué)生能順利地掌握重點(diǎn),突破難點(diǎn),提高能力。并在課堂教學(xué)中,引導(dǎo)學(xué)生體會(huì)知識(shí)的發(fā)生發(fā)展過程,堅(jiān)持啟發(fā)式的教學(xué)方法,鼓勵(lì)學(xué)生充分地動(dòng)腦、動(dòng)口、動(dòng)手,積極參與到教學(xué)中來,充分體現(xiàn)了學(xué)生的主動(dòng)性原則。并改變了傳統(tǒng)的言傳身教的方式,恰當(dāng)?shù)剡\(yùn)用了現(xiàn)代教育技術(shù),展現(xiàn)了一個(gè)平等、互動(dòng)的民主課堂。

因式分解教案15

  教材分析

  因式分解是代數(shù)式的一種重要恒等變形!稊(shù)學(xué)課程標(biāo)準(zhǔn)》雖然降低了因式分解的特殊技巧的要求,也對(duì)因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個(gè)公式,但絲毫沒有否定因式分解的教育價(jià)值及其在代數(shù)運(yùn)算中的重要作用。本章教材是在學(xué)生學(xué)習(xí)了整式運(yùn)算的基礎(chǔ)上提出來的,事實(shí)上,它是整式乘法的逆向運(yùn)用,與整式乘法運(yùn)算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡、解方程等—恒等變形的基礎(chǔ),為數(shù)學(xué)交流提供了有效的途徑。分解因式這一章在整個(gè)教材中起到了承上啟下的作用。本章的教育價(jià)值還體現(xiàn)在使學(xué)生接受對(duì)立統(tǒng)一的.觀點(diǎn),培養(yǎng)學(xué)生善于觀察、善于分析、正確預(yù)見、解決問題的能力。

  學(xué)情分析

  通過探究平方差公式和運(yùn)用平方差公式分解因式的活動(dòng)中,讓學(xué)生發(fā)表自己的觀點(diǎn),從交流中獲益,讓學(xué)生獲得成功的體驗(yàn),鍛煉克服困難的意志建立自信心。

  教學(xué)目標(biāo)

  1、在分解因式的過程中體會(huì)整式乘法與因式分解之間的聯(lián)系。

  2、通過公式a -b =(a+b)(a-b)的逆向變形,進(jìn)一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語言表達(dá)能力。

  3、能運(yùn)用提公因式法、公式法進(jìn)行綜合運(yùn)用。

  4、通過活動(dòng)4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學(xué)生的化歸思想。

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn): 靈活運(yùn)用平方差公式進(jìn)行分解因式。

  難點(diǎn):平方差公式的推導(dǎo)及其運(yùn)用,兩種因式分解方法(提公因式法、平方差公式)的綜合運(yùn)用。

因式分解教案16

  知識(shí)點(diǎn):

  因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項(xiàng)式的因式(十字相乘法、求根)、因式分解一般步驟。

  教學(xué)目標(biāo):

  理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項(xiàng)式的方法,能把簡單多項(xiàng)式分解因式。

  考查重難點(diǎn)與常見題型:

  考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點(diǎn)考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運(yùn)用。習(xí)題類型以填空題為多,也有選擇題和解答題。

  教學(xué)過程:

  因式分解知識(shí)點(diǎn)

  多項(xiàng)式的因式分解,就是把一個(gè)多項(xiàng)式化為幾個(gè)整式的積。分解因式要進(jìn)行到每一個(gè)因式都不能再分解為止。分解因式的常用方法有:

 。1)提公因式法

  如多項(xiàng)式

  其中m叫做這個(gè)多項(xiàng)式各項(xiàng)的`公因式, m既可以是一個(gè)單項(xiàng)式,也可以是一個(gè)多項(xiàng)式。

  (2)運(yùn)用公式法,即用

  寫出結(jié)果。

 。3)十字相乘法

  對(duì)于二次項(xiàng)系數(shù)為l的二次三項(xiàng)式 尋找滿足ab=q,a+b=p的a,b,如有,則對(duì)于一般的二次三項(xiàng)式尋找滿足

  a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,則

 。4)分組分解法:把各項(xiàng)適當(dāng)分組,先使分解因式能分組進(jìn)行,再使分解因式在各組之間進(jìn)行。

  分組時(shí)要用到添括號(hào):括號(hào)前面是“+”號(hào),括到括號(hào)里的各項(xiàng)都不變符號(hào);括號(hào)前面是“-”號(hào),括到括號(hào)里的各項(xiàng)都改變符號(hào)。

 。5)求根公式法:如果有兩個(gè)根X1,X2,那么

  2、教學(xué)實(shí)例:學(xué)案示例

  3、課堂練習(xí):學(xué)案作業(yè)

  4、課堂:

  5、板書:

  6、課堂作業(yè):學(xué)案作業(yè)

  7、教學(xué)反思:

因式分解教案17

  教學(xué)目標(biāo)

 、僭谡莆樟私庖蚴椒纸庖饬x的基礎(chǔ)上,會(huì)運(yùn)用平方差公式和完全平方公式對(duì)比較簡單的多項(xiàng)式進(jìn)行因式分解.

 、谠谶\(yùn)用公式法進(jìn)行因式分解的同時(shí)培養(yǎng)學(xué)生的觀察、比較和判斷能力以及運(yùn)算能力,用不同的方法分解因式可以提高綜合運(yùn)用知識(shí)的能力.

 、圻M(jìn)一步體驗(yàn)“整體”的思想,培養(yǎng)“換元”的意識(shí).

  教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn):運(yùn)用完全平方公式法進(jìn)行因式分解.

  難點(diǎn):觀察多項(xiàng)式的特點(diǎn),判斷是否符合公式的特征和綜合運(yùn)用分解的方法,并完整地進(jìn)行分解.

  教學(xué)準(zhǔn)備

  要求學(xué)生對(duì)完全平方公式準(zhǔn)確理解.

  教學(xué)設(shè)計(jì)

  問題:你能將多項(xiàng)式a2+2ab+b2和a2-2ab+b2因式分解嗎?這兩個(gè)多項(xiàng)式有什么特點(diǎn)?

  建議:由于受到前面用平方差公式分解因式的影響,學(xué)生對(duì)于這兩個(gè)多項(xiàng)式因式分解比較容易想到用完全平方公式,學(xué)生容易接受,教師要把重點(diǎn)放在研究公式的特征上來.

  注:可采用讓學(xué)生自主討論的'方式進(jìn)行教學(xué),引導(dǎo)學(xué)生從多項(xiàng)式的項(xiàng)數(shù)、每項(xiàng)的特點(diǎn)、整個(gè)多項(xiàng)式的特點(diǎn)等幾個(gè)方面進(jìn)行研究.然后交流各自的體會(huì).

  把多項(xiàng)式向公式的方向變形和轉(zhuǎn)化.

  例5分解因式

  (1)16x2+24x+9 (2)-x2+4x-42

  注:訓(xùn)練學(xué)生運(yùn)用完全平方公式分解因式,要盡可能地讓學(xué)生說和做,引導(dǎo)學(xué)生把多項(xiàng)式與公式進(jìn)行比較找出不同點(diǎn),把多項(xiàng)式向公式的方向轉(zhuǎn)化.

  例6分解因式

  (1)3ax2+6ax+3a2

  (2)(a+b)2-12(a+b)+36

  注:學(xué)生仔細(xì)觀察多項(xiàng)式的特點(diǎn),教師適當(dāng)提醒和指導(dǎo),要從公式的形式和特點(diǎn)上進(jìn)行比較.(可把a(bǔ)+b看作一個(gè)整體,設(shè)a+b=)

  第2小題注意滲透換整體和換元的思想.

  鞏固練習(xí)

  教科書第170頁的練習(xí)題.

  小結(jié)提高

  1.舉一個(gè)例子說說應(yīng)用完全平方公式分解因式的多項(xiàng)式應(yīng)具有怎樣的特征.

  2.談?wù)劧囗?xiàng)式因式分解的思考方向和分解的步驟.

  3.談?wù)劧囗?xiàng)式因式分解的注意點(diǎn).

  注:對(duì)這些問題進(jìn)行回顧和小結(jié)能從大的方面把握因式分解的方向和培養(yǎng)觀察能力.

  布置作業(yè)

  1.必做題:教科書第171頁習(xí)題15.4第4題,第5題;

  2.選做題:教科書第171頁第10題;

因式分解教案18

  教學(xué)目標(biāo):

  1、進(jìn)一步鞏固因式分解的概念;

  2、鞏固因式分解常用的三種方法

  3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解4、應(yīng)用因式分解來解決一些實(shí)際問題

  5、體驗(yàn)應(yīng)用知識(shí)解決問題的樂趣

  教學(xué)重點(diǎn):靈活運(yùn)用因式分解解決問題

  教學(xué)難點(diǎn):靈活運(yùn)用恰當(dāng)?shù)囊蚴椒纸獾姆椒,拓展練?xí)2、3

  教學(xué)過程:

  一、創(chuàng)設(shè)情景:若a=101,b=99,求a2—b2的值

  利用因式分解往往能將一些復(fù)雜的運(yùn)算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

  二、知識(shí)回顧

  1、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式。

  判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)

 。1)、x2—4y2=(x+2y)(x—2y)因式分解(2)。2x(x—3y)=2x2—6xy整式乘法

 。3)、(5a—1)2=25a2—10a+1整式乘法(4)。x2+4x+4=(x+2)2因式分解

 。5)、(a—3)(a+3)=a2—9整式乘法(6)。m2—4=(m+4)(m—4)因式分解

 。7)、2πR+2πr=2π(R+r)因式分解

  2、規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程。

  分解因式要注意以下幾點(diǎn):

 。1)。分解的對(duì)象必須是多項(xiàng)式。

 。2)。分解的結(jié)果一定是幾個(gè)整式的乘積的形式。

 。3)。要分解到不能分解為止。

  3、因式分解的方法

  提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法

  公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)2

  4、強(qiáng)化訓(xùn)練

  教學(xué)引入

  師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個(gè)長方形折疊就可以得到一個(gè)正方形,F(xiàn)在請(qǐng)同學(xué)們拿出一個(gè)長方形紙條,按動(dòng)畫所示進(jìn)行折疊處理。

  動(dòng)畫演示:

  場景一:正方形折疊演示

  師:這就是我們得到的正方形。下面請(qǐng)同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對(duì)角線之間的關(guān)系。請(qǐng)大家測量各邊的長度、各角的大小、對(duì)角線的長度以及對(duì)角線交點(diǎn)到各頂點(diǎn)的長度。

  [學(xué)生活動(dòng):各自測量。]

  鼓勵(lì)學(xué)生將測量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點(diǎn)。

  講授新課

  找一兩個(gè)學(xué)生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。

  動(dòng)畫演示:

  場景二:正方形的性質(zhì)

  師:這些性質(zhì)里那些是矩形的性質(zhì)?

  [學(xué)生活動(dòng):尋找矩形性質(zhì)。]

  動(dòng)畫演示:

  場景三:矩形的性質(zhì)

  師:同樣在這些性質(zhì)里尋找屬于菱形的`性質(zhì)。

  [學(xué)生活動(dòng);尋找菱形性質(zhì)。]

  動(dòng)畫演示:

  場景四:菱形的性質(zhì)

  師:這說明正方形具有矩形和菱形的全部性質(zhì)。

  及時(shí)提出問題,引導(dǎo)學(xué)生進(jìn)行思考。

  師:根據(jù)這些性質(zhì),我們能不能給正方形下一個(gè)定義?怎么樣給正方形下一個(gè)準(zhǔn)確的定義?

  [學(xué)生活動(dòng):積極思考,有同學(xué)做躍躍欲試狀。]

  師:請(qǐng)同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。

  學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵(lì),把以下三種板書:

  “有一組鄰邊相等的矩形叫做正方形!

  “有一個(gè)角是直角的菱形叫做正方形!

  “有一個(gè)角是直角且有一組鄰邊相等的平行四邊形叫做正方形!

  [學(xué)生活動(dòng):討論這三個(gè)定義正確不正確?三個(gè)定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]

  師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。

  試一試把下列各式因式分解:

 。1)。1—x2=(1+x)(1—x)(2)。4a2+4a+1=(2a+1)2

 。3)。4x2—8x=4x(x—2)(4)。2x2y—6xy2=2xy(x—3y)

  三、例題講解

  例1、分解因式

 。1)—x3y3+x2y+xy(2)6(x—2)+2x(2—x)

 。3)(4)y2+y+

  例2、分解因式

  1、a3—ab2=2、(a—b)(x—y)—(b—a)(x+y)=3、(a+b)2+2(a+b)—15=

  4、—1—2a—a2=5、x2—6x+9—y26、x2—4y2+x+2y=

  例3、分解因式

  1、72—2(13x—7)22、8a2b2—2a4b—8b3

  四、知識(shí)應(yīng)用

  1、(4x2—9y2)÷(2x+3y)2、(a2b—ab2)÷(b—a)

  3、解方程:(1)x2=5x(2)(x—2)2=(2x+1)2

  4、。若x=—3,求20x2—60x的值。5、1993—199能被200整除嗎?還能被哪些整數(shù)整除?

  五、拓展應(yīng)用

  1。計(jì)算:7652×17—2352×17解:7652×17—2352×17=17(7652—2352)=17(765+235)(765—235)

  2、20042+20xx被20xx整除嗎?

  3、若n是整數(shù),證明(2n+1)2—(2n—1)2是8的倍數(shù)。

  五、課堂小結(jié)

  今天你對(duì)因式分解又有哪些新的認(rèn)識(shí)?

因式分解教案19

  課型 復(fù)習(xí)課 教法 講練結(jié)合

  教學(xué)目標(biāo)(知識(shí)、能力、教育)

  1.了解分解因式的意義,會(huì)用提公因式法、 平方差公式和完全平方公式(直接用公式不超過兩次)分解因式(指數(shù)是正整數(shù)).

  2.通過乘法公式 , 的逆向變形,進(jìn)一步發(fā)展學(xué)生觀察、歸納、類比、概括等能力,發(fā)展有條理的思考及語言表達(dá)能力

  教學(xué)重點(diǎn) 掌握用提取公因式法、公式法分解因式

  教學(xué)難點(diǎn) 根據(jù)題目的形式和特征 恰當(dāng)選擇方法進(jìn)行分解,以提高綜合解題能力。

  教學(xué)媒體 學(xué)案

  教學(xué)過程

  一:【 課前預(yù)習(xí)】

  (一):【知識(shí)梳理】

  1.分解因式:把一個(gè)多項(xiàng)式化成 的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.

  2.分解困式的方法:

 、盘峁珗F(tuán)式法:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來,從而將多項(xiàng)式化成兩個(gè)因式乘積的形式,這種分解因式的方法叫做提公因式法.

 、七\(yùn)用公式法:平方差公式: ;

  完全平方公式: ;

  3.分解因式的步驟:

  (1)分解 因式時(shí),首先考慮是否有公因式,如果有公因式,一定先提取公團(tuán)式,然后再考慮是否能用公式法 分解.

  (2)在用公式時(shí),若是兩項(xiàng),可考慮用平方差公式;若是三項(xiàng),可考慮用完全平方公式;若是三項(xiàng)以上,可先進(jìn)行適當(dāng)?shù)姆纸M,然后分解因式。

  4.分解因式時(shí)常見的思維誤區(qū):

  提公因式時(shí),其公因式應(yīng)找字母指數(shù)最低的,而不是以首項(xiàng)為準(zhǔn).若有一項(xiàng)被全部提出,括號(hào)內(nèi)的項(xiàng) 1易漏掉.分解不徹底,如保留中括號(hào)形式,還能繼續(xù)分解等

  (二):【課前練習(xí)】

  1.下列各組多項(xiàng)式中沒有公因式的是( )

  A.3x-2與 6x2-4x B.3(a-b)2與11(b-a)3

  C.mxmy與 nynx D.aba c與 abbc

  2. 下列各題中,分解因式錯(cuò)誤的是( )

  3. 列多項(xiàng)式能用平方差公式分解因式的是()

  4. 分解因式:x2+2xy+y2-4 =_____

  5. 分解因式:(1) ;

  (2) ;(3) ;

  (4) ;(5)以上三題用了 公式

  二:【經(jīng)典考題剖析】

  1. 分解因式:

  (1) ;(2) ;(3) ;(4)

  分析:①因式分解時(shí),無論有幾項(xiàng),首先考慮提取公因式。提公因式時(shí),不僅注意數(shù),也要 注意字母,字母可能是單項(xiàng)式也可能是多項(xiàng)式,一次提盡。

 、诋(dāng)某項(xiàng)完全提出后,該項(xiàng)應(yīng)為1

 、圩⒁ ,

  ④分解結(jié)果(1)不帶中括號(hào);(2)數(shù)字因數(shù)在前,字母因數(shù)在后;單項(xiàng)式在前,多項(xiàng)式在后;(3)相同因式寫成冪的形式;(4 )分解結(jié)果應(yīng)在指定范圍內(nèi)不能再分解為止;若無指定范圍,一般在有理數(shù)范圍內(nèi)分解。

  2. 分解因式:(1) ;(2) ;(3)

  分析:對(duì)于二次三項(xiàng)齊次式,將其中一個(gè)字母看作末知數(shù),另一個(gè)字母視為常數(shù)。首先考慮提公因式后,由余下因式的項(xiàng)數(shù)為3項(xiàng),可考慮完全平方式或十字相乘法繼續(xù)分解;如果項(xiàng)數(shù)為2,可考慮平方差、立方差、立方和公式。(3)題無公因式,項(xiàng)數(shù)為2項(xiàng),可考慮平方差公式先分解開,再由項(xiàng)數(shù)考慮選擇方法繼續(xù)分解。

  3. 計(jì)算:(1)

  (2)

  分析:(1)此題先分解因式后約分,則余下首尾兩數(shù)。

  (2)分解后,便有規(guī)可循,再求1到20xx的和。

  4. 分解因式:(1) ;(2)

  分析:對(duì)于四項(xiàng)或四項(xiàng)以上的多項(xiàng)式的.因式分解,一般采用分組分解法,

  5. (1)在實(shí)數(shù)范圍內(nèi)分解因式: ;

  (2)已知 、 、 是△ABC的三邊,且滿足 ,

  求證:△ABC為等邊三角形。

  分析:此題給出的是三邊之間的關(guān)系,而要證等邊三角形,則須考慮證 ,

  從已知給出的等式結(jié)構(gòu)看出,應(yīng)構(gòu)造出三個(gè)完全平方式 ,

  即可得證,將原式兩邊同乘以2即可。略證:

  即△ABC為等邊三角形。

  三:【課后訓(xùn)練】

  1. 若 是一個(gè)完全平方式,那么 的值是( )

  A.24 B.12 C.12 D.24

  2. 把多項(xiàng)式 因式分解的結(jié)果是( )

  A. B. C. D.

  3. 如果二次三項(xiàng)式 可分解為 ,則 的 值為( )

  A .-1 B.1 C. -2 D.2

  4. 已知 可以被在60~70之間的兩個(gè)整數(shù)整除,則這兩個(gè)數(shù)是( )

  A.61、63 B.61、65 C.61、67 D.63、65

  5. 計(jì)算:19982002= , = 。

  6. 若 ,那么 = 。

  7. 、 滿足 ,分解因式 = 。

  8. 因式分解:

  (1) ;(2)

  (3) ;(4)

  9. 觀察下列等式:

  想一想,等式左邊各項(xiàng)冪的底數(shù)與右邊冪的底數(shù)有何關(guān) 系?猜一猜可引出什么規(guī)律?用等式將其規(guī)律表示出來: 。

  10. 已知 是△ABC的三邊,且滿足 ,試判斷△ABC的形狀。閱讀下面解題過程:

  解:由 得:

  ①

  ②

  即 ③

  △ABC為Rt△。 ④

  試問:以上解題過程是否正確: ;若不正確,請(qǐng)指出錯(cuò)在哪一步?(填代號(hào)) ;錯(cuò)誤原因是 ;本題結(jié)論應(yīng)為 。

  四:【課后小結(jié)】

  布置作業(yè) 地綱

因式分解教案20

  教學(xué)目標(biāo):

  1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式綜合應(yīng)用;能利用平方差公式法解決實(shí)際問題。

  2、經(jīng)歷探究分解因式方法的過程,體會(huì)整式乘法與分解因式之間的聯(lián)系。

  3、通過對(duì)公式的探究,深刻理解公式的應(yīng)用,并會(huì)熟練應(yīng)用公式解決問題。

  4、通過探究平方差公式特點(diǎn),學(xué)生根據(jù)公式自己取值設(shè)計(jì)問題,并根據(jù)公式自己解決問題的過程,讓學(xué)生獲得成功的體驗(yàn),培養(yǎng)合作交流意識(shí)。

  教學(xué)重點(diǎn):

  應(yīng)用平方差公式分解因式.

  教學(xué)難點(diǎn):

  靈活應(yīng)用公式和提公因式法分解因式,并理解因式分解的要求.

  教學(xué)過程:

  一、復(fù)習(xí)準(zhǔn)備 導(dǎo)入新課

  1、什么是因式分解?判斷下列變形過程,哪個(gè)是因式分解?

 、(x+2)(x-2)= ②

 、

  2、我們已經(jīng)學(xué)過的因式分解的方法有什么?將下列多項(xiàng)式分解因式。

  x2+2x

  a2b-ab

  3、根據(jù)乘法公式進(jìn)行計(jì)算:

  (1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=

  二、合作探究 學(xué)習(xí)新知

  (一) 猜一猜:你能將下面的多項(xiàng)式分解因式嗎?

 。1)= (2)= (3)=

  (二)想一想,議一議: 觀察下面的公式:

 。剑╝+b)(a—b)(

  這個(gè)公式左邊的多項(xiàng)式有什么特征:_____________________________________

  公式右邊是__________________________________________________________

  這個(gè)公式你能用語言來描述嗎? _______________________________________

  (三)練一練:

  1、下列多項(xiàng)式能否用平方差公式來分解因式?為什么?

 、 ② ③ ④

  2、你能把下列的'數(shù)或式寫成冪的形式嗎?

  (1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2

 。ㄋ模┳鲆蛔觯

  例3 分解因式:

  (1) 4x2- 9 (2) (x+p)2- (x+q)2

  (五)試一試:

  例4 下面的式子你能用什么方法來分解因式呢?請(qǐng)你試一試。

  (1) x4- y4 (2) a3b- ab

 。┫胍幌耄

  某學(xué)校有一個(gè)邊長為85米的正方形場地,現(xiàn)在場地的四個(gè)角分別建一個(gè)邊長為5米的正方形花壇,問場地還剩余多大面積供學(xué)生課間活動(dòng)使用?

【因式分解教案】相關(guān)文章:

因式分解教案04-02

因式分解復(fù)習(xí)教案08-25

人教版因式分解教案01-04

因式分解教案設(shè)計(jì)04-18

精選因式分解教案3篇03-13

【精華】因式分解教案三篇01-26

因式分解教案模板8篇01-31

實(shí)用的因式分解教案四篇08-02

【必備】因式分解教案4篇02-20

因式分解教案匯編5篇02-26