- 八年級數(shù)學(xué)教案 推薦度:
- 相關(guān)推薦
八年級數(shù)學(xué)教案(15篇)
作為一名教職工,通常會被要求編寫教案,借助教案可以更好地組織教學(xué)活動。那么優(yōu)秀的教案是什么樣的呢?下面是小編精心整理的八年級數(shù)學(xué)教案,歡迎閱讀,希望大家能夠喜歡。
八年級數(shù)學(xué)教案1
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
三角形中相關(guān)元素的概念、按邊分類及三角形的三邊關(guān)系.
2.內(nèi)容解析
三角形是一種最基本的幾何圖形,是認(rèn)識其他圖形的基礎(chǔ),在本章中,學(xué)好了三角形的有關(guān)概念和性質(zhì),為進一步學(xué)習(xí)多邊形的相關(guān)內(nèi)容打好基礎(chǔ),本節(jié)主要介紹與三角形的的概念、按邊分類和三角形三邊關(guān)系,使學(xué)生對三角形的有關(guān)知識有更為深刻的理解.
本節(jié)課的教學(xué)重點:三角形中的相關(guān)概念和三角形三邊關(guān)系.
本節(jié)課的教學(xué)難點:三角形的三邊關(guān)系.
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
(1)了解三角形中的相關(guān)概念,學(xué)會用符號語言表示三角形中的對應(yīng)元素.
(2)理解并且靈活應(yīng)用三角形三邊關(guān)系.
2.教學(xué)目標(biāo)解析
(1)結(jié)合具體圖形,識三角形的概念及其基本元素.
(2)會用符號、字母表示三角形中的相關(guān)元素,并會按邊對三角形進行分類.
(3)理解三角形兩邊之和大于第三邊這一性質(zhì),并會運用這一性質(zhì)來解決問題.
三、教學(xué)問題診斷分析
在探索三角形三邊關(guān)系的過程中,讓學(xué)生經(jīng)歷觀察、探究、推理、交流等活動過程,培養(yǎng)學(xué)生的和推理能力和合作學(xué)習(xí)的精神.
四、教學(xué)過程設(shè)計
1.創(chuàng)設(shè)情境,提出問題
問題回憶生活中的三角形實例,結(jié)合你以前對三角形的了解,請你給三角形下一個定義.
師生活動:先讓學(xué)生分組討論,然后各小組派代表發(fā)言,針對學(xué)生下的定義,給出各種圖形反例,如下圖,指出其不完整性,加深學(xué)生對三角形概念的理解.
【設(shè)計意圖】三角形概念的獲得,要讓學(xué)生經(jīng)歷其描述的過程,借此培養(yǎng)學(xué)生的語言表述能力,加深學(xué)生對三角形概念的理解.
2.抽象概括,形成概念
動態(tài)演示“首尾順次相接”這個的動畫,歸納出三角形的定義.
師生活動:
三角形的定義:由不在同一直線上的三條線段首尾順次相接所組成的`圖形叫做三角形.
【設(shè)計意圖】讓學(xué)生體會由抽象到具體的過程,培養(yǎng)學(xué)生的語言表述能力.
補充說明:要求學(xué)生學(xué)會三角形、三角形的頂點、邊、角的概念以及幾何表達方法.
師生活動:結(jié)合具體圖形,教師引導(dǎo)學(xué)生分析,讓學(xué)生學(xué)會由文字語言向幾何語言的過渡.
【設(shè)計意圖】進一步加深學(xué)生對三角形中相關(guān)元素的認(rèn)知,并進一步熟悉幾何語言在學(xué)習(xí)中的應(yīng)用.
3.概念辨析,應(yīng)用鞏固
如圖,不重復(fù),且不遺漏地識別所有三角形,并用符號語言表示出來.
1.以AB為一邊的三角形有哪些?
2.以∠D為一個內(nèi)角的三角形有哪些?
3.以E為一個頂點的三角形有哪些?
4.說出ΔBCD的三個角.
師生活動:引導(dǎo)學(xué)生從概念出發(fā)進行思考,加深學(xué)生對三角形中相關(guān)元素概念的理解.
4.拓廣延伸,探究分類
我們知道,按照三個內(nèi)角的大小,可以將三角形分為銳角三角形、直角三角形和鈍角三角形,如果要按照邊的大小關(guān)系對三角形進行分類,又應(yīng)該如何分呢?小組之間同學(xué)進行交流并說說你們的想法.
師生活動:通過討論,學(xué)生類比按角的分類方法按邊對三角形進行分類,接著引出等腰三角形及等邊三角形的概念,引導(dǎo)學(xué)生了解等腰三角形與等邊三角形的聯(lián)系,強化學(xué)生對三角形按邊分類的理解.
八年級數(shù)學(xué)教案2
教學(xué)目標(biāo):
(1)理解通分的意義,理解最簡公分母的意義;
(2)掌握分式的通分法則,能熟練掌握通分運算。
教學(xué)重點:分式通分的理解和掌握。
教學(xué)難點:分式通分中最簡公分母的確定。
教學(xué)工具:投影儀
教學(xué)方法:啟發(fā)式、討論式
教學(xué)過程:
(一)引入
(1)如何計算:
由此讓學(xué)生復(fù)習(xí)分?jǐn)?shù)通分的意義、通分的根據(jù)、通分的法則以及最簡公分母的概念。
(2)如何計算:
(3)何計算:
引導(dǎo)學(xué)生思考,猜想如何求解?
(二)新課
1、類比分?jǐn)?shù)的'通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
注意:通分保證
(1)各分式與原分式相等;
(2)各分式分母相等。
2.通分的依據(jù):分式的基本性質(zhì).
3.通分的關(guān)鍵:確定幾個分式的最簡公分母.
通常取各分母的所有因式的最高次冪的積作最簡公分母,這樣的公分母叫做最簡公分母.
根據(jù)分式通分和最簡公分母的定義,將分式通分:
最簡公分母為:
然后根據(jù)分式的基本性質(zhì),分別對原來的各分式的分子和分母乘一個適當(dāng)?shù)恼,使各分式的分母都化為通分如下:xxx
通過本例使學(xué)生對于分式的通分大致過程和思路有所了解。讓學(xué)生歸納通分的思路過程。
例1 通分:xxx
分析:讓學(xué)生找分式的公分母,可設(shè)問“分母的系數(shù)各不相同如何解決?”,依據(jù)分?jǐn)?shù)的通分找最小公倍數(shù)。
解:∵ 最簡公分母是12xy2,
小結(jié):各分母的系數(shù)都是整數(shù)時,通常取它們的系數(shù)的最小公倍數(shù)作為最簡公分母的系數(shù).
解:∵最簡公分母是10a2b2c2,
由學(xué)生歸納最簡公分母的思路。
分式通分中求最簡公分母概括為:(1)取各分母系數(shù)的最小公倍數(shù);(2)凡出現(xiàn)的字母為底的冪的因式都要取;(3)相同字母的冪的因式取指數(shù)最大的。取這些因式的積就是最簡公分母。
八年級數(shù)學(xué)教案3
一.教學(xué)目標(biāo):
1.了解方差的定義和計算公式。
2.理解方差概念的產(chǎn)生和形成的過程。
3.會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。
二.重點、難點和難點的突破方法:
1.重點:方差產(chǎn)生的必要性和應(yīng)用方差公式解決實際問題。
2.難點:理解方差公式
3.難點的突破方法:
方差公式:S = [( - ) +( - ) +…+( - )]比較復(fù)雜,學(xué)生理解和記憶這個公式都會有一定困難,以致應(yīng)用時常常出現(xiàn)計算的錯誤,為突破這一難點,我安排了幾個環(huán)節(jié),將難點化解。
(1)首先應(yīng)使學(xué)生知道為什么要學(xué)習(xí)方差和方差公式,目的不明確學(xué)生很難對本節(jié)課內(nèi)容產(chǎn)生興趣和求知欲望。教師在授課過程中可以多舉幾個生活中的小例子,不如選擇儀仗隊隊員、選擇運動員、選擇質(zhì)量穩(wěn)定的電器等。學(xué)生從中可以體會到生活中為了更好的做出選擇判斷經(jīng)常要去了解一組數(shù)據(jù)的波動程度,僅僅知道平均數(shù)是不夠的。
(2)波動性可以通過什么方式表現(xiàn)出來?第一環(huán)節(jié)中點明了為什么去了解數(shù)據(jù)的波動性,第二環(huán)節(jié)則主要使學(xué)生知道描述數(shù)據(jù),波動性的方法?梢援嬚劬圖方法來反映這種波動大小,可是當(dāng)波動大小區(qū)別不大時,僅用畫折線圖方法去描述恐怕不會準(zhǔn)確,這自然希望可以出現(xiàn)一種數(shù)量來描述數(shù)據(jù)波動大小,這就引出方差產(chǎn)生的必要性。
(3)第三環(huán)節(jié)教師可以直接對方差公式作分析和解釋,波動大小指的是與平均數(shù)之間差異,那么用每個數(shù)據(jù)與平均值的差完全平方后便可以反映出每個數(shù)據(jù)的波動大小,整體的波動大小可以通過對每個數(shù)據(jù)的波動大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動大小的一個統(tǒng)計量,教師也可以根據(jù)學(xué)生程度和課堂時間決定是否介紹平均差等可以反映數(shù)據(jù)波動大小的其他統(tǒng)計量。
三.例習(xí)題的意圖分析:
1.教材P125的討論問題的意圖:
(1).創(chuàng)設(shè)問題情境,引起學(xué)生的學(xué)習(xí)興趣和好奇心。
(2).為引入方差概念和方差計算公式作鋪墊。
(3).介紹了一種比較直觀的衡量數(shù)據(jù)波動大小的方法——畫折線法。
(4).客觀上反映了在解決某些實際問題時,求平均數(shù)或求極差等方法的局限性,使學(xué)生體會到學(xué)習(xí)方差的意義和目的。
2.教材P154例1的設(shè)計意圖:
(1).例1放在方差計算公式和利用方差衡量數(shù)據(jù)波動大小的規(guī)律之后,不言而喻其主要目的是及時復(fù)習(xí),鞏固對方差公式的掌握。
(2).例1的.解題步驟也為學(xué)生做了一個示范,學(xué)生以后可以模仿例1的格式解決其他類似的實際問題。
四.課堂引入:
除采用教材中的引例外,可以選擇一些更時代氣息、更有現(xiàn)實意義的引例。例如,通過學(xué)生觀看2004年奧運會劉翔勇奪110米欄冠軍的錄像,進而引導(dǎo)教練員根據(jù)平時比賽成績選擇參賽隊員這樣的實際問題上,這樣引入自然而又真實,學(xué)生也更感興趣一些。
五.例題的分析:
教材P154例1在分析過程中應(yīng)抓住以下幾點:
1.題目中“整齊”的含義是什么?說明在這個問題中要研究一組數(shù)據(jù)的什么?學(xué)生通過思考可以回答出整齊即波動小,所以要研究兩組數(shù)據(jù)波動大小,這一環(huán)節(jié)是明確題意。
2.在求方差之前先要求哪個統(tǒng)計量,為什么?學(xué)生也可以得出先求平均數(shù),因為公式中需要平均值,這個問題可以使學(xué)生明確利用方差計算步驟。
3.方差怎樣去體現(xiàn)波動大小?
這一問題的提出主要復(fù)習(xí)鞏固方差,反映數(shù)據(jù)波動大小的規(guī)律。
六.隨堂練習(xí):
1.從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測得它的苗高如下:(單位:cm)
甲:9、10、11、12、7、13、10、8、12、8;
乙:8、13、12、11、10、12、7、7、9、11;
問:(1)哪種農(nóng)作物的苗長的比較高?
(2)哪種農(nóng)作物的苗長得比較整齊?
2.段巍和金志強兩人參加體育項目訓(xùn)練,近期的5次測試成績?nèi)缦卤硭荆l的成績比較穩(wěn)定?為什么?
測試次數(shù)1 2 3 4 5
段巍13 14 13 12 13
金志強10 13 16 14 12
參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊
2.段巍的成績比金志強的成績要穩(wěn)定。
七.課后練習(xí):
1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為。
2.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:
甲:7、8、6、8、6、5、9、10、7、4
乙:9、5、7、8、7、6、8、6、7、7
經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但S S,所以確定去參加比賽。
3.甲、乙兩臺機床生產(chǎn)同種零件,10天出的次品分別是( )
甲:0、1、0、2、2、0、3、1、2、4
乙:2、3、1、2、0、2、1、1、2、1
分別計算出兩個樣本的平均數(shù)和方差,根據(jù)你的計算判斷哪臺機床的性能較好?
4.小爽和小兵在10次百米跑步練習(xí)中成績?nèi)绫硭荆?單位:秒)
小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根據(jù)這幾次成績選拔一人參加比賽,你會選誰呢?
答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙機床性能好
4. =10.9、S =0.02;
=10.9、S =0.008
選擇小兵參加比賽。
八年級數(shù)學(xué)教案4
一元二次方程根與系數(shù)的關(guān)系的知識內(nèi)容主要是以前一單元中的求根公式為基礎(chǔ)的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、2= 得出一元二次方程根與系數(shù)的關(guān)系,以及以數(shù)x1、x2為根的一元二次方程的求方程模型。然后是通過4個例題介紹了利用根與系數(shù)的關(guān)系簡化一些計算的知識。例如,求方程中的特定系數(shù),求含有方程根的一些代數(shù)式的值等問題,由方程的根確定方程的系數(shù)的方法等等。
根與系數(shù)的關(guān)系也稱為韋達定理(韋達是法國數(shù)學(xué)家)。韋達定理是初中代數(shù)中的一個重要定理。這是因為通過韋達定理的學(xué)習(xí),把一元二次方程的研究推向了高級階段,運用韋達定理可以進一步研究數(shù)學(xué)中的許多問題,如二次三項式的因式分解,解二元二次方程組;韋達定理對后面函數(shù)的學(xué)習(xí)研究也是作用非凡。
通過近些年的'中考數(shù)學(xué)試卷的分析可以得出:韋達定理及其應(yīng)用是各地市中考數(shù)學(xué)命題的熱點之一。出現(xiàn)的題型有選擇題、填空題和解答題,有的將其與三角函數(shù)、幾何、二次函數(shù)等內(nèi)容綜合起來,形成難度系數(shù)較大的壓軸題。
通過韋達定理的教學(xué),可以培養(yǎng)學(xué)生的創(chuàng)新意識、創(chuàng)新精神和綜合分析數(shù)學(xué)問題的能力,也為學(xué)生今后學(xué)習(xí)方程理論打下基礎(chǔ)。
(二)重點、難點
一元二次方程根與系數(shù)的關(guān)系是重點,讓學(xué)生從具體方程的根發(fā)現(xiàn)一元二次方程根與系數(shù)之間的關(guān)系,并用語言表述,以及由一個已知方程求作新方程,使新方程的根與已知的方程的根有某種關(guān)系,比較抽象,學(xué)生真正掌握有一定的難度,是教學(xué)的難點。
(三)教學(xué)目標(biāo)
1、知識目標(biāo):要求學(xué)生在理解的基礎(chǔ)上掌握一元二次方程根與系數(shù)的關(guān)系式,能運用根與系數(shù)的關(guān)系由已知一元二次方程的一個根求出另一個根與未知數(shù),會求一元二次方程兩個根的倒數(shù)和與平方數(shù),兩根之差。
八年級數(shù)學(xué)教案5
教學(xué)目標(biāo):
1、知識目標(biāo):探索圖形之間的變換關(guān)系(軸對稱、平移、旋轉(zhuǎn)及其組合)。
2、能力目標(biāo):
、俳(jīng)歷對具有旋轉(zhuǎn)特征的圖形進行觀察、分析、動手操作和畫圖等過程,掌握畫圖技能。
、谀軌虬匆笞鞒龊唵纹矫鎴D形旋轉(zhuǎn)后的圖形,并在此基礎(chǔ)上達到鞏固旋轉(zhuǎn)的有關(guān)性質(zhì)。
3、情感體驗點:培養(yǎng)學(xué)生的觀察能力和審美能力,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
重點與難點:
重點:圖形之間的變換關(guān)系(軸對稱、平移、旋轉(zhuǎn)及其組合);
難點:綜合利用各種變換關(guān)系觀察圖形的形成。
疑點:基本圖案不同,形成方式不同。
教學(xué)方法:
新授課在教師引導(dǎo)下,以學(xué)生的分組討論、合作交流為主展開教學(xué)。
教學(xué)過程設(shè)計:
1、情境導(dǎo)入
播放自制圖形形成的影片,如圖351。
2、充分利用本課時引入開放性的問題:圖351由四部分組成,每部分都包括兩個小十字,其中一部分能經(jīng)過適當(dāng)?shù)男D(zhuǎn)得到其他三部分嗎?能經(jīng)過平移嗎?能經(jīng)過軸對稱嗎?還有其它方式嗎?
問題本身為學(xué)生創(chuàng)設(shè)了一個探究圖形之間變化關(guān)系的情景,圖形雖十簡單,但變換方式綜合性強,可以讓學(xué)生自由發(fā)揮,各抒已見,后由教師進行適當(dāng)歸納小結(jié):
(1)整個圖形可以看做是由一個十字組成部分通過連續(xù)七次平移前后的圖形共同組成;
(2)整個圖形也可以看做是由左邊的兩個十字組成的部分通過三次放置形成的;
(3)整個圖形不定期可以看做把左邊的兩個十字組成的部分先通過平移一次形成左右四個十字組成的圖形,然后繞圖形中心旋轉(zhuǎn)90度前后的圖形共同組成;
(4)整個圖形還可以看做把左邊的兩個十字組成的部分通過二次軸對稱形成的。
(學(xué)生可能還有其他不同描述,教師應(yīng)予以肯定)
3、通過上述問題的討論,我們看到圖形的平移、旋轉(zhuǎn),軸對稱變換是圖形變換中最基本的三種變換方式,它們是今后設(shè)計圖案的主要手段。
4、利用想一想你能將圖352的左圖,通過平移或旋轉(zhuǎn)得到右圖嗎?
學(xué)生議論或動手操作會發(fā)現(xiàn)這是不可能的,教材意圖十分明確,要告訴學(xué)生并不是所有圖形都可以通過一次平移或旋轉(zhuǎn)而得到的,從而要求我們今后分析圖形之間的關(guān)系時,要充分利用它們各自的性質(zhì)、特征正確判斷和識別。那么上述圖形能通過軸對稱變換從左圖變成右圖嗎?進一步讓學(xué)生思考,從而得到結(jié)論是可能的。
5、例1、怎樣將圖353中的甲圖變成乙圖案?
通過相對簡單活潑的問題,讓學(xué)生能運用圖形變換的.幾種不同方式解答問題(先旋轉(zhuǎn)再平移后等到或先平移后旋轉(zhuǎn)也可以)
例2、怎樣將圖354中右邊的圖案變成左邊的圖案?
留給學(xué)生充足的時間討論交流。
(師):哪位同學(xué)有好好方法,請告訴大家!
(生):以右圖案的中心為旋轉(zhuǎn)中心,將圖案按逆時針方向旋轉(zhuǎn)900 。
(生):以右圖案的中心為旋轉(zhuǎn)中心,將圖案順逆時針方向旋轉(zhuǎn)2700 。
明確可以通過不同的辦法達到同樣的效果,激勵學(xué)生動手動腦。
5、學(xué)習(xí)小結(jié)
(1)內(nèi)容總結(jié)
兩個圖案前后變化彩用了哪些方法?(平移、旋轉(zhuǎn),軸對稱)
(2)方法歸納
①了解并知道圖案變化的一般方法。
②圖案變化的方法很多,在生活中要養(yǎng)成多途徑觀察,思考問題的習(xí)慣。
6、目標(biāo)檢測
圖355是由三個正三角形拼成的,它可以看做由其中一個三角形經(jīng)過怎樣的變換而得到?
延伸拓展:
1、鏈接生活
鏈接一:奧運會的五環(huán)旗圖案是大家熟悉的圖案,請你根據(jù)所學(xué)知識分析它的形成。(用課本知識解釋生活中的圖形變換)
鏈接二:夏季是荷花盛開的季節(jié),同學(xué)們都贊美過它出淤泥而不染的品質(zhì),很多同學(xué)曾畫過荷花,請你用所學(xué)知識再畫一朵荷花,看與以前有什么不同的感受(讓學(xué)生進一步體會數(shù)學(xué)與生活的密切聯(lián)系)
實踐探索:
、賹嵺`活動列舉實例歸納圖形之間的變換關(guān)系(平移、旋轉(zhuǎn),軸對稱及其組合)
、陟柟叹毩(xí)課本74頁中的習(xí)題3.6。
板書設(shè)計:
3.5它們是怎樣變過來的。
軸對稱、平移、旋轉(zhuǎn)的性質(zhì)例題;
圖形之間的變換關(guān)系;
八年級數(shù)學(xué)教案6
【教學(xué)目標(biāo)】
1、了解分式概念。
2、理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件。
【教學(xué)重難點】
重點:理解分式有意義的條件,分式的值為零的條件。
難點:能熟練地求出分式有意義的條件,分式的值為零的條件。
【教學(xué)過程】
一、課堂導(dǎo)入
1、讓學(xué)生填寫[思考],學(xué)生自己依次填出:,,,。
2、問題:一艘輪船在靜水中的最大航速為20千米/時,它沿江以最大航速順流航行100千米所用實踐,與以最大航速逆流航行60千米所用時間相等,江水的流速為多少?
設(shè)江水的流速為x千米/時。
輪船順流航行100千米所用的時間為小時,逆流航行60千米所用時間小時,所以=。
3、以上的式子,,,,有什么共同點?它們與分?jǐn)?shù)有什么相同點和不同點?可以發(fā)現(xiàn),這些式子都像分?jǐn)?shù)一樣都是A÷B的形式。分?jǐn)?shù)的分子A與分母B都是整數(shù),而這些式子中的.A、B都是整式,并且B中都含有字母。
[思考]引發(fā)學(xué)生思考分式的分母應(yīng)滿足什么條件,分式才有意義?由分?jǐn)?shù)的分母不能為零,用類比的方法歸納出:分式的分母也不能為零。注意只有滿足了分式的分母不能為零這個條件,分式才有意義。即當(dāng)B≠0時,分式才有意義。
二、例題講解
例1:當(dāng)x為何值時,分式有意義。
【分析】已知分式有意義,就可以知道分式的分母不為零,進一步解出字母x的取值范圍。
(補充)例2:當(dāng)m為何值時,分式的值為0?
(1);(2);(3)。
【分析】分式的值為0時,必須同時滿足兩個條件:①分母不能為零;②分子為零,這樣求出的m的解集中的公共部分,就是這類題目的解。
三、隨堂練習(xí)
1、判斷下列各式哪些是整式,哪些是分式?
9x+4,,,,,
2、當(dāng)x取何值時,下列分式有意義?
3、當(dāng)x為何值時,分式的值為0?
四、小結(jié)
談?wù)勀愕氖斋@。
五、布置作業(yè)
課本128~129頁練習(xí)。
八年級數(shù)學(xué)教案7
教學(xué)目標(biāo):
1、知道負(fù)整數(shù)指數(shù)冪=(a≠0,n是正整數(shù))。
2、掌握整數(shù)指數(shù)冪的運算性質(zhì)。
3、會用科學(xué)計數(shù)法表示小于1的數(shù)。
教學(xué)重點:
掌握整數(shù)指數(shù)冪的運算性質(zhì)。
難點:
會用科學(xué)計數(shù)法表示小于1的數(shù)。
情感態(tài)度與價值觀:
通過學(xué)習(xí)課堂知識使學(xué)生懂得任何事物之間是相互聯(lián)系的,理論來源于實踐,服務(wù)于實踐。能利用事物之間的類比性解決問題。
教學(xué)過程:
一、課堂引入
1、回憶正整數(shù)指數(shù)冪的運算性質(zhì):
。1)同底數(shù)的冪的'乘法:am?an = am+n (m,n是正整數(shù));
。2)冪的乘方:(am)n = amn (m,n是正整數(shù));
(3)積的乘方:(ab)n = anbn (n是正整數(shù));
(4)同底數(shù)的冪的除法:am÷an = am?n ( a≠0,m,n是正整數(shù),m>n);
。5)商的乘方:()n = (n是正整數(shù));
2、回憶0指數(shù)冪的規(guī)定,即當(dāng)a≠0時,a0 = 1.
3、你還記得1納米=10?9米,即1納米=米嗎?
4、計算當(dāng)a≠0時,a3÷a5 ===,另一方面,如果把正整數(shù)指數(shù)冪的運算性質(zhì)am÷an = am?n (a≠0,m,n是正整數(shù),m>n)中的m>n這個條件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)。
二、總結(jié): 一般地,數(shù)學(xué)中規(guī)定: 當(dāng)n是正整數(shù)時,=(a≠0)(注意:適用于m、n可以是全體整數(shù)) 教師啟發(fā)學(xué)生由特殊情形入手,來看這條性質(zhì)是否成立。 事實上,隨著指數(shù)的取值范圍由正整數(shù)推廣到全體整數(shù),前面提到的運算性質(zhì)都可推廣到整數(shù)指數(shù)冪;am?an = am+n (m,n是整數(shù))這條性質(zhì)也是成立的。
三、科學(xué)記數(shù)法: 我們已經(jīng)知道,一些較大的數(shù)適合用科學(xué)記數(shù)法表示,有了負(fù)整數(shù)指數(shù)冪后,小于1的正數(shù)也可以用科學(xué)記數(shù)法來表示,例如:0.000012 = 1.2×10?5. 即小于1的正數(shù)可以用科學(xué)記數(shù)法表示為a×10?n的形式,其中a是整數(shù)位數(shù)只有1位的正數(shù),n是正整數(shù)。 啟發(fā)學(xué)生由特殊情形入手,比如0.012 = 1.2×10?2,0.0012 = 1.2×10?3,0.00012 = 1.2×10?4,以此發(fā)現(xiàn)其中的規(guī)律,從而有0.0000000012 = 1.2×10?9,即對于一個小于1的正數(shù),如果小數(shù)點后到第一個非0數(shù)字前有8個0,用科學(xué)記數(shù)法表示這個數(shù)時,10的指數(shù)是?9,如果有m個0,則10的指數(shù)應(yīng)該是?m?1.
八年級數(shù)學(xué)教案8
教學(xué)目標(biāo)
(一)教學(xué)知識點
1、等腰三角形的概念、
2、等腰三角形的性質(zhì)、
3、等腰三角形的概念及性質(zhì)的應(yīng)用、
1、經(jīng)歷作(畫)出等腰三角形的過程,從軸對稱的角度去體會等腰三角形的特點、
2、探索并掌握等腰三角形的性質(zhì)、
。ㄈ┣楦信c價值觀要求
通過學(xué)生的操作和思考,使學(xué)生掌握等腰三角形的相關(guān)概念,并在探究等腰三角形性質(zhì)的過程中培養(yǎng)學(xué)生認(rèn)真思考的習(xí)慣、
教學(xué)重點
1、等腰三角形的概念及性質(zhì)、
2、等腰三角形性質(zhì)的應(yīng)用、
教學(xué)難點
等腰三角形三線合一的性質(zhì)的理解及其應(yīng)用、
教學(xué)方法
探究歸納法、
教具準(zhǔn)備
師:多媒體課件、投影儀;
生:硬紙、剪刀、
教學(xué)過程
1、提出問題,創(chuàng)設(shè)情境
(師)在前面的學(xué)習(xí)中,我們認(rèn)識了軸對稱圖形,探究了軸對稱的性質(zhì),并且能夠作出一個簡單平面圖形關(guān)于某一直線的軸對稱圖形,還能夠通過軸對稱變換來設(shè)計一些美麗的圖案、這節(jié)課我們就是從軸對稱的角度來認(rèn)識一些我們熟悉的幾何圖形、來研究:
、偃切问禽S對稱圖形嗎?
、谑裁礃拥娜切问禽S對稱圖形?
。ㄉ┯械娜切问禽S對稱圖形,有的三角形不是。
(師)那什么樣的三角形是軸對稱圖形?
(生)滿足軸對稱的條件的三角形就是軸對稱圖形,也就是將三角形沿某一條直線對折后兩部分能夠完全重合的就是軸對稱圖形。
(師)很好,我們這節(jié)課就來認(rèn)識一種成軸對稱圖形的三角形──等腰三角形。
2、導(dǎo)入新課
。◣煟┩瑢W(xué)們通過自己的思考來做一個等腰三角形。作一條直線L,在L上取點A,在L外取點B,作出點B關(guān)于直線L的對稱點C,連結(jié)AB、BC、CA,則可得到一個等腰三角形。
。ㄉ遥┰诩淄瑢W(xué)的做法中,A點可以取直線L上的任意一點。
(師)對,按這種方法我們可以得到一系列的等腰三角形、現(xiàn)在同學(xué)們拿出自己準(zhǔn)備的硬紙和剪刀,按自己設(shè)計的方法,也可以用課本P138探究中的方法,剪出一個等腰三角形。
(師)按照我們的做法,可以得到等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形、相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角、同學(xué)們在自己作出的等腰三角形中,注明它的腰、底邊、頂角和底角。
(師)有了上述概念,同學(xué)們來想一想。
。ㄑ菔菊n件)
1、等腰三角形是軸對稱圖形嗎?請找出它的對稱軸。
2、等腰三角形的兩底角有什么關(guān)系?
3、頂角的平分線所在的直線是等腰三角形的對稱軸嗎?
4、底邊上的中線所在的直線是等腰三角形的對稱軸嗎?底邊上的高所在的直線呢?
。ㄉ祝┑妊切问禽S對稱圖形、它的對稱軸是頂角的平分線所在的直線、因為等腰三角形的兩腰相等,所以把這兩條腰重合對折三角形便知:等腰三角形是軸對稱圖形,它的對稱軸是頂角的平分線所在的直線。
。◣煟┩瑢W(xué)們把自己做的等腰三角形進行折疊,找出它的對稱軸,并看它的'兩個底角有什么關(guān)系。
。ㄉ遥┪野炎约鹤龅牡妊切握郫B后,發(fā)現(xiàn)等腰三角形的兩個底角相等。
(生丙)我把等腰三角形折疊,使兩腰重合,這樣頂角平分線兩旁的部分就可以重合,所以可以驗證等腰三角形的對稱軸是頂角的平分線所在的直線。
(生。┪野训妊切窝氐走吷系闹芯對折,可以看到它兩旁的部分互相重合,說明底邊上的中線所在的直線是等腰三角形的對稱軸。
。ㄉ欤├蠋,我發(fā)現(xiàn)底邊上的高所在的直線也是等腰三角形的對稱軸。
。◣煟┠銈冋f的是同一條直線嗎?大家來動手折疊、觀察。
。ㄉR聲)它們是同一條直線。
。◣煟┖芎、現(xiàn)在同學(xué)們來歸納等腰三角形的性質(zhì)。。
(生)我沿等腰三角形的頂角的平分線對折,發(fā)現(xiàn)它兩旁的部分互相重合,由此可知這個等腰三角形的兩個底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高。
。◣煟┖芎,大家看屏幕。
。ㄑ菔菊n件)
等腰三角形的性質(zhì):
1、等腰三角形的兩個底角相等(簡寫成“等邊對等角”)
2、等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作“三線合一”)、
。◣煟┯缮厦嬲郫B的過程獲得啟發(fā),我們可以通過作出等腰三角形的對稱軸,得到兩個全等的三角形,從而利用三角形的全等來證明這些性質(zhì)、同學(xué)們現(xiàn)在就動手來寫出這些證明過程)
(投影儀演示學(xué)生證明過程)
。ㄉ祝┤缬覉D,在ABC中,AB=AC,作底邊BC的中線AD,因為
所以BAD≌CAD(SSS)、
所以∠B=∠C、
。ㄉ遥┤缬覉D,在ABC中,AB=AC,作頂角∠BAC的角平分線AD,因為
所以BAD≌CAD、
所以BD=CD,∠BDA=∠CDA=∠BDC=90°。
。◣煟┖芎,甲、乙兩同學(xué)給出了等腰三角形兩個性質(zhì)的證明,過程也寫得很條理、很規(guī)范、下面我們來看大屏幕。
。ㄑ菔菊n件)
。ɡ1)如圖,在ABC中,AB=AC,點D在AC上,且BD=BC=AD,求:ABC各角的度數(shù)、
(師)同學(xué)們先思考一下,我們再來分析這個題、
。ㄉ└鶕(jù)等邊對等角的性質(zhì),我們可以得到
∠A=∠ABD,∠ABC=∠C=∠BDC,再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A。再由三角形內(nèi)角和為180°,就可求出ABC的三個內(nèi)角。
(師)這位同學(xué)分析得很好,對我們以前學(xué)過的定理也很熟悉、如果我們在解的過程中把∠A設(shè)為x的話,那么∠ABC、∠C都可以用x來表示,這樣過程就更簡捷。
。ㄕn件演示)
(例)因為AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC、∠A=∠ABD(等邊對等角)、
設(shè)∠A=x,則∠BDC=∠A+∠ABD=2x,從而∠ABC=∠C=∠BDC=2x、
于是在ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°。
在ABC中,∠A=35°,∠ABC=∠C=72°、
(師)下面我們通過練習(xí)來鞏固這節(jié)課所學(xué)的知識、
3、隨堂練習(xí)
。ㄒ唬┱n本P141練習(xí)1、2、3。
練習(xí)
1、如下圖,在下列等腰三角形中,分別求出它們的底角的度數(shù)、
答案:(1)72°(2)30°
2、如右圖,ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底邊BC上的高,標(biāo)出∠B、∠C、∠BAD、∠DAC的度數(shù),圖中有哪些相等線段?
答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD、
3、如右圖,在ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度數(shù)、
答:∠B=77°,∠C=38、5°、
。ǘ╅喿x課本P138~P140,然后小結(jié)、
4、課時小結(jié)
這節(jié)課我們主要探討了等腰三角形的性質(zhì),并對性質(zhì)作了簡單的應(yīng)用、等腰三角形是軸對稱圖形,它的兩個底角相等(等邊對等角),等腰三角形的對稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高、
我們通過這節(jié)課的學(xué)習(xí),首先就是要理解并掌握這些性質(zhì),并且能夠靈活應(yīng)用它們、
5、課后作業(yè)
(一)課本P147─1、3、4、8題、
。ǘ1、預(yù)習(xí)課本P141~P143、
2、預(yù)習(xí)提綱:等腰三角形的判定、
6、活動與探究
如右圖,在ABC中,過C作∠BAC的平分線AD的垂線,垂足為D,DE∥AB交AC于E、
求證:AE=CE、
過程:通過分析、討論,讓學(xué)生進一步了解全等三角形的性質(zhì)和判定,等腰三角形的性質(zhì)、
結(jié)果:
證明:延長CD交AB的延長線于P,如右圖,在ADP和ADC中
ADP≌ADC、
∠P=∠ACD、
又DE∥AP,
∠4=∠P、
∠4=∠ACD、
DE=EC、
同理可證:AE=DE、
AE=CE、
板書設(shè)計
八年級數(shù)學(xué)教案9
【教學(xué)目標(biāo)】
一、教學(xué)知識點
1.命題的組成。
2.命題真假的判斷。
二、能力訓(xùn)練要求:
1.使學(xué)生能夠分清命題的條件和結(jié)論,能判斷命題的真假
2.通過舉例判定一個命題是假命題,使學(xué)生學(xué)會反面思考問題的方法
三、情感與價值觀要求:
1.通過反例說明假命題,使學(xué)生認(rèn)識到任何事情都是正反兩方面對立統(tǒng)一
2.幫助學(xué)生了解數(shù)學(xué)發(fā)展史,拓展視野,激發(fā)學(xué)習(xí)興趣
3.通過對《原本》介紹,使學(xué)生感受數(shù)學(xué)發(fā)展史和人類文明價值
【教學(xué)重點】準(zhǔn)確的找出命題的條件和結(jié)論
【教學(xué)難點】理解判斷一個真命題需要證明
【教學(xué)方法】探討、合作交流
【教具準(zhǔn)備】投影片
【教學(xué)過程】
一、情景創(chuàng)設(shè)、引入新課
師:如果這個星期不下雨,我們就去郊游,這是命題嗎?分析這句話,這個周日,我們郊游一定能成行嗎?為什么?
新課:
(1)觀察下列命題,你能發(fā)現(xiàn)這些命題有什么共同結(jié)構(gòu)特征?與同伴交流。
1.如果兩個三角形的三條邊對應(yīng)相等,那么這兩個三角形全等。
2.如果一個四邊形的一組對邊平行且相等,那么這個四邊形是平行四邊形。
3.如果一個三角形是等腰三角形,那么這個三角形的兩個底角相等。
4.如果一個四邊形的對角線相等,那么這個四邊形是矩形。
5.如果一個四邊形的兩條對角線相互垂直,那么這個四邊形是菱形。
師:由此可見,每個命題都是由條件和結(jié)論兩部分組成的,條件是已知的事項,結(jié)論是由已知事項推出的事項。一般地,命題都可以寫成“如果……那么……”的形式,其中“如果”引出部分是條件,“那么”引出部分是結(jié)論。
二、例題講解:
例1:師:下列命題的條件是什么?結(jié)論是什么?
1.如果兩個角相等,那么他們是對頂角;
2.如果a>b,b>c,那么a=c;
3.兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等;
4.菱形的四條邊都相等;
5.全等三角形的面積相等。
例題教學(xué)建議:1:其中(1)、(2)請學(xué)生直接回答,(3)、(4)、(5)請學(xué)生分成小組交流然后回答。
2:有的命題的描述沒有用“如果……那么……”的形式,在分析時可以擴展成這種形式,以分清條件和結(jié)論。
例2:上述命題哪些是正確的,哪些是不正確的?你是怎么知道它是不正確的?與同伴交流。
師:正確的命題叫真命題,不正確的命題叫假命題。要說明一個命題是假命題,通常可以舉一個例子,使之具備命題的條件,卻不具備命題的結(jié)論,即反例。
教學(xué)建議:對于反例的要求可以采取啟發(fā)式層層遞進方式給出,即:說明命題錯誤可以舉例→綜合命題(1)、(2)的兩例,兩例條件具備→例子結(jié)論不吻合→給出如何舉反例要求。
三、思維拓展:
拓展1.師:如何證實一個命題是真命題呢?請同學(xué)們分小組交流一下。
教學(xué)建議:不急于解決學(xué)生怎么證實真命題的問題,可按以下程序設(shè)計教學(xué)過程
。1)首先給學(xué)生介紹歐幾里得的《原本》
。2)引出概念:公理、定理,證明
(3)啟發(fā)學(xué)生,現(xiàn)在如何證實一個命題的正確性
。4)給出本套教材所選用如下6個命題作為公理
。5)等式性質(zhì)、不等式有關(guān)性質(zhì),等量代換也看作定理。
拓展2.師:任何公理、定理是命題嗎?是真命題嗎?為什么?
建議:在學(xué)生回答后歸納總結(jié):公理是經(jīng)過長期實踐驗證的,不需要再進行推理論證都承認(rèn)的真命題。定理是經(jīng)過推理論證的真命題。
練習(xí)書p197習(xí)題6.31
四、問題式總結(jié)
師:經(jīng)過本節(jié)課我們在一起共同探討交流,你了解了有關(guān)命題的哪些知識?
建議:可對學(xué)生進行提示性引導(dǎo),如:命題的構(gòu)成特點、命題是否都正確、如何判斷一個命題是假命題、如何證實一個命題是真命題。
作業(yè):書p197習(xí)題6.32、3
板書設(shè)計:
定義與命題
課時2
條件
1.命題的結(jié)構(gòu)特征
結(jié)論
1.假命題——可以舉反例
2.命題真假的判別
2.真命題——需要證明 學(xué)生活動一——
探索命題的結(jié)構(gòu)特征
學(xué)生觀察、分組討論,得出結(jié)論:
。1)這五個命題都是用“如果……那么……”形式敘述的
(2)這五個命題都是由已知得到結(jié)論
。3)這五個命題都有條件和結(jié)論
學(xué)生活動二——
探索命題的.條件和結(jié)論
生:命題1、2如果部分是條件,那么部分是結(jié)論;命題3如果兩個三角形兩角和其中一角對邊對應(yīng)相等是條件,那么這兩個三角形全等是結(jié)論;命題4如果是菱形是條件,那么四條邊相等是結(jié)論;命題5如果兩三角形全等是條件,那么面積相等是結(jié)論。
學(xué)生活動三
探索命題的真假——如何判斷假命題
生:可以舉一個例子,說明命題1是不正確的,如圖:
已知:∠AOB,∠1=∠2,∠1,∠2不是對頂角
生:命題2,若a=10,b=8,c=5,此時a>b,b>c,但a≠c
生:由此說明:命題1、2是不正確的
生:命題3、4、5是正確的
學(xué)生活動四
探索命題的真假——如何證實一個命題是真命題
學(xué)生交流:
生:用我們以前學(xué)過的觀察、實驗、驗證特例等方法
生:這些方法往往并不可靠
生:能夠根據(jù)已知道的真命題證實呢?
生:那已經(jīng)知道的真命題又是如何證實的?
生:那可怎么辦呢?
生:可通過證明的方法
學(xué)生分小組討論得出結(jié)論
生:命題的結(jié)構(gòu)特征:條件和結(jié)論
生:命題有真假之分
生:可以通過舉反例的方法判斷假命題
生:可通過證明的方法證實真命題
八年級數(shù)學(xué)教案10
一、課堂導(dǎo)入
回顧平行四邊的性質(zhì)定理及定義
1.什么叫平行四邊形?平行四邊形有什么性質(zhì)?
2.將以上的性質(zhì)定理,分別用命題形式敘述出來。(如果……那么……)
根據(jù)平行四邊形的定義,我們研究了平行四邊形的其它性質(zhì),那么如何來判定一個四邊形是平行四邊形呢?除了定義還有什么方法?平行四邊形性質(zhì)定理的逆命題是否成立?
二、新課講解
平行四邊形的判定:
(定義法):兩組對邊分別平行的四邊形的平邊形。
幾何語言表達定義法:
∵AB∥CD,AD∥BC,∴四邊形ABCD是平行四邊形
解析:一個四邊形只要其兩組對邊分別互相平行,則可判定這個四邊形是一個平行四邊形。
活動:用做好的紙條拼成一個四邊形,其中強調(diào)兩組對邊分別相等。
(平行四邊形判定定理):
(一)兩組對邊分別相等的四邊形是平行四邊形。
設(shè)問:這個命題的前提和結(jié)論是什么?
已知:四邊形ABCD中,AB=CD,BC=DA。
求證:四邊ABCD是平行四邊形。
分析:判定平行四邊形的依據(jù)目前只有定義,也就是須證明兩組對邊分別平行,當(dāng)然是借助第三條直線證明角等。連結(jié)BD。易證三角形全等。
板書證明過程。
小結(jié):用幾何語言表達用定義法和剛才證明為正確的方法證明一個四邊形是平行四邊形的方法為:
平行四邊形判定定理1:二組對邊分別相等的四邊形是平行四邊形∵AB=CD,AD=BC,∴四邊形ABCD是平行四邊形
(二)設(shè)問:若一個四邊形有一組對邊平行且相等,能否判定這個四邊形也是平行四邊形呢?
活動:課本探究內(nèi)容,并用事準(zhǔn)備好的紙條(紙條的長度相等),先將紙條放置不平行位置,讓學(xué)生設(shè)想若二紙條的.端點為四邊形的頂點,則組成的四邊形是不是平行四邊形?若將紙條擺放為平行的位置,則同樣用二紙條的端點為頂點組成的四邊形是不是平行四邊形?
設(shè)問:我們能否用推理的方法證明這個命題是正確的呢?(讓學(xué)生找出題設(shè)、結(jié)論,然后寫出已知、求證及證明過程。)
八年級數(shù)學(xué)教案11
一、學(xué)習(xí)目標(biāo):
讓學(xué)生了解多項式公因式的意義,初步會用提公因式法分解因式
二、重點難點
重點:能觀察出多項式的公因式,并根據(jù)分配律把公因式提出來
難點:讓學(xué)生識別多項式的公因式.
三、合作學(xué)習(xí):
公因式與提公因式法分解因式的概念.
三個矩形的長分別為a、b、c,寬都是m,則這塊場地的面積為ma+mb+mc,或m(a+b+c)
既ma+mb+mc = m(a+b+c)
由上式可知,把多項式ma+mb+mc寫成m與(a+b+c)的乘積的形式,相當(dāng)于把公因式m從各項中提出來,作為多項式ma+mb+mc的一個因式,把m從多項式ma+mb+mc各項中提出后形成的多項式(a+b+c),作為多項式ma+mb+mc的另一個因式,這種分解因式的.方法叫做提公因式法。
四、精講精練
例1、將下列各式分解因式:
(1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x.
例2把下列各式分解因式:
(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.
(3) a(x-3)+2b(x-3)
通過剛才的練習(xí),下面大家互相交流,總結(jié)出找公因式的一般步驟.
首先找各項系數(shù)的____________________,如8和12的公約數(shù)是4.
其次找各項中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指數(shù)取次數(shù)最___________的
課堂練習(xí)
1.寫出下列多項式各項的公因式.
(1)ma+mb 2)4kx-8ky (3)5y3+20y2 (4)a2b-2ab2+ab
2.把下列各式分解因式
(1)8x-72 (2)a2b-5ab
(3)4m3-6m2 (4)a2b-5ab+9b
(5)(p-q)2+(q-p)3 (6)3m(x-y)-2(y-x)2
五、小結(jié):
總結(jié)出找公因式的一般步驟.:
首先找各項系數(shù)的大公約數(shù),
其次找各項中含有的相同的字母,相同字母的指數(shù)取次數(shù)最小的
注意:(a-b)2=(b-a)2
六、作業(yè)
1、教科書習(xí)題
2、已知2x-y=1/3,xy=2,求2x4y3-x3y4 3、(-2)20xx+(-2)20xx
4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3
八年級數(shù)學(xué)教案12
一、素質(zhì)教育目標(biāo)
(一)知識教學(xué)點
1.掌握平行四邊形的判定定理1、2、3、4,并能與性質(zhì)定理、定義綜合應(yīng)用.
2.使學(xué)生理解判定定理與性質(zhì)定理的區(qū)別與聯(lián)系.
3.會根據(jù)簡單的條件畫出平行四邊形,并說明畫圖的'依據(jù)是哪幾個定理.
(二)能力訓(xùn)練點
1.通過“探索式試明法”開拓學(xué)生思路,發(fā)展學(xué)生思維能力.
2.通過教學(xué),使學(xué)生逐步學(xué)會分別從題設(shè)或結(jié)論出發(fā)尋求論證思路的分析方法,進一步提高學(xué)生分析問題,解決問題的能力.
(三)德育滲透點
通過一題多解激發(fā)學(xué)生的學(xué)習(xí)興趣.
(四)美育滲透點
通過學(xué)習(xí),體會幾何證明的方法美.
二、學(xué)法引導(dǎo)
構(gòu)造逆命題,分析探索證明,啟發(fā)講解.
三、重點·難點·疑點及解決辦法
1.教學(xué)重點:平行四邊形的判定定理1、2、3的應(yīng)用.
2.教學(xué)難點:綜合應(yīng)用判定定理和性質(zhì)定理.
3.疑點及解決辦法:在綜合應(yīng)用判定定理及性質(zhì)定理時,在什么條件下用判定定理,在什么條件下用性質(zhì)定理
(強調(diào)在求證平行四邊形時用判定定理在已知平行四邊形時用性質(zhì)定理).
八年級數(shù)學(xué)教案13
創(chuàng)設(shè)情境
1、什么叫平行四邊形?平行四邊形有什么性質(zhì)?
2、將以上的性質(zhì)定理,分別用命題形式敘述出來。
根據(jù)平行四邊形的定義,我們研究了平行四邊形的其它性質(zhì),那么如何來判定一個四邊形是平行四邊形呢?除了定義還有什么方法?平行四邊形性質(zhì)定理的逆命題是否成立?
探究歸納
平行四邊形的判定方法:
證明:兩組對邊分別相等的四邊形是平行四邊形
已知:
求證:
做一做:將四根細(xì)木條(其中兩條長相等,另外兩條長也相等)用小釘子釘在一起,做成一個四邊形,使等長的木條成為對邊。它是平行四邊形嗎?
學(xué)生交流:把你做的四邊形和其他同學(xué)做的.進行比較,看看是否都是平行四邊形。
觀察發(fā)現(xiàn):盡管每個人取的邊長不一樣,但只要對邊分別相等,所作的都是平行四邊形
練習(xí):如圖,在ABCD中,E,F(xiàn),G和H分別是各邊中點。求證:四邊形EFGH為平行四邊形
八年級數(shù)學(xué)教案14
教學(xué)目標(biāo):
1、知識目標(biāo):
(1)掌握已知三邊畫三角形的方法;
(2)掌握邊邊邊公理,能用邊邊邊公理證明兩個三角形全等;
(3)會添加較明顯的輔助線.
2、能力目標(biāo):
(1)通過尺規(guī)作圖使學(xué)生得到技能的訓(xùn)練;
(2)通過公理的初步應(yīng)用,初步培養(yǎng)學(xué)生的邏輯推理能力.
3、情感目標(biāo):
(1)在公理的形成過程中滲透:實驗、觀察、歸納;
(2)通過變式訓(xùn)練,培養(yǎng)學(xué)生“舉一反三”的學(xué)習(xí)習(xí)慣.
教學(xué)重點:SSS公理、靈活地應(yīng)用學(xué)過的各種判定方法判定三角形全等。
教學(xué)難點:如何根據(jù)題目條件和求證的結(jié)論,靈活地選擇四種判定方法中最適當(dāng)?shù)姆椒ㄅ卸▋蓚三角形全等。
教學(xué)用具:直尺,微機
教學(xué)方法:自學(xué)輔導(dǎo)
教學(xué)過程:
1、新課引入
投影顯示
問題:有一塊三角形玻璃窗戶破碎了,要去配一塊新的,你最少要對窗框測量哪幾個數(shù)據(jù)?如果你手頭沒有測量角度的.儀器,只有尺子,你能保證新配的玻璃恰好不大不小嗎?
這個問題讓學(xué)生議論后回答,他們的答案或許只是一種感覺。于是教師要引導(dǎo)學(xué)生,抓住問題的本質(zhì):三角形的三個元素――三條邊。
2、公理的獲得
問:通過上面問題的分析,滿足什么條件的兩個三角形全等?
讓學(xué)生粗略地概括出邊邊邊的公理。然后和學(xué)生一起畫圖做實驗,根據(jù)三角形全等定義對公理進行驗證。(這里用尺規(guī)畫圖法)
公理:有三邊對應(yīng)相等的兩個三角形全等。
應(yīng)用格式: (略)
強調(diào)說明:
(1)、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結(jié)論。
(2)、在應(yīng)用時,怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時圖形中隱含的(如公共邊)
(3)、此公理與前面學(xué)過的公理區(qū)別與聯(lián)系
(4)、三角形的穩(wěn)定性:演示三角形的穩(wěn)定性與四邊形的不穩(wěn)定性。在演示中,其實可以去掉組成三角形的一根小木條,以顯示三角形條件不可減少,這也為下面總結(jié)“三角形全等需要有3全獨立的條件”做好了準(zhǔn)備,進行了溝通。
(5)說明AAA與SSA不能判定三角形全等。
3、公理的應(yīng)用
(1) 講解例1。學(xué)生分析完成,教師注重完成后的點評。
例1 如圖△ABC是一個鋼架,AB=ACAD是連接點A與BC中點D的支架
求證:AD⊥BC
分析:(設(shè)問程序)
(1)要證AD⊥BC只要證什么?
(2)要證∠1= 只要證什么?
(3)要證∠1=∠2只要證什么?
(4)△ABD和△ACD全等的條件具備嗎?依據(jù)是什么?
證明:(略)
(2)講解例2(投影例2 )
例2已知:如圖AB=DC,AD=BC
求證:∠A=∠C
(1)學(xué)生思考、分析、討論,教師巡視,適當(dāng)參與討論。
(2)找學(xué)生代表口述證明思路。
思路1:連接BD(如圖)
證△ABD≌△CDB(SSS)先得∠A=∠C
思路2:連接AC證△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD
(3)教師共同討論后,說明思路1較優(yōu),讓學(xué)生用思路1在練習(xí)本上寫出證明,一名學(xué)生板書,教師強調(diào)解題格式:在“證明”二字的后面,先將所作的輔助線寫出,再證明。
例3如圖,已知AB=AC,DB=DC
(1)若E、F、G、H分別是各邊的中點,求證:EH=FG
(2)若AD、BC連接交于點P,問AD、BC有何關(guān)系?證明你的結(jié)論。
學(xué)生思考、分析,適當(dāng)點撥,找學(xué)生代表口述證明思路
讓學(xué)生在練習(xí)本上寫出證明,然后選擇投影顯示。
證明:(略)
說明:證直線垂直可證兩直線夾角等于 ,而由兩鄰補角相等證兩直線的夾角等于 ,又是很重要的一種方法。
例4 如圖,已知:△ABC中,BC=2AB,AD、AE分別是△ABC、△ABD的中線,
求證:AC=2AE.
證明:(略)
學(xué)生口述證明思路,教師強調(diào)說明:“中線”條件下的常規(guī)作輔助線法。
5、課堂小結(jié):
(1)判定三角形全等的方法:3個公理1個推論(SAS、ASA、AAS、SSS)
在這些方法中,每一個都需要3個條件,3個條件中都至少包含條邊。
(2)三種方法的綜合運用
讓學(xué)生自由表述,其它學(xué)生補充,自己將知識系統(tǒng)化,以自己的方式進行建構(gòu)。
6、布置作業(yè):
a、書面作業(yè)P70#11、12
b、上交作業(yè)P70#14 P71B組3
八年級數(shù)學(xué)教案15
第三十四學(xué)時:14.2.1平方差公式
一、學(xué)習(xí)目標(biāo):
1.經(jīng)歷探索平方差公式的過程。
2.會推導(dǎo)平方差公式,并能運用公式進行簡單的運算。
二、重點難點
重點:平方差公式的`推導(dǎo)和應(yīng)用;
難點:理解平方差公式的結(jié)構(gòu)特征,靈活應(yīng)用平方差公式。
三、合作學(xué)習(xí)
你能用簡便方法計算下列各題嗎?
(1)20xx×1999(2)998×1002
導(dǎo)入新課:計算下列多項式的積.
。1)(x+1)(x—1);
。2)(m+2)(m—2)
。3)(2x+1)(2x—1);
。4)(x+5y)(x—5y)。
結(jié)論:兩個數(shù)的和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差。
即:(a+b)(a—b)=a2—b2
四、精講精練
例1:運用平方差公式計算:
。1)(3x+2)(3x—2);
。2)(b+2a)(2a—b);
。3)(—x+2y)(—x—2y)。
例2:計算:
(1)102×98;
。2)(y+2)(y—2)—(y—1)(y+5)。
隨堂練習(xí)
計算:
。1)(a+b)(—b+a);
。2)(—a—b)(a—b);
(3)(3a+2b)(3a—2b);
(4)(a5—b2)(a5+b2);
。5)(a+2b+2c)(a+2b—2c);
。6)(a—b)(a+b)(a2+b2)。
五、小結(jié)
。╝+b)(a—b)=a2—b2
【八年級數(shù)學(xué)教案】相關(guān)文章:
《有余數(shù)的除法》數(shù)學(xué)教案03-23
《學(xué)習(xí)6、7的加法》數(shù)學(xué)教案03-21
《筆算乘法》數(shù)學(xué)教案(通用10篇)06-16
幼兒園大班數(shù)學(xué)教案05-26