八年級數(shù)學(xué)教案(匯編15篇)
作為一位兢兢業(yè)業(yè)的人民教師,時常需要用到教案,教案有利于教學(xué)水平的提高,有助于教研活動的開展。那么優(yōu)秀的教案是什么樣的呢?以下是小編收集整理的八年級數(shù)學(xué)教案,希望對大家有所幫助。
八年級數(shù)學(xué)教案1
一、教學(xué)目標(biāo)
1、認(rèn)識中位數(shù)和眾數(shù),并會求出一組數(shù)據(jù)中的眾數(shù)和中位數(shù)。
2、理解中位數(shù)和眾數(shù)的意義和作用。它們也是數(shù)據(jù)代表,可以反映一定的數(shù)據(jù)信息,幫助人們在實際問題中分析并做出決策。
3、會利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。
二、重點、難點和難點的突破方法:
1、重點:認(rèn)識中位數(shù)、眾數(shù)這兩種數(shù)據(jù)代表
2、難點:利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。
3、難點的突破方法:
首先應(yīng)交待清楚中位數(shù)和眾數(shù)意義和作用:
中位數(shù)僅與數(shù)據(jù)的排列位置有關(guān),某些數(shù)據(jù)的變動對中位數(shù)沒有影響,中位數(shù)可能出現(xiàn)在所給的數(shù)據(jù)中,當(dāng)一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,可用中位數(shù)描述其趨勢。眾數(shù)是當(dāng)一組數(shù)據(jù)中某一重復(fù)出現(xiàn)次數(shù)較多時,人們往往關(guān)心的一個量,眾數(shù)不受極端值的影響,這是它的一個優(yōu)勢,中位數(shù)的計算很少不受極端值的影響。
教學(xué)過程中注重雙基,一定要使學(xué)生能夠很好的掌握中位數(shù)和眾數(shù)的求法,求中位數(shù)的步驟:⑴將數(shù)據(jù)由小到大(或由大到小)排列,⑵數(shù)清數(shù)據(jù)個數(shù)是奇數(shù)還是偶數(shù),如果數(shù)據(jù)個數(shù)為奇數(shù)則取中間的數(shù),如果數(shù)據(jù)個數(shù)為偶數(shù),則取中間位置兩數(shù)的平均值作為中位數(shù)。求眾數(shù)的方法:找出頻數(shù)最多的那個數(shù)據(jù),若幾個數(shù)據(jù)頻數(shù)都是最多且相同,此時眾數(shù)就是這多個數(shù)據(jù)。
在利用中位數(shù)、眾數(shù)分析實際問題時,應(yīng)根據(jù)具體情況,課堂上教師應(yīng)多舉實例,使同學(xué)在分析不同實例中有所體會。
三、例習(xí)題的意圖分析
1、教材P143的例4的意圖
(1)、這個問題的研究對象是一個樣本,主要是反映了統(tǒng)計學(xué)中常用到一種解決問題的方法:對于數(shù)據(jù)較多的研究對象,我們可以考察總體中的一個樣本,然后由樣本的研究結(jié)論去估計總體的情況。
(2)、這個例題另一個意圖是交待了當(dāng)數(shù)據(jù)個數(shù)為偶數(shù)時,中位數(shù)的求法和解題步驟。(因為在前面有介紹中位數(shù)求法,這里不再重述)
(3)、問題2顯然反映學(xué)習(xí)中位數(shù)的意義:它可以估計一個數(shù)據(jù)占總體的相對位置,說明中位數(shù)是統(tǒng)計學(xué)中的一個重要的數(shù)據(jù)代表。
(4)、這個例題再一次體現(xiàn)了統(tǒng)計學(xué)知識與實際生活是緊密聯(lián)系的,所以應(yīng)鼓勵學(xué)生學(xué)好這部分知識。
2、教材P145例5的意圖
(1)、通過例5應(yīng)使學(xué)生明白通常對待銷售問題我們要研究的是眾數(shù),它代表該型號的產(chǎn)品銷售,以便給商家合理的建議。
(2)、例5也交待了眾數(shù)的求法和解題步驟(由于求法在前面已介紹,這里不再重述)
(3)、例5也反映了眾數(shù)是數(shù)據(jù)代表的一種。
四、課堂引入
嚴(yán)格的講教材本節(jié)課沒有引入的問題,而是在復(fù)習(xí)和延伸中位數(shù)的定義過程中拉開序幕的,本人很同意這種處理方式,教師可以一句話引入新課:前面已經(jīng)和同學(xué)們研究過了平均數(shù)的這個數(shù)據(jù)代表。它在分析數(shù)據(jù)過程中擔(dān)當(dāng)了重要的角色,今天我們來共同研究和認(rèn)識數(shù)據(jù)代表中的新成員——中位數(shù)和眾數(shù),看看它們在分析數(shù)據(jù)過程中又起到怎樣的作用。
五、例習(xí)題的分析
教材P144例4,從所給的數(shù)據(jù)可以看到并沒有按照從小到大(或從大到小)的'順序排列。因此,首先應(yīng)將數(shù)據(jù)重新排列,通過觀察會發(fā)現(xiàn)共有12個數(shù)據(jù),偶數(shù)個可以取中間的兩個數(shù)據(jù)146、148,求其平均值,便可得這組數(shù)據(jù)的中位數(shù)。
教材P145例5,由表中第二行可以查到23.5號鞋的頻數(shù),因此這組數(shù)據(jù)的眾數(shù)可以得到,所提的建議應(yīng)圍繞利于商家獲得較大利潤提出。
六、隨堂練習(xí)
1某公司銷售部有營銷人員15人,銷售部為了制定某種商品的銷售金額,統(tǒng)計了這15個人的銷售量如下(單位:件)
1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150
求這15個銷售員該月銷量的中位數(shù)和眾數(shù)。
假設(shè)銷售部負(fù)責(zé)人把每位營銷員的月銷售定額定為320件,你認(rèn)為合理嗎?如果不合理,請你制定一個合理的銷售定額并說明理由。
2、某商店3、4月份出售某一品牌各種規(guī)格的空調(diào),銷售臺數(shù)如表所示:
1匹1.2匹1.5匹2匹
3月12臺20臺8臺4臺
4月16臺30臺14臺8臺
根據(jù)表格回答問題:
商店出售的各種規(guī)格空調(diào)中,眾數(shù)是多少?
假如你是經(jīng)理,現(xiàn)要進貨,6月份在有限的資金下進貨單位將如何決定?
答案:1. (1)210件、210件(2)不合理。因為15人中有13人的銷售額達不到320件(320雖是原始數(shù)據(jù)的平均數(shù),卻不能反映營銷人員的一般水平),銷售額定為210件合適,因為它既是中位數(shù)又是眾數(shù),是大部分人能達到的額定。
2. (1)1.2匹(2)通過觀察可知1.2匹的銷售,所以要多進1.2匹,由于資金有限就要少進2匹空調(diào)。
七、課后練習(xí)
1.數(shù)據(jù)8、9、9、8、10、8、99、8、10、7、9、9、8的中位數(shù)是,眾數(shù)是
2.一組數(shù)據(jù)23、27、20、18、X、12,它的中位數(shù)是21,則X的值是.
3.數(shù)據(jù)92、96、98、100、X的眾數(shù)是96,則其中位數(shù)和平均數(shù)分別是( )
A.97、96 B.96、96.4 C.96、97 D.98、97
4.如果在一組數(shù)據(jù)中,23、25、28、22出現(xiàn)的次數(shù)依次為2、5、3、4次,并且沒有其他的數(shù)據(jù),則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )
A.24、25 B.23、24 C.25、25 D.23、25
5.隨機抽取我市一年(按365天計)中的30天平均氣溫狀況如下表:
溫度(℃) -8 -1 7 15 21 24 30
天數(shù)3 5 5 7 6 2 2
請你根據(jù)上述數(shù)據(jù)回答問題:
(1).該組數(shù)據(jù)的中位數(shù)是什么?
(2).若當(dāng)氣溫在18℃~25℃為市民“滿意溫度”,則我市一年中達到市民“滿意溫度”的大約有多少天?
答案:1. 9;2. 22; 3.B;4.C; 5.(1)15. (2)約97天
八年級數(shù)學(xué)教案2
一、素質(zhì)教育目標(biāo)
(一)知識教學(xué)點
1.掌握平行四邊形的判定定理1、2、3、4,并能與性質(zhì)定理、定義綜合應(yīng)用.
2.使學(xué)生理解判定定理與性質(zhì)定理的區(qū)別與聯(lián)系.
3.會根據(jù)簡單的`條件畫出平行四邊形,并說明畫圖的依據(jù)是哪幾個定理.
(二)能力訓(xùn)練點
1.通過“探索式試明法”開拓學(xué)生思路,發(fā)展學(xué)生思維能力.
2.通過教學(xué),使學(xué)生逐步學(xué)會分別從題設(shè)或結(jié)論出發(fā)尋求論證思路的分析方法,進一步提高學(xué)生分析問題,解決問題的能力.
(三)德育滲透點
通過一題多解激發(fā)學(xué)生的學(xué)習(xí)興趣.
(四)美育滲透點
通過學(xué)習(xí),體會幾何證明的方法美.
二、學(xué)法引導(dǎo)
構(gòu)造逆命題,分析探索證明,啟發(fā)講解.
三、重點·難點·疑點及解決辦法
1.教學(xué)重點:平行四邊形的判定定理1、2、3的應(yīng)用.
2.教學(xué)難點:綜合應(yīng)用判定定理和性質(zhì)定理.
3.疑點及解決辦法:在綜合應(yīng)用判定定理及性質(zhì)定理時,在什么條件下用判定定理,在什么條件下用性質(zhì)定理
(強調(diào)在求證平行四邊形時用判定定理在已知平行四邊形時用性質(zhì)定理).
八年級數(shù)學(xué)教案3
創(chuàng)設(shè)情境
1.什么叫平行四邊形?平行四邊形有什么性質(zhì)?
2.將以上的性質(zhì)定理,分別用命題形式敘述出來。
根據(jù)平行四邊形的定義,我們研究了平行四邊形的其它性質(zhì),那么如何來判定一個四邊形是平行四邊形呢?除了定義還有什么方法?平行四邊形性質(zhì)定理的逆命題是否成立?
探究歸納
平行四邊形的.判定方法:
證明:兩組對邊分別相等的四邊形是平行四邊形
已知:
求證:
做一做:將四根細(xì)木條(其中兩條長相等,另外兩條長也相等)用小釘子釘在一起,做成一個四邊形,使等長的木條成為對邊。它是平行四邊形嗎?
學(xué)生交流:把你做的四邊形和其他同學(xué)做的進行比較,看看是否都是平行四邊形。
觀察發(fā)現(xiàn):盡管每個人取的邊長不一樣,但只要對邊分別相等,所作的都是平行四邊形
練習(xí):如圖,在ABCD中,E,F(xiàn),G和H分別是各邊中點.求證:四邊形EFGH為平行四邊形
八年級數(shù)學(xué)教案4
一、教學(xué)目標(biāo):
1、知道負(fù)整數(shù)指數(shù)冪=(a≠0,n是正整數(shù))、
2、掌握整數(shù)指數(shù)冪的運算性質(zhì)、
3、會用科學(xué)計數(shù)法表示小于1的數(shù)、
二、教學(xué)重點:
掌握整數(shù)指數(shù)冪的運算性質(zhì)、
三、難點:
會用科學(xué)計數(shù)法表示小于1的數(shù)、
四、情感態(tài)度與價值觀:
通過學(xué)習(xí)課堂知識使學(xué)生懂得任何事物之間是相互聯(lián)系的,理論來源于實踐,服務(wù)于實踐、能利用事物之間的.類比性解決問題、
五、教學(xué)過程:
。ㄒ唬┱n堂引入
1、回憶正整數(shù)指數(shù)冪的運算性質(zhì): (1)同底數(shù)的冪的乘法:am?an = am+n (m,n是正整數(shù)); (2)冪的乘方:(am)n = amn (m,n是正整數(shù)); (3)積的乘方:(ab)n = anbn (n是正整數(shù)); (4)同底數(shù)的冪的除法:am÷an = am?n ( a≠0,m,n是正整數(shù),m>n); (5)商的乘方:()n = (n是正整數(shù));
2、回憶0指數(shù)冪的規(guī)定,即當(dāng)a≠0時,a0 = 1、
3、你還記得1納米=10?9米,即1納米=米嗎?
4、計算當(dāng)a≠0時,a3÷a5 ===,另一方面,如果把正整數(shù)指數(shù)冪的運算性質(zhì)am÷an = am?n (a≠0,m,n是正整數(shù),m>n)中的m>n這個條件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)、
。ǘ┛偨Y(jié): 一般地,數(shù)學(xué)中規(guī)定: 當(dāng)n是正整數(shù)時,=(a≠0)(注意:適用于m、n可以是全體整數(shù)) 教師啟發(fā)學(xué)生由特殊情形入手,來看這條性質(zhì)是否成立、 事實上,隨著指數(shù)的取值范圍由正整數(shù)推廣到全體整數(shù),前面提到的運算性質(zhì)都可推廣到整數(shù)指數(shù)冪;am?an = am+n (m,n是整數(shù))這條性質(zhì)也是成立的、
。ㄈ┛茖W(xué)記數(shù)法:
我們已經(jīng)知道,一些較大的數(shù)適合用科學(xué)記數(shù)法表示,有了負(fù)整數(shù)指數(shù)冪后,小于1的正數(shù)也可以用科學(xué)記數(shù)法來表示,例如:0.000012 = 1.2×10?5.即小于1的正數(shù)可以用科學(xué)記數(shù)法表示為a×10?n的形式,其中a是整數(shù)位數(shù)只有1位的正數(shù),n是正整數(shù)、 啟發(fā)學(xué)生由特殊情形入手,比如0.012 = 1.2×10?2.0、0012 = 1.2×10?3,0、00012 = 1.2×10?4,以此發(fā)現(xiàn)其中的規(guī)律,從而有0.0000000012 = 1.2×10?9,即對于一個小于1的正數(shù),如果小數(shù)點后到第一個非0數(shù)字前有8個0,用科學(xué)記數(shù)法表示這個數(shù)時,10的指數(shù)是?9,如果有m個0,則10的指數(shù)應(yīng)該是?m?1、
八年級數(shù)學(xué)教案5
【教學(xué)目標(biāo)】
知識與技能
能確定多項式各項的公因式,會用提公因式法把多項式分解因式.
過程與方法
使學(xué)生經(jīng)歷探索多項式各項公因式的過程,依據(jù)數(shù)學(xué)化歸思想方法進行因式分解.
情感、態(tài)度與價值觀
培養(yǎng)學(xué)生分析、類比以及化歸的思想,增進學(xué)生的合作交流意識,主動積極地積累確定公因式的初步經(jīng)驗,體會其應(yīng)用價值.
【教學(xué)重難點】
重點:掌握用提公因式法把多項式分解因式.
難點:正確地確定多項式的最大公因式.
關(guān)鍵:提公因式法關(guān)鍵是如何找公因式.方法是:一看系數(shù)、二看字母.公因式的系數(shù)取各項系數(shù)的最大公約數(shù);字母取各項相同的`字母,并且各字母的指數(shù)取最低次冪.
【教學(xué)過程】
一、回顧交流,導(dǎo)入新知
【復(fù)習(xí)交流】
下列從左到右的變形是否是因式分解,為什么?
(1)2x2+4=2(x2+2);
(2)2t2-3t+1=(2t3-3t2+t);
(3)x2+4xy-y2=x(x+4y)-y2;
(4)m(x+y)=mx+my;
(5)x2-2xy+y2=(x-y)2.
問題:
1.多項式mn+mb中各項含有相同因式嗎?
2.多項式4x2-x和xy2-yz-y呢?
請將上述多項式分別寫成兩個因式的乘積的形式,并說明理由.
【教師歸納】我們把多項式中各項都有的公共的因式叫做這個多項式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.
概念:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積形式,這種分解因式的方法叫做提公因式法.
二、小組合作,探究方法
教師提問:多項式4x2-8x6,16a3b2-4a3b2-8ab4各項的公因式是什么?
【師生共識】提公因式的方法是先確定各項的公因式再將多項式除以這個公因式得到另一個因式,找公因式一看系數(shù)、二看字母,公因式的系數(shù)取各項系數(shù)的最大公約數(shù);字母取各項相同的字母,并且各字母的指數(shù)取最低次冪.
三、范例學(xué)習(xí),應(yīng)用所學(xué)
例1:把-4x2yz-12xy2z+4xyz分解因式.
解:-4x2yz-12xy2z+4xyz
=-(4x2yz+12xy2z-4xyz)
=-4xyz(x+3y-1)
例2:分解因式:3a2(x-y)3-4b2(y-x)2
【分析】觀察所給多項式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.
解法1:3a2(x-y)3-4b2(y-x)2
=-3a2(y-x)3-4b2(y-x)2
=-[(y-x)2·3a2(y-x)+4b2(y-x)2]
=-(y-x)2[3a2(y-x)+4b2]
=-(y-x)2(3a2y-3a2x+4b2)
解法2:3a2(x-y)3-4b2(y-x)2
=(x-y)2·3a2(x-y)-4b2(x-y)2
=(x-y)2[3a2(x-y)-4b2]
=(x-y)2(3a2x-3a2y-4b2)
例3:用簡便的方法計算:
0.84×12+12×0.6-0.44×12.
【教師活動】引導(dǎo)學(xué)生觀察并分析怎樣計算更為簡便.
解:0.84×12+12×0.6-0.44×12
=12×(0.84+0.6-0.44)
=12×1=12.
【教師活動】在學(xué)生完成例3之后,指出例3是因式分解在計算中的應(yīng)用,提出比較例1,例2,例3的公因式有什么不同?
四、隨堂練習(xí),鞏固深化
課本115頁練習(xí)第1、2、3題.
【探研時空】
利用提公因式法計算:
0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69
五、課堂總結(jié),發(fā)展?jié)撃?/p>
1.利用提公因式法因式分解,關(guān)鍵是找準(zhǔn)最大公因式.在找最大公因式時應(yīng)注意:(1)系數(shù)要找最大公約數(shù);(2)字母要找各項都有的;(3)指數(shù)要找最低次冪.
2.因式分解應(yīng)注意分解徹底,也就是說,分解到不能再分解為止.
六、布置作業(yè),專題突破
課本119頁習(xí)題14.3第1、4(1)、6題.
八年級數(shù)學(xué)教案6
一、教學(xué)目標(biāo):
1、理解極差的定義,知道極差是用來反映數(shù)據(jù)波動范圍的一個量.
2、會求一組數(shù)據(jù)的極差.
二、重點、難點和難點的突破方法
1、重點:會求一組數(shù)據(jù)的極差.
2、難點:本節(jié)課內(nèi)容較容易接受,不存在難點.
三、課堂引入:
下表顯示的'是上海20xx年2月下旬和20xx年同期的每日最高氣溫,如何對這兩段時間的氣溫進行比較呢?
從表中你能得到哪些信息?
比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法.
經(jīng)計算可以看出,對于2月下旬的這段時間而言,20xx年和20xx年上海地區(qū)的平均氣溫相等,都是12度.
這是不是說,兩個時段的氣溫情況沒有什么差異呢?
根據(jù)兩段時間的氣溫情況可繪成的折線圖.
觀察一下,它們有區(qū)別嗎?說說你觀察得到的結(jié)果.
用一組數(shù)據(jù)中的最大值減去最小值所得到的差來反映這組數(shù)據(jù)的變化范圍.用這種方法得到的差稱為極差(range).
四、例習(xí)題分析
本節(jié)課在教材中沒有相應(yīng)的例題,教材P152習(xí)題分析
問題1可由極差計算公式直接得出,由于差值較大,結(jié)合本題背景可以說明該村貧富差距較大.問題2涉及前一個學(xué)期統(tǒng)計知識首先應(yīng)回憶復(fù)習(xí)已學(xué)知識.問題3答案并不唯一,合理即可。
八年級數(shù)學(xué)教案7
一、教材分析教材的地位和作用:
本節(jié)內(nèi)容是第一課時《軸對稱》,本節(jié)立足于學(xué)生已有的生活經(jīng)驗和數(shù)學(xué)活動經(jīng)歷,從觀察生活中的軸對稱現(xiàn)象開始,從整體的角度認(rèn)識軸對稱的特征;同時本節(jié)內(nèi)容與圖形的三種變換操作(平移、翻折、旋轉(zhuǎn))之一的“翻折”有著不可分割的聯(lián)系,通過對這一節(jié)課的學(xué)習(xí),使學(xué)生從對圖形的感性認(rèn)識上升到對軸對稱的理性認(rèn)識,為進一步學(xué)習(xí)軸對稱性質(zhì)及后面學(xué)習(xí)等腰三角形和圓等有關(guān)知識奠定基礎(chǔ)。同時這一節(jié)也是聯(lián)系數(shù)學(xué)與生活的橋梁。
二、學(xué)情分析
八年級學(xué)生有一定的知識水平,已經(jīng)初步形成了一定觀察能力、語言表達能力,這節(jié)課是在學(xué)生學(xué)習(xí)了“全等三角形”相關(guān)內(nèi)容之后安排的一節(jié)課,學(xué)生已經(jīng)具備了一定的推理能力,因此,這節(jié)課通過觀察生活中的實例和動手實踐,讓學(xué)生自己去發(fā)現(xiàn)和總結(jié)軸對稱圖形和軸對稱的概念及它們之間的區(qū)別與聯(lián)系是切實可行的。
三、教學(xué)目標(biāo)及重點、難點的確定
根據(jù)新課程標(biāo)準(zhǔn)、教材內(nèi)容特點、和學(xué)生已有的認(rèn)知結(jié)構(gòu)、心理特征,我確定本節(jié)教學(xué)目標(biāo)、重點、難點如下:
(一)教學(xué)目標(biāo):
1、知識技能
(1)理解并掌握軸對稱圖形的概念,對稱軸;能準(zhǔn)確判斷哪些事物是軸對稱圖形;找出軸對稱圖形的對稱軸.
(2)理解并掌握軸對稱的概念,對稱軸;了解對稱點.
(3)了解軸對稱圖形和軸對稱的聯(lián)系與區(qū)別.
2、過程與方法目標(biāo)
經(jīng)歷“觀察——比較——操作——概括——總結(jié)一應(yīng)用”的學(xué)習(xí)過程,培養(yǎng)學(xué)生的動手實踐能力、抽象思維和語言表達能力.
3、情感、態(tài)度與價值觀
通過對生活中數(shù)學(xué)問題的探究,進一步提高學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識,在自主探究、合作交流的過程中,體會數(shù)學(xué)的重要作用,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,熱愛生活的情感和欣賞圖形的對稱美。
(二)教學(xué)重點:軸對稱圖形和軸對稱的有關(guān)概念.
(三)教學(xué)難點:軸對稱圖形與軸對稱的聯(lián)系、區(qū)別
.四、教法和學(xué)法設(shè)計
本節(jié)課根據(jù)教材內(nèi)容的特點和八年級學(xué)生的知識結(jié)構(gòu)和心理特征。我選擇的:
【教法策略】采用以直觀演示法和實驗發(fā)現(xiàn)法為主,設(shè)疑誘導(dǎo)法為輔。教學(xué)中教學(xué)中通過豐富的圖片展示,創(chuàng)設(shè)出問題情景,誘導(dǎo)學(xué)生思考、操作,教師適時地演示,并運用多媒體化靜為動,激發(fā)學(xué)生探求知識的欲望,逐步推導(dǎo)歸納得出結(jié)論,使學(xué)生始終處于主動探索問題的積極狀態(tài),使不同層次學(xué)生的知識水平得到恰當(dāng)?shù)陌l(fā)展和提高。
【學(xué)法策略】:讓學(xué)生在“觀察----比較——操作——概括——檢驗——應(yīng)用”的學(xué)習(xí)過程中,自主參與知識的發(fā)生、發(fā)展、形成的過程,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。
【輔助策略】我利用多媒體課件輔助教學(xué),適時呈現(xiàn)問題情景,以豐富學(xué)生的感性認(rèn)識,增強直觀效果,提高課堂效率
五、說程序設(shè)計:
新的課程標(biāo)準(zhǔn)指出學(xué)生的學(xué)習(xí)內(nèi)容應(yīng)該是現(xiàn)實的有意義的,有利于學(xué)生進行觀察、試驗、猜測、驗證、推理與交流等數(shù)學(xué)活動。為了達到預(yù)期的教學(xué)目標(biāo),我對整個教學(xué)過程進行了設(shè)計。
(一)、觀圖激趣、設(shè)疑導(dǎo)入。
出示圖片,設(shè)計故事。一日,春光明媚,蝴蝶和蜜蜂來到花叢中游玩,這時蝴蝶對蜜蜂說:“咱們長得真象”,蜜蜂百思不得其解。你能說出為什么長得象嗎?今天我們就來共同探討這一問題――軸對稱。
[設(shè)計意圖]以興趣為先導(dǎo),創(chuàng)設(shè)學(xué)生喜聞樂見的故事情景,激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,
(二)、實踐探索、感悟特征.
《活動一(課件演示)觀察這些圖形有什么特點?》在這個環(huán)節(jié)中我首先出示一組常見的具有代表性的典型的軸對稱圖形,出示后先讓學(xué)生自己觀察,并引導(dǎo)學(xué)生感知,無論是隨風(fēng)起舞的風(fēng)箏,凌空翱翔的飛機,還是古今中外各式風(fēng)格的典型建筑很多圖形都給我們以美得感受。然后,教師適時提出問題:這些圖形有什么共同特征?是如何對稱?怎樣才能使對稱?部分重合呢?讓學(xué)生觀察、猜想、探究、討論,教師可以適當(dāng)?shù)匾龑?dǎo),讓學(xué)生發(fā)現(xiàn):把一個圖形的某一部分沿著一條直線翻折180度后能與這個圖形另一部分完全重合。從而引出軸對稱圖形和對稱軸的概念。在得出概念之后再引導(dǎo)學(xué)生例舉生活中的事例。以便加深對軸對稱圖形概念的理解。
為了進一步認(rèn)識軸對稱圖形的特點又出示了一組練習(xí)
(練習(xí)1)這是一組常見幾何圖形,要求學(xué)生判斷是否是對稱圖形,若是對稱圖形的,畫出它的對稱軸
[設(shè)計意圖]通過這個練習(xí)題不僅讓學(xué)生鞏固了軸對稱圖形的概念,而且讓學(xué)生認(rèn)識到我們常見的圖形,有些是軸對稱圖形,有些不是軸對稱圖形。并且還讓學(xué)生認(rèn)識軸對稱圖形的對稱軸不僅僅只一條,有可能有2條、3條、4條甚至無數(shù)條,對稱軸的方向不僅僅是垂直的,有可能是水平的或傾斜的。
(練習(xí)2)國家的一個象征,觀察下面的'國旗,哪些是軸對稱圖形?試找出它們的對稱軸。次題進一步鞏固了軸對稱圖形的概念,培養(yǎng)了學(xué)生的觀察能力、想象能力,同時通過展示各國的國旗,不僅激發(fā)了學(xué)生的學(xué)習(xí)興趣,而且也拓展了學(xué)生的知識面。
(三)、動手操作、再度探索新知。
將一張紙對折,用筆尖扎出一個圖案,然后將紙展開后,鋪平,觀察各自得到的圖案與軸對稱圖形的不同。教學(xué)中注重學(xué)生活動,鼓勵學(xué)生親自實踐,積極思考,在樂學(xué)的氛圍中,培養(yǎng)學(xué)生的動手能力,從而引出軸對稱概念。
再次引導(dǎo)學(xué)生討論、歸納得出軸對稱的概念……。之后再結(jié)合動畫演示加深對軸對稱概念的理解,進而引出對稱軸、對稱點的概念.并結(jié)合圖形加以認(rèn)識。
(四)、鞏固練習(xí)、升華新知。
出示幾幅圖形,請同學(xué)們辨別哪幅圖形是軸對稱圖形哪些圖形軸對稱,
在這組練習(xí)中讓學(xué)生動手、動口、動眼、動腦,充分調(diào)動了學(xué)生的各種感官參與學(xué)習(xí),既加深了對兩個概念的理解,又鍛煉了同學(xué)的各方面能力。完成這組練習(xí)題后讓學(xué)生,歸納軸對稱圖形及軸對稱區(qū)別與聯(lián)系,先讓學(xué)生自己歸納,然后用多媒體展示。
(課件演示)軸對稱圖形及兩個圖形成軸對稱區(qū)別與聯(lián)系
(五)、綜合練習(xí)、發(fā)展思維。
1、搶答;觀察周圍哪些事物的形狀是軸對稱圖形。
2、判斷:
生活中不僅有些物體的形狀是軸對稱圖形,我們所學(xué)的數(shù)字、字母和漢字中也有一些可以看成軸對稱圖形。
(1)下面的數(shù)字或字母,哪些是軸對稱圖形?它們各有幾條對稱軸?
0123456789ABCDEFGH
3、像這樣寫法的漢字哪些是軸對稱圖形?
口工用中由日直水清甲
(這幾道題的練習(xí)做到了知識性、技能性、思想性和藝術(shù)性溶為一體。這樣設(shè)計,不但活躍了課堂氣氛,又檢查了學(xué)生掌握新知的情況,而且激發(fā)了學(xué)生的學(xué)習(xí)興趣,又讓學(xué)生感到數(shù)學(xué)就在自己的身邊)
(六)歸納小結(jié)、布置作業(yè)
[設(shè)計意圖]培養(yǎng)學(xué)生歸納和語言表達能力,鼓勵學(xué)生從數(shù)學(xué)知識、數(shù)學(xué)方法和數(shù)學(xué)情感等方面進行自我評價。作業(yè)布置要有層次,照顧學(xué)生個體差異使不同的人在數(shù)學(xué)上獲得不同的發(fā)展!
六、設(shè)計說明
這節(jié)課,我依據(jù)課程標(biāo)準(zhǔn)、教材特點、遵循學(xué)生的認(rèn)知規(guī)律。通過六個環(huán)節(jié)的教學(xué)設(shè)計,通過觀察生活中的一些圖案以及動畫演示,由感性到理性,讓學(xué)生輕松掌握了軸對稱圖形與關(guān)于直線成軸對稱兩個概念,指導(dǎo)學(xué)生操作、觀察、引導(dǎo)概括,獲取新知;同時注重培養(yǎng)學(xué)生的形象思維和抽象思維。在教學(xué)過程中讓學(xué)生動口、動手、動眼、動腦,使學(xué)生學(xué)有興趣、學(xué)有所獲。這就是我對本節(jié)課的理解和說明。
八年級數(shù)學(xué)教案8
一、學(xué)習(xí)目標(biāo):
讓學(xué)生了解多項式公因式的意義,初步會用提公因式法分解因式
二、重點難點
重點:能觀察出多項式的公因式,并根據(jù)分配律把公因式提出來
難點:讓學(xué)生識別多項式的公因式.
三、合作學(xué)習(xí):
公因式與提公因式法分解因式的概念.
三個矩形的長分別為a、b、c,寬都是m,則這塊場地的面積為ma+mb+mc,或m(a+b+c)
既ma+mb+mc = m(a+b+c)
由上式可知,把多項式ma+mb+mc寫成m與(a+b+c)的乘積的形式,相當(dāng)于把公因式m從各項中提出來,作為多項式ma+mb+mc的一個因式,把m從多項式ma+mb+mc各項中提出后形成的多項式(a+b+c),作為多項式ma+mb+mc的另一個因式,這種分解因式的方法叫做提公因式法。
四、精講精練
例1、將下列各式分解因式:
(1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x.
例2把下列各式分解因式:
(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.
(3) a(x-3)+2b(x-3)
通過剛才的`練習(xí),下面大家互相交流,總結(jié)出找公因式的一般步驟.
首先找各項系數(shù)的____________________,如8和12的公約數(shù)是4.
其次找各項中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指數(shù)取次數(shù)最___________的
課堂練習(xí)
1.寫出下列多項式各項的公因式.
(1)ma+mb 2)4kx-8ky (3)5y3+20y2 (4)a2b-2ab2+ab
2.把下列各式分解因式
(1)8x-72 (2)a2b-5ab
(3)4m3-6m2 (4)a2b-5ab+9b
(5)(p-q)2+(q-p)3 (6)3m(x-y)-2(y-x)2
五、小結(jié):
總結(jié)出找公因式的一般步驟.:
首先找各項系數(shù)的大公約數(shù),
其次找各項中含有的相同的字母,相同字母的指數(shù)取次數(shù)最小的
注意:(a-b)2=(b-a)2
六、作業(yè)
1、教科書習(xí)題
2、已知2x-y=1/3,xy=2,求2x4y3-x3y4 3、(-2)20xx+(-2)20xx
4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3
八年級數(shù)學(xué)教案9
●教學(xué)目標(biāo)
(一)教學(xué)知識點
1.掌握相似 三角形的定義、表示法,并能根據(jù)定義判斷兩個三角形是否相似.
2.能根據(jù)相似比進行計 算.
(二)能力訓(xùn)練要求
1.能根據(jù)定義判斷兩個三角形是否相似,訓(xùn)練 學(xué)生的判斷能力.
2.能根據(jù)相似比求長度和角度,培養(yǎng)學(xué)生的運用能力.
(三)情感與價值觀要求
通過與相似多邊形有關(guān)概念的類比,滲透類比的教學(xué)思想,并領(lǐng)會特殊與一般的關(guān)系.
●教學(xué)重點 相似三角形的定義及運用.
●教學(xué)難點 根據(jù)定義求線段長或角的度數(shù).
●教學(xué)過程
Ⅰ.創(chuàng)設(shè)問題情境,引入新課
今天, 我們就來研究相似三角形.
、.新課講解
1.相似三角形的定義及記法
三角對應(yīng)相等,三邊 對應(yīng)成比例的兩個三角形叫做相 似三角形。如△ABC與△DEF相似,記作△ABC∽△DEF
其中對應(yīng)頂點要寫在對應(yīng)位置,如A與D,B與E,C與F相對應(yīng).AB∶DE等于相似比.
2.想一想
如果△ABC∽△DEF,那么哪些角是對應(yīng)角?哪些邊是對應(yīng)邊?對應(yīng) 角 有什么關(guān)系?對應(yīng)邊呢?
所以 D、E、F. .
3.議一議,學(xué)生討論
(1)兩個全等三角形一定相似嗎?為什么?
(2)兩個直角三角 形一 定相似嗎?兩個等腰直角三角形呢?為 什么?
(3)兩個等腰三角形一定相似嗎?兩個等邊三角形呢?為什么?
結(jié)論:兩 個全等三角形一定相似.
兩個 等腰直角三角形一定相似.兩個等邊三角形一定相似.兩個直角三角形和兩個等腰三角形不一定相似.
4.例題
例1、有一塊呈三角形形狀 的草坪,其中一邊的'長是20 m,在這個草坪的圖紙上,這條邊長5 cm,其他兩邊的 長都是3.5 cm,求該草坪其他兩邊的實際長度.
例2.已 知△ABC∽△ADE,AE=50 cm,EC=30 cm,BC =70 cm,BAC=45,
ACB=40,求(1)AED和ADE的度數(shù)。(2)DE的長.
5.想一想
在例2的條件下,圖中有哪些線段成比例?
、.課堂練習(xí) P129
Ⅳ.課時小結(jié)
相似三角形的 判定方法定義法.
、.課后作業(yè)
八年級數(shù)學(xué)教案10
一、學(xué)習(xí)目標(biāo)
1.使學(xué)生了解運用公式法分解因式的意義;
2.使學(xué)生掌握用平方差公式分解因式
二、重點難點
重點:掌握運用平方差公式分解因式。
難點:將單項式化為平方形式,再用平方差公式分解因式。
學(xué)習(xí)方法:歸納、概括、總結(jié)。
三、合作學(xué)習(xí)
創(chuàng)設(shè)問題情境,引入新課
在前兩學(xué)時中我們學(xué)習(xí)了因式分解的定義,即把一個多項式分解成幾個整式的積的'形式,還學(xué)習(xí)了提公因式法分解因式,即在一個多項式中,若各項都含有相同的因式,即公因式,就可以把這個公因式提出來,從而將多項式化成幾個因式乘積的形式。
如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,只要我們記住因式分解是多項式乘法的相反過程,就能利用這種關(guān)系找到新的因式分解的方法,本學(xué)時我們就來學(xué)習(xí)另外的一種因式分解的方法——公式法。
1.請看乘法公式
左邊是整式乘法,右邊是一個多項式,把這個等式反過來就是左邊是一個多項式,右邊是整式的乘積。大家判斷一下,第二個式子從左邊到右邊是否是因式分解?
利用平方差公式進行的因式分解,第(2)個等式可以看作是因式分解中的平方差公式。
a2—b2=(a+b)(a—b)
2.公式講解
如x2—16
=(x)2—42
=(x+4)(x—4)。
9m2—4n2
=(3m)2—(2n)2
=(3m+2n)(3m—2n)。
四、精講精練
例1、把下列各式分解因式:
。1)25—16x2;(2)9a2—b2。
例2、把下列各式分解因式:
(1)9(m+n)2—(m—n)2;(2)2x3—8x。
補充例題:判斷下列分解因式是否正確。
(1)(a+b)2—c2=a2+2ab+b2—c2。
。2)a4—1=(a2)2—1=(a2+1)?(a2—1)。
五、課堂練習(xí)
教科書練習(xí)。
六、作業(yè)
1、教科書習(xí)題。
2、分解因式:x4—16x3—4x4x2—(y—z)2。
3、若x2—y2=30,x—y=—5求x+y。
八年級數(shù)學(xué)教案11
一、教材的地位和作用
現(xiàn)實生活中,等腰三角形的應(yīng)用比比皆是、所以,利用“軸對稱”的知識,進一步研究等腰三角形的特殊性質(zhì),不僅是現(xiàn)實生活的需要,而且從思想方法和知識儲備上,為今后研究“四邊形”和“圓”的性質(zhì)打下堅實的基礎(chǔ)、
性質(zhì)“等腰三角形的兩個底角相等”是幾何論證過程中,證明“兩個角相等”的重要方法之一、“等腰三角形底邊上的三條重要線段重合”的性質(zhì)是今后證明“兩條線段相等” “兩條直線互相垂直”“兩個角相等”等結(jié)論的重要理論依據(jù)、
教學(xué)重點:
1、讓學(xué)生主動經(jīng)歷思考和探索的過程、
2、掌握等腰三角形性質(zhì)及其應(yīng)用、
教學(xué)難點:等腰三角形性質(zhì)的理解和探究過程、
二、學(xué)情分析
本年級的學(xué)生已經(jīng)研究過一般三角形的性質(zhì),積累了一定的經(jīng)驗,動手能力強,善于與同伴交流,這就為本節(jié)課的學(xué)習(xí)做好了知識、能力、情感方面的準(zhǔn)備、不同層次的學(xué)生因為基礎(chǔ)不同,在學(xué)習(xí)中必然會出現(xiàn)相異構(gòu)想,這也將是我在教學(xué)過程中著重關(guān)注的一點、
三、目標(biāo)分析
知識與技能
1、了解等腰三角形的有關(guān)概念和掌握等腰三角形的性質(zhì)
2、了解等邊三角形的概念并探索其性質(zhì)
3、運用等腰三角形的性質(zhì)解決問題
過程與方法
1、通過觀察等腰三角形的對稱性,發(fā)展學(xué)生的形象思維、
2、探索等腰三角形的性質(zhì)時,經(jīng)歷了觀察、動手實踐、猜想、驗證等數(shù)學(xué)過程,積累數(shù)學(xué)活動經(jīng)驗,發(fā)展了學(xué)生的歸納推理,類比遷移的能力、在與他人交流的過程中,能運用數(shù)學(xué)語言合乎邏輯的進行討論和質(zhì)疑,提高了數(shù)學(xué)語言表達能力、
情感態(tài)度價值觀:
1、通過情境創(chuàng)設(shè),使學(xué)生感受到等腰三角形就在自己的身邊,從而使學(xué)生認(rèn)識到學(xué)習(xí)等腰三角形的必要性、
2、通過等腰三角形的性質(zhì)的歸納,使學(xué)生認(rèn)識到科學(xué)結(jié)論的發(fā)現(xiàn),是一個不斷完善的過程,培養(yǎng)學(xué)生堅強的意志品質(zhì)、
3、通過小組合作,發(fā)展學(xué)生互幫互助的精神,體驗合作學(xué)習(xí)中的樂趣和成就感、
四、教法分析
根據(jù)學(xué)生已有的認(rèn)知,采取了激疑引趣——猜想探究——應(yīng)用體驗——建構(gòu)延伸的教學(xué)模式,并利用多媒體輔助教學(xué)、
設(shè)計意圖
同學(xué)們,我們在七年級已研究了一般三角形的性質(zhì),今天我們一起來探究特殊的三角形:等腰三角形、
等腰三角形的定義
有兩條邊相等的三角形叫做等腰三角形、
等腰三角形中,相等的兩邊都叫做腰,另一邊叫做底邊,兩腰的夾角叫做頂角、腰和底邊的夾角叫做底角、
提出問題:生活中有哪些現(xiàn)象讓你聯(lián)想到等腰三角形?
首先讓學(xué)生明確:本學(xué)段的幾何圖形都是按一般的到特殊的順序研究的
通過學(xué)生描述等腰三角形在生活中的應(yīng)用,讓學(xué)生感受到數(shù)學(xué)就在我們身邊,以及研究等腰三角形的必要性、
剪紙游戲
你能利用手中的這個矩形紙片剪出一個等腰三角形嗎?注意安全呦!
學(xué)情分析:
大部分學(xué)生會有自己的想法,根據(jù)軸對稱圖形的性質(zhì),利用對折紙片,再“剪一刀”就是就得到了兩條“腰”;
可能還有的同學(xué)會利用正方形的折法,獲得特殊的等腰直角三角形;
可能還有同學(xué)先畫圖,再依線條剪得、
在這個過程中,注重落實三維目標(biāo)、讓學(xué)生在獲取新知的過程中更好的認(rèn)識自我,建立自信、我不失時機的對學(xué)生給予鼓勵和表揚,使活動更加深入,課堂充滿愉悅和溫馨、
知其然,更重要的是知其所以然、因此,我力求讓學(xué)生關(guān)注剪法的理性思考、
我設(shè)計了問題:你是如何想到的?為的是剖析學(xué)生的思維過程:“折疊”就是為了得到“對稱軸”,“剪一刀”就是就得到了兩條“腰”,由“重合”保證了“等腰”、這樣就建立了“操作”與“證明”的中間橋梁、從實際操作中得到證明的方法,也為發(fā)現(xiàn)“三線合一”做了鋪墊、
提出問題:
等腰三角形還有什么性質(zhì)?請?zhí)岢瞿愕牟孪,驗證你的猜想?并填寫在學(xué)案上、
合作小組活動規(guī)則:
1、有主記錄員記錄小組的結(jié)論;
2、定出小組的主發(fā)言人(其它同學(xué)可作補充);
3、小組探究出的結(jié)論是什么?
4、說明你們小組所獲得結(jié)論的理由、
等腰三角形的性質(zhì):
性質(zhì)一:等腰三角形的'兩個底角相等(簡稱“等邊對等角”)、
性質(zhì)二:等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(簡稱“三線合一”)、
學(xué)情分析:這個環(huán)節(jié)是本節(jié)課的重點,也是教學(xué)難點、盡管在教學(xué)過程中,因為學(xué)生的相異構(gòu)想,數(shù)學(xué)猜想的初始敘述不準(zhǔn)確,甚至不正確,但我不會立即去糾正他們,而是讓同學(xué)們不斷地質(zhì)疑﹑辨析、研討和歸納,逐漸完善結(jié)論、讓他們真正經(jīng)歷數(shù)學(xué)知識的形成過程,真正的體現(xiàn)以人為本的教學(xué)理念,努力創(chuàng)設(shè)和諧的教育教學(xué)的生態(tài)環(huán)境、
通過設(shè)置恰當(dāng)?shù)膭邮謱嵺`活動,引導(dǎo)學(xué)生經(jīng)歷觀察、動手實踐、猜想、驗證等數(shù)學(xué)探究活動,這種探究的學(xué)習(xí)過程,恰恰是研究幾何圖形性質(zhì)的一般規(guī)律和方法、
(1)在此環(huán)節(jié)中,我的教學(xué)要充分把握好“四讓”:能讓學(xué)生觀察的,盡量讓學(xué)生觀察;能讓學(xué)生思考的,盡量讓學(xué)生思考;能讓學(xué)生表達的,盡量讓學(xué)生表達;能讓學(xué)生作結(jié)論的,盡量讓學(xué)生作結(jié)論、
這種教學(xué)方式,把學(xué)習(xí)的過程真正還給學(xué)生,不怕學(xué)生說不好,不怕學(xué)生出問題,其實學(xué)生說不好的地方、學(xué)生出問題的地方都正是我們應(yīng)該教的地方,是教學(xué)的切入點、著眼點、增長點、
(2)教師在這個過程中,充分聽取和參與學(xué)生的小組討論,對有困難的學(xué)生,及時指導(dǎo)、
鞏固知識
1、等腰三角形頂角為70°,它的另外兩個內(nèi)角的度數(shù)分別為________;
2、等腰三角形一個角為70°,它的另外兩個內(nèi)角的度數(shù)分別為_____;
3、等腰三角形一個角為100°,它的另外兩個內(nèi)角的度數(shù)分別為_____、
內(nèi)化知識
1、如圖1,在△ABC中,AB=AC,AD⊥BC,∠BAC=120°你能求出∠BAD的度數(shù)嗎?
知識遷移
等邊三角形有什么特殊的性質(zhì)?簡單地敘述理由、
等邊三角形的性質(zhì)定理:
等邊三角形的各角都相等,并且每一個角都等于60°、
拓展延伸
如圖2,在△ABC中,AB=AC,點D,E在BC上,AD=AE,你能說明BD=EC?
由于學(xué)生之間存在知識基礎(chǔ)、經(jīng)驗和能力的差異,我為學(xué)生提供了層次分明的反饋練習(xí)、將練習(xí)從易到難,從簡到繁,以適應(yīng)不同階段、不同層次的學(xué)生的需要、讓學(xué)生拾階而上,逐步掌握知識,使學(xué)困生達到簡單運用水平,中等生達到綜合運用水平,優(yōu)等生達到創(chuàng)建水平、
暢談收獲
總結(jié)活動情況,重在肯定與鼓勵、引導(dǎo)學(xué)生從本課學(xué)習(xí)中所得到的新知識,運用的數(shù)學(xué)思想方法,新舊知識的聯(lián)系等方面進行反思,提高學(xué)生自主建構(gòu)知識網(wǎng)絡(luò)、分析解決問題的能力、
幫助學(xué)生梳理知識,回顧探究過程中所用到的從特殊到一般的數(shù)學(xué)方法,啟發(fā)學(xué)生更深層次的思考,為學(xué)生的下一步學(xué)習(xí)做好鋪墊、
反思過程不僅是學(xué)生學(xué)習(xí)過程的繼續(xù),更重要的是一種提高和發(fā)展自己的過程、
基礎(chǔ)性作業(yè):P65習(xí)題1、2、3、4
八年級數(shù)學(xué)教案12
一、平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。
1.平移
2.平移的性質(zhì):
、沤(jīng)過平移,對應(yīng)點所連的線段平行且相等;
、茖(yīng)線段平行且相等,對應(yīng)角相等。
⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。
(4)平移后的圖形與原圖形全等。
3.簡單的平移作圖
、俅_定個圖形平移后的位置的條件:
⑴需要原圖形的.位置;
、菩枰揭频姆较;
、切枰揭频木嚯x或一個對應(yīng)點的位置。
、谧髌揭坪蟮膱D形的方法:
⑴找出關(guān)鍵點;⑵作出這些點平移后的對應(yīng)點;
、菍⑺鞯膶(yīng)點按原來方式順次連接,所得的;
二、旋轉(zhuǎn):在平面內(nèi),將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn),這個定點稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的角稱為旋轉(zhuǎn)角。
1.旋轉(zhuǎn)
2.旋轉(zhuǎn)的性質(zhì)
、判D(zhuǎn)變化前后,對應(yīng)線段,對應(yīng)角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。
⑵旋轉(zhuǎn)過程中,圖形上每一個點都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的角度。
、侨我庖粚(yīng)點與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對應(yīng)點到旋轉(zhuǎn)中心的距離相等。
、刃D(zhuǎn)前后的兩個圖形全等。
3.簡單的旋轉(zhuǎn)作圖
、乓阎瓐D,旋轉(zhuǎn)中心和一對對應(yīng)點,求作旋轉(zhuǎn)后的圖形。
、埔阎瓐D,旋轉(zhuǎn)中心和一對對應(yīng)線段,求作旋轉(zhuǎn)后的圖形。
、且阎瓐D,旋轉(zhuǎn)中心和旋轉(zhuǎn)角,求作旋轉(zhuǎn)后的圖形。
三、分析組合圖案的形成
、俅_定組合圖案中的“基本圖案”
、诎l(fā)現(xiàn)該圖案各組成部分之間的內(nèi)在聯(lián)系
③探索該圖案的形成過程,類型有:⑴平移變換;⑵旋轉(zhuǎn)變換;⑶軸對稱變換;⑷旋轉(zhuǎn)變換與平移變換的組合;
⑸旋轉(zhuǎn)變換與軸對稱變換的組合;⑹軸對稱變換與平移變換的組合。
八年級數(shù)學(xué)教案13
【教學(xué)目標(biāo)】
知識目標(biāo):
解單項式乘以多項式的意義,理解單項式與多項式的乘法法則,會進行單項式與多項式的乘法運算。
能力目標(biāo):
。1)經(jīng)歷探索乘法運算法則的過程,發(fā)展觀察、歸納、猜測、驗證等能力;
(2)體會乘法分配律的作用與轉(zhuǎn)化思想,發(fā)展有條理的思考及語言表達能力。
情感目標(biāo):
充分調(diào)動學(xué)生學(xué)習(xí)的`積極性、主動性
【教學(xué)重點】
單項式與多項式的乘法運算
【教學(xué)難點】
推測整式乘法的運算法則。
【教學(xué)過程】
一、復(fù)習(xí)引入
通過對已學(xué)知識的復(fù)習(xí)引入課題(學(xué)生作答)
1.請說出單項式與單項式相乘的法則:
單項式與單項式相乘,把它們的系數(shù)、相同字母的冪分別相乘,對于只在一個單項式里出現(xiàn)的字母,則連同它的指數(shù)作為積的一個因式。
。ㄏ禂(shù)×系數(shù))×(同字母冪相乘)×單獨的冪
例如:( 2a2b3c) (-3ab)
解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c
= -6a3b4c
2.說出多項式2x2-3x-1的項和各項的系數(shù)項分別為:2x2、-3x、-1系數(shù)分別為:2、-3、-1
問:如何計算單項式與多項式相乘?例如:2a2· (3a2 - 5b)該怎樣計算?
這便是我們今天要研究的問題。
二、新知探究
已知一長方形長為(a+b+c),寬為m,則面積為:m(a+b+c)
現(xiàn)將這個長方形分割為寬為m,長分別為a、b、c的三個小長方形,其面積之和為ma+mb+mc因為分割前后長方形沒變所以m(a+b+c)=ma+mb+mc
上一等式根據(jù)什么規(guī)律可以得到?從中可以得出單項式與多項式相乘的運算法則該如何表述?(學(xué)生分組討論:前后座為一組;找個別同學(xué)作答,教師作評)
結(jié)論單項式與多項式相乘的運算法則:
用單項式分別去乘多項式的每一項,再把所得的積相加。
用字母表示為:m(a+b+c)=ma+mb+mc
運算思路:單×多
轉(zhuǎn)化
分配律
單×單
三、例題講解
例計算:(1)(-2a2)· (3ab2– 5ab3)
(2)(- 4x) ·(2x2+3x-1)
解:(1)原式= (-2a2)· 3ab2+ (-2a2)·(– 5ab3) ①=-6a3b2+ 10a3b3 ②
(2)原式=(- 4x) ·2x2+(- 4x) ·3x+(- 4x) ·(-1) ①
八年級數(shù)學(xué)教案14
【教學(xué)目標(biāo)】
1.了解分式概念.
2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件.
【教學(xué)重難點】
重點:理解分式有意義的條件,分式的值為零的條件.
難點:能熟練地求出分式有意義的條件,分式的值為零的條件.
【教學(xué)過程】
一、課堂導(dǎo)入
1.讓學(xué)生填寫[思考],學(xué)生自己依次填出:,,,.
2.問題:一艘輪船在靜水中的最大航速為20千米/時,它沿江以最大航速順流航行100千米所用實踐,與以最大航速逆流航行60千米所用時間相等,江水的流速為多少?
設(shè)江水的流速為x千米/時.
輪船順流航行100千米所用的時間為小時,逆流航行60千米所用時間小時,所以=.
3.以上的式子,,,,有什么共同點?它們與分?jǐn)?shù)有什么相同點和不同點?可以發(fā)現(xiàn),這些式子都像分?jǐn)?shù)一樣都是A÷B的形式.分?jǐn)?shù)的分子A與分母B都是整數(shù),而這些式子中的A、B都是整式,并且B中都含有字母.
[思考]引發(fā)學(xué)生思考分式的分母應(yīng)滿足什么條件,分式才有意義?由分?jǐn)?shù)的分母不能為零,用類比的方法歸納出:分式的分母也不能為零.注意只有滿足了分式的分母不能為零這個條件,分式才有意義.即當(dāng)B≠0時,分式才有意義.
二、例題講解
例1:當(dāng)x為何值時,分式有意義.
【分析】已知分式有意義,就可以知道分式的分母不為零,進一步解出字母x的取值范圍.
(補充)例2:當(dāng)m為何值時,分式的.值為0?
(1);(2);(3).
【分析】分式的值為0時,必須同時滿足兩個條件:①分母不能為零;②分子為零,這樣求出的m的解集中的公共部分,就是這類題目的解.
三、隨堂練習(xí)
1.判斷下列各式哪些是整式,哪些是分式?
9x+4,,,,,
2.當(dāng)x取何值時,下列分式有意義?
3.當(dāng)x為何值時,分式的值為0?
四、小結(jié)
談?wù)勀愕氖斋@.
五、布置作業(yè)
課本128~129頁練習(xí).
八年級數(shù)學(xué)教案15
一、教材分析:
《正方形》這節(jié)課是九年義務(wù)教育人教版數(shù)學(xué)教材八年級下冊第十九章第二節(jié)的內(nèi)容。縱觀整個初中教材,《正方形》是在學(xué)生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關(guān)知識及簡單圖形的平移和旋轉(zhuǎn)等平面幾何知識,并且具備有初步的觀察、操作等活動經(jīng)驗的基礎(chǔ)上出現(xiàn)的。既是前面所學(xué)知識的延續(xù),又是對平行四邊形、菱形、矩形進行綜合的不可缺少的重要環(huán)節(jié)。
本節(jié)課的重點是正方形的概念和性質(zhì),難點是理解正方形與平行四邊形、矩形、菱形之間的內(nèi)在聯(lián)系。根據(jù)大綱要求,本節(jié)課制定了知識、能力、情感三方面的目標(biāo)。
(一)知識目標(biāo):
1、要求學(xué)生掌握正方形的概念及性質(zhì);
2、能正確運用正方形的性質(zhì)進行簡單的計算、推理、論證;
(二)能力目標(biāo):
1、通過本節(jié)課培養(yǎng)學(xué)生觀察、動手、探究、分析、歸納、總結(jié)等能力;
2、發(fā)展學(xué)生合情推理意識,主動探究的習(xí)慣,逐步掌握說理的基本方法;
(三)情感目標(biāo):
1、讓學(xué)生樹立科學(xué)、嚴(yán)謹(jǐn)、理論聯(lián)系實際的良好學(xué)風(fēng);
2、培養(yǎng)學(xué)生互相幫助、團結(jié)協(xié)作、相互討論的團隊精神;
3、通過正方形圖形的完美性,培養(yǎng)學(xué)生品格的完美性。
二、學(xué)生分析:
該段學(xué)生具有一定的獨立思考和探究的能力,但語言表達能力方面稍有欠缺,所以在本節(jié)課的教學(xué)過程中,特意設(shè)計了讓學(xué)生自己組織語言培養(yǎng)說理能力,讓學(xué)生們能逐步提高。
三、教法分析:
針對本節(jié)課的特點,采用"實踐--觀察--總結(jié)歸納--運用"為主線的教學(xué)方法。
通過學(xué)生動手,采取幾種不同的方法構(gòu)造出正方形,然后引導(dǎo)學(xué)生探究正方形的.概念。通過觀察、討論、歸納、總結(jié)出正方形性質(zhì)定理,最后以課堂練習(xí)加以鞏固定理,并通過一道拔高題對定義、性質(zhì)理解、鞏固加以升華。
四、學(xué)法分析:
本節(jié)課重點是從培養(yǎng)學(xué)生探索精神和分析歸納總結(jié)能力為出發(fā)點,著重指導(dǎo)學(xué)生動手、觀察、思考、分析、總結(jié)得出結(jié)論。在小組討論中通過互相學(xué)習(xí),讓學(xué)生體驗合作學(xué)習(xí)的樂趣。
五、教學(xué)程序:
第一環(huán)節(jié):相關(guān)知識回顧
以提問的形式復(fù)習(xí)的平行四邊形、矩形、菱形的定義及性質(zhì)之后,引導(dǎo)學(xué)生發(fā)現(xiàn)矩形、菱形的實質(zhì)是由平行四邊形角度、邊長的變化得到的。并啟發(fā)學(xué)生考慮,若這兩種變化同時發(fā)生在平行四邊形上,則會得到什么樣的圖形?讓學(xué)生們通過手上的學(xué)具演示以上兩種變化,從而得出結(jié)論。
第二環(huán)節(jié):新課講解通過學(xué)生們的發(fā)現(xiàn)引出課題“正方形”
1、正方形的定義
引導(dǎo)學(xué)生說出自己變化出正方形的過程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過程。請同學(xué)們舉手發(fā)言,歸納總結(jié)出正方形定義:一組鄰邊相等,且一個角是直角的平行四邊形是正方形。再由此定義啟發(fā)學(xué)生們發(fā)現(xiàn)正方形的三個必要條件,并且由這三個條件通過重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個角是直角可得到正方形的另兩個定義:一個角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內(nèi)容借助課件演示其變化過程,進一步啟發(fā)學(xué)生發(fā)現(xiàn),正方形既是特殊的菱形,又是特殊的矩形,從而總結(jié)出正方形的性質(zhì)。
2、正方形的性質(zhì)
定理1:正方形的四個角都是直角,四條邊都相等;
定理2:正方形的兩條對角線相等,并且互相垂直、平分,每條對角線平分一組對角。
以上是對正方形定義和性質(zhì)的學(xué)習(xí),之后是進行例題講解。
3、例題講解
求證:正方形的兩條對角線把正方形分成四個全等的等腰直角三角形。此題是文字證明題,由學(xué)生們分組相互探討,共同研究此題的已知、求證部分,然后由小組派代表闡述證明過程,教師板書,在板書的過程中,請其它小組的同學(xué)提出合理化建議,使此題證明過程條理更加清晰,更加符合邏輯,同時強調(diào)證明格式的書寫。從而培養(yǎng)他們語言表達能力,讓學(xué)生的個性得到充分的展示
4、課堂練習(xí)
第一部分采用三道有關(guān)正方形的周長、面積、對角線、邊長計算的填空題,目的是對正方形性質(zhì)的進一步理解,并考察學(xué)生掌握的情況。
第二部分是選擇題,通過體現(xiàn)生活中實際問題,來提升學(xué)生所學(xué)的知識,并加以綜合練習(xí),提高他們的綜合素質(zhì),使他們充分認(rèn)識到數(shù)學(xué)實質(zhì)是來源于生活并要服務(wù)于生活。
5、課堂小結(jié)
此環(huán)節(jié)我是通過圖框的形式小結(jié)正方形和前階段所學(xué)特殊四邊形之間的內(nèi)在聯(lián)系,通過對所學(xué)幾種四邊形內(nèi)在聯(lián)系體現(xiàn)正方形完美的本質(zhì),渲染學(xué)生們應(yīng)追求象正方形一樣方正的品質(zhì),從而要努力學(xué)習(xí)以豐富的知識充實自己,達到理想中的完美。
6、作業(yè)設(shè)計
作業(yè)是教材159頁,第12、14兩小道證明題,通過此作業(yè)讓同學(xué)們進一步鞏固有關(guān)正方形的知識。
【八年級數(shù)學(xué)教案】相關(guān)文章:
八年級數(shù)學(xué)教案11-16
八年級上冊數(shù)學(xué)教案01-13
八年級數(shù)學(xué)教案15篇01-08