成年女人色视频在线观看网站_一本久精品无码免费_亚洲成a人片在线观看无码专区_开心婷婷五月综合基地六月

二元一次方程教案

時間:2023-04-01 12:38:46 教案 投訴 投稿

二元一次方程教案15篇

  作為一名人民教師,總不可避免地需要編寫教案,教案有助于學生理解并掌握系統(tǒng)的知識。那么優(yōu)秀的教案是什么樣的呢?下面是小編收集整理的二元一次方程教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

二元一次方程教案15篇

二元一次方程教案1

  一.教學目標:

  1.認知目標:

  1)了解二元一次方程組的概念。

  2)理解二元一次方程組的解的概念。

  3)會用列表嘗試的方法找二元一次方程組的解。

  2.能力目標:

  1)滲透把實際問題抽象成數學模型的思想。

  2)通過嘗試求解,培養(yǎng)學生的探索能力。

  3.情感目標:

  1)培養(yǎng)學生細致,認真的學習習慣。

  2)在積極的教學評價中,促進師生的情感交流。

  二.教學重難點

  重點:二元一次方程的意義及二元一次方程的解的概念。

  難點:把一個二元一次方程形成用關于一個未知數的代數式表示另一個未知數的形式,其實質是解一個含有字母系數的方程。

  三.教學過程

  (一)創(chuàng)設情景,引入課題

  1.本班共有40人,請問能確定男女生各幾人嗎?為什么?

 。1)如果設本班男生x人,女生y人,用方程如何表示?(x+y=40)

  (2)這是什么方程?根據什么?

  2.男生比女生多了2人。設男生x人,女生y人.方程如何表示? x,y的值是多少?

  3.本班男生比女生多2人且男女生共40人.設該班男生x人,女生y人。方程如何表示?

  兩個方程中的x表示什么?類似的兩個方程中的y都表示?

  像這樣,同一個未知數表示相同的`量,我們就應用大括號把它們連起來組成一個方程組。

  4.點明課題:二元一次方程組。

 。ㄔO計意圖:從學生身邊取數據,讓他們感受到生活中處處有數學)

 。ǘ┨骄啃轮,練習鞏固

  1.二元一次方程組的概念

 。1)請同學們看課本,了解二元一次方程組的的概念,并找出關鍵詞由教師板書。

  [讓學生看書,引起他們對教材重視。找關鍵詞,加深他們對概念的了解.]

 。2)練習:判斷下列是不是二元一次方程組,學生作出判斷并要說明理由。

 、賦2+y=0 ②y=2x+4 ③y+?x ④x=2/y+1 ⑤(x+y)/3-2=0

  (設計意圖:這一環(huán)節(jié)是本課設計的重點,為加深學生對“含有未知數的項的次數”的內涵的理解,我采取的是閱讀書本中二元一次方程的概念,形成學生的認知沖突,激發(fā)學生對“項的次數的思考”,進而完善血生對二元一次方程概念的理解。)

  2.二元一次方程組的解的概念

 。1)由學生給出引例的答案,教師指出這就是此方程組的解。

  (2)練習:把下列各組數的題序填入圖中適當的位置:

  方程x+y=0的解,方程2x+3y=2的解,方程組的解。

  (3)既滿足第一個方程也滿足第二個方程的解叫作二元一次方程組的解。

 。4)練習:已知是方程組的解,求a,b的值。

 。ㄈ┖献魈剿鳎瑖L試求解

  現在我們一起來探索如何尋找方程組的解呢?

  1.已知兩個整數x,y,試找出方程組的解.

  學生兩人一小組合作探索。并讓已經找出方程組解的學生利用實物投影,講明自己的解題思路。

  一般思路:由一個方程取適當的xy的值,代到另一個方程嘗試.

 。ㄔO計意圖:把課堂還給學生,讓他們探索并解答問題,在獲取新知識的同時也積累數學活動的經驗)

  2.據了解,某商店出售兩種不同星號的“紅雙喜”牌乒乓球。其中“紅雙喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同學一共買了4盒,剛好有15個球。

  (1) 設該同學“紅雙喜”二星乒乓球買了x盒,三星乒乓球買了y盒,請根據問題中的條件列出關于x、y的方程組。(2)用列表嘗試的方法解出這個方程組的解。

  由學生獨立完成,并分析講解。

  3.例 已知方程3X+2Y=10

 、女擷=2時,求所對應的Y 的值;

 、迫∫粋你自己喜歡的數作為X的值,求所對應的Y的值;

 、怯煤琗的代數式表示Y;

 、扔煤琘 的代數式表示X;

  ⑸當X=-2,0 時,所對應的Y值是多少;

 。ㄔO計意圖:此處設計主要是想讓學生形成求二元一次方程的解的一般方法,先讓學生展示他們的思維過程,再從他們解一元一次方程的重復步驟中提煉出用一個未知數的代數式表示另一個未知數,然后把它與原方程比較,把一個未知數的值代入哪一個方程計算會更簡單,形成“正遷移”,引導學生體會“用關于一個未知數的代數式表示另一個未知數”的過程。)

  (四)課堂小結,布置作業(yè)

  1.這節(jié)課學哪些知識和方法?

  2.你還有什么問題或想法需要和大家交流?

  3.教材P82

  教學設計說明:

  1.本課設計主線有兩條。其一是知識線,內容從二元一次方程組的概念到二元一次方程組解的概念再到列表嘗試法,環(huán)環(huán)相扣,層層遞進;第二是能力培養(yǎng)線,學生從看書理解二元一次方程組的概念到學會歸納解的概念,再到自主探索,用列表嘗試法解題,循序漸進,逐步提高。

  2.“讓學生成為課堂的真正主體”是本課設計的主要理念。由學生給出數據,得出結果,再讓他們在積極嘗試后進行講解,實現生生互評。把課堂的一切交給學生,相信他們能在已有的知識上進一步學習提高,教師只是點播和引導者。

  3.本課在設計時對教材也進行了適當改動。例題方面考慮到數碼時代,學生對膠卷已漸失興趣,所以改為學生比較熟悉的乒乓球為體裁。另一方面,充分挖掘練習的作用,為知識的落實打下軋實的基礎,為學生今后的進一步學習做好鋪墊。

二元一次方程教案2

  教學目標:

  1使學生會借助二元一次方程組解決簡單的實際問題,讓學生再次體會二元一次方程組與現實生活的聯系和作用

  2通過應用題教學使學生進一步使用代數中的方程去反映現實世界中等量關系,體會代數方法的優(yōu)越性

  3體會列方程組比列一元一次方程容易

  4進一步培養(yǎng)學生化實際問題為數學問題的能力和分析問題,解決問題的能力

  重點與難點:

  重點:能根據題意列二元一次方程組;根據題意找出等量關系;

  難點:正確發(fā)找出問題中的兩個等量關系

  課前自主學習

  1.列方程組解應用題是把“未知”轉化為“已知”的重要方法,它的關鍵是把已知量和未知量聯系起來,找出題目中的()

  2.一般來說,有幾個未知量就必須列幾個方程,所列方程必須滿足:

  (1)方程兩邊表示的是()量

  (2)同類量的單位要()

  (3)方程兩邊的.數值要相符。

  3.列方程組解應用題要注意檢驗和作答,檢驗不僅要求所得的解是否( ),更重要的是要檢驗所求得的結果是否( )

  4.一個籠中裝有雞兔若干只,從上面看共42個頭,從下面看共有132只腳,則雞有( ),兔有( )

  新課探究

  看一看

   問題:

  1題中有哪些已知量?哪些未知量?

  2題中等量關系有哪些?

  3如何解這個應用題?

  本題的等量關系是(1)()

  (2)()

  解:設平均每只母牛和每只小牛1天各需用飼料為xkg和ykg

  根據題意列方程,得

  解這個方程組得

  答:每只母牛和每只小牛1天各需用飼料為( )和( ),飼料員李大叔估計每天母牛需用飼料18—20千克,每只小牛一天需用7到8千克與計算()出入。(“有”或“沒有”)

  練一練:

  1、某所中學現在有學生4200人,計劃一年后初中在樣生增加8%,高中在校生增加11%,這樣全校學生將增加10%,這所學,F在的初中在校生和高中在校生人數各是多少人?

  2、有大小兩輛貨車,兩輛大車與3輛小車一次可以支貨15。50噸,5輛大車與6輛小車一次可以支貨35噸,求3輛大車與5輛小車一次可以運貨多少噸?

  3、某工廠第一車間比第二車間人數的少30人,如果從第二車間調出10人到第一車間,則第一車間的人數是第二車間的,問這兩車間原有多少人?

  4、某運輸隊送一批貨物,計劃20天完成,實際每天多運送5噸,結果不但提前2天完成任務并多運了10噸,求這批貨物有多少噸?原計劃每天運輸多少噸?

  小結

  用方程組解應用題的一般步驟是什么?

  8.3實際問題與二元一次方程組(2)

  教學目標:

  1、經歷用方程組解決實際問題的過程,體會方程組是刻畫現實世界的有效數學模型;

  2、能夠找出實際問題中的已知數和未知數,分析它們之間的數量關系,列出方程組;

  3、學會開放性地尋求設計方案,培養(yǎng)分析問題,解決問題的能力

  重點與難點:

  重點:能根據題意列二元一次方程組;根據題意找出等量關系;

  難點:正確發(fā)找出問題中的兩個等量關系

  課前自主學習

  1.甲乙兩人的年收入之比為4:3,支出之比為8:5,一年間兩人各存了5000元(兩人剩余的錢都存入了銀行),則甲乙兩人的年收入分別為()元和()元。

  2.在一堆球中,籃球與排球之比為贊助單位又送來籃球隊10個排球10個,這時籃球與排球的數量之比為27:40,則原有籃球()個,排球()個。

  3.現在長為18米的鋼材,要據成10段,每段長只能為1米或2米,則這個問題中的等量關系是(1)1米的段數+()=10(2)1米的鋼材總長+()=18

二元一次方程教案3

  7.2 一元二次方程組的解法

  ------第六課時

  教學目的

  1.使學生會借助二元一次方程組解決簡單的實際問題,讓學生再次體會二元一次方程組與現實生活的聯系和作用。

  2.通過應用題的教學使學生進一步使用代數中的方程去反映現實世界中的等量關系,體會代數方法的優(yōu)越性,體會列方程組往往比列一元一次方程容易。

  3.進一步培養(yǎng)學生化實際問題為數學問題的能力和分析問題解決問題的能力。

  重點、難點、關鍵

  1、重、難點:根據題意,列出二元一次方程組。

  2、關鍵:正確地找出應用題中的兩個等量關系,并把它們列成方程。

  教學過程

  一、復習

  我們已學習了列一元一次方程解決實際問題,大家回憶列方程解應用題的步驟,其中關鍵步驟是什么?

  [審題;設未知數;列方程;解方程;檢驗并作答。關鍵是審題,尋找 出等量關系]

  在本節(jié)開頭我們已借助列二元一次方程組解決了有2個未知數的實際問題。大家已初步體會到:對兩個未知數的應用題列一次方程組往往比列一元一次方程要容易一些。

  二、新授

  例l:某蔬菜公司收購到某種蔬菜140噸,準備加工后上市銷售,該公司的加工能力是:每天精加工6噸或者粗加工16噸,現計劃用15天完成加工任務,該公司應安排幾天粗加工,幾天精加工,才能按期完成任務?如果每噸蔬菜粗加工后的利潤為1000元,精加工后為20xx元,那么該公司出售這些加工后的蔬菜共可獲利多少元?

  分析:解決這個問題的關鍵是先解答前一個問題,即先求出安排精加和粗加工的天數,如果我們用列方程組的.辦法來解答。

  可設應安排x天精加工,y加粗加工,那么要找出能反映整個題意的兩個等量關系。引導學生尋找等量關系。

  (1)精加工天數與粗加工天數的和等于15天。

  (2)精加工蔬菜的噸數與粗加工蔬菜的噸數和為140噸。

  指導學生列出方程。對于有困難的學生也可以列表幫助分析。

  例2:有大小兩種貨車,2輛大車與3輛小車一次可以運貨15.50噸,5輛大車與6輛小車一次可以運貨35噸。

  求:3輛大車與5輛小車一次可以運貨多少噸?

  分析:要解決這個問題的關鍵是求每輛大車和每輛小車一次可運貨多少噸?

  如果設一輛大車每次可以運貨x噸,一輛小車每次可以運貨y噸,那么能反映本題意的兩個等量頭條是什么?

  指導學生分析出等量關系。

 。1) 2輛大車一次運貨+3輛小車一次運貨=15. 5

 。2) 5輛大車一次運貨+6輛小車一次運貨=35

  根據題意,列出方程,并解答。教師指導。

  三、鞏固練習

  教科書第34頁練習l、2、3。

  第3題:首先讓學生明白什么叫充分利用這船的載重量與容量,讓學生找出兩個等量關系。

  四、小結

  列二元一次方程組解應用題的步驟。

  1.審題,弄清題目中的數量關系,找出未知數,用x、y表示所要求的兩個未知數。

  2.找到能表示應用題全部含義的兩個等量關系。

  3.根據兩個等量關系,列出方程組。

  4.解方程組。

  5.檢驗作答案。

  五、作業(yè)

  1.教科書第35頁,習題7.2第2、3、4題。

二元一次方程教案4

  教學建議

  一、重點、難點分析

  本節(jié)的教學重點是使學生學會用代入法.教學難點在于靈活運用代入法,這要通過一定數量的練習來解決;另一個難點在于用代入法求出一個未知數的值后,不知道應把它代入哪一個方程求另一個未知數的值比較簡便.

  解二元一次方程組的關鍵在于消元,即將“二元”轉化為“一元”.我們是通過等量代換的方法,消去一個未知數,從而求得原方程組的解.

  二、知識結構

  三、教法建議

  1.關于檢驗方程組的解的問題.教材指出:“檢驗時,需將所求得的一對未知數的值分別代入原方程組里的每一個方程中,看看方程的左、右兩邊是不是相等.”教學時要強調“原方程組”和“每一個”這兩點.檢驗的作用,一是使學生進一步明確代入法是求方程組的解的一種基本方法,通過代入消元的確可以求得方程組的解二是進一步鞏固二元一次方程組的解的概念,強調

  這一對數值才是原方程組的解,并且它們必須使兩個方程左、右兩邊的值都相等;三是因為我們沒有用方程組的同解原理而是用代換(等式的傳遞)來解方程組的,所以有必要檢驗求出來的.這一對數值是不是原方程組的解;四是為了杜絕變形和計算時發(fā)生的錯誤.檢驗可以口算或在草稿紙上演算,教科書中沒有寫出.

  2.教學時,應結合具體的例子指出這里解二元一次方程組的關鍵在于消元,即把“二元”轉化為“一元”.我們是通過等量代換的方法,消去一個未知數,從而求得原方程組的解.早一些指出消元思想和把“二元”轉化為“一元”的方法,這樣,學生就能有較強的目的性.

  3.教師講解例題時要注意由簡到繁,由易到難,逐步加深.隨著例題由簡到繁,由易到難,要特別強調解方程組時應努力使變形后的方程比較簡單和代入后化簡比較容易.這樣不僅可以求解迅速,而且可以減少錯誤.

  一、素質教育目標

 。ㄒ唬┲R教學點

  1.掌握用代入法解二元一次方程組的步驟.

  2.熟練運用代入法解簡單的二元一次方程組.

 。ǘ┠芰τ柧汓c

  1.培養(yǎng)學生的分析能力,能迅速在所給的二元一次方程組中,選擇一個系數較簡單的方程進行變形.

  2.訓練學生的運算技巧,養(yǎng)成檢驗的習慣.

 。ㄈ┑掠凉B透點

  消元,化未知為已知的數學思想.

 。ㄋ模┟烙凉B透點

  通過本節(jié)課的學習,滲透化歸的數學美,以及方程組的解所體現出來的奇異的數學美.

  二、學法引導

  1.教學方法:引導發(fā)現法、練習法,嘗試指導法.

  2.學生學法:在前面已經學過一元一次方程的解法,求二元一次方程組的解關鍵是化二元方程為一元方程,故在求解過程當中始終應抓住消元的思想方法.

  三、重點、難點、疑點及解決辦法

  (-)重點

  使學生會用代入法解二元一次方程組.

 。ǘ╇y點

  靈活運用代入法的技巧.

 。ㄈ┮牲c

  如何“消元”,把“二元”轉化為“一元”.

 。ㄋ模┙鉀Q辦法

  一方面復習用一個未知量表示另一個未知量的方法,另一方面學會選擇用一個系數較簡單的方程進行變形:

  四、課時安排

  一課時.

  五、教具學具準備

  電腦或投影儀、自制膠片.

  六、師生互動活動設計

  1.教師設問怎樣用一個未知量表示另一個未知量,并比較哪種表示形式更簡單,如 等.

  2.通過課本中香蕉、蘋果的應用問題,引導學生列出一元一次方程或二元一次方程組,并通過比較、嘗試,探索出化二元為一元的解方程組的方法.

  3.再通過比較、嘗試,探索出選一個系數較簡單的方程變形,通過代入法求方程組解的辦法更簡便,并尋找出求解的規(guī)律.

  七、教學步驟

 。ǎ┟鞔_目標

  本節(jié)課我們將學習用代入法求二元一次方程組的解.

 。ǘ┱w感知

  從復習用一個未知量表達另一個未知量的方法,從而導入運用代入法化二元為一元方程的求解過程,即利用代入消元法求二元一次方程組的解的辦法.

  (三)教學步驟

  1.創(chuàng)設情境,復習導入

  (1)已知方程 ,先用含 的代數式表示 ,再用含 的代數式表示 .并比較哪一種形式比較簡單.

 。2)選擇題:

  二元一次方程組 的解是

  A. B. C. D.

  第(1)題為用代入法解二元一次方程組打下基礎;第(2)題既復習了上節(jié)課的重點,又成為導入新課的材料.

  通過上節(jié)課的學習,我們會檢驗一對數值是否為某個二元一次方程組的解.那么,已知一個二元一次方程組,應該怎樣求出它的解呢?這節(jié)課我們就來學習.

  這樣導入,可以激發(fā)學生的求知欲.

  2.探索新知,講授新課

  香蕉的售價為5元/千克,蘋果的售價為3元/千克,小華共買了香蕉和蘋果9千克,付款33元,香蕉和蘋果各買了多少千克?

  學生活動:分別列出一元一次方程和二元一次方程組,兩個學生板演.

  設買了香蕉 千克,那么蘋果買了 千克,根據題意,得

  設買了香蕉 千克,買了蘋果 千克,得

  上面的一元一次方程我們會解,能否把二元一次方程組轉化為一元一次方程呢,由方程①可以得到 ③,把方程②中的 轉換成 ,也就是把方程③代入方程②,就可以得到 .這樣,我們就把二元一次方程組轉化成了一元一次方程,由這個方程就可以求出 了.

  解:由①得: ③

  把③代入②,得:

  ∴

  把 代入③,得:

  ∴

  解二元一次方程組與解一元一次方程相比較,向學生展示了知識的發(fā)生過程,這對于學生知識的形成十分重要.

  上面解二元一次方程組的方法,就是代入消元法.你能簡單說說用代入法解二元一次方程組的基本思路嗎?

  學生活動:小組討論,選代表發(fā)言,教師進行指導.糾正后歸納:設法消去一個未知數,把二元一次方程組轉化為一元一次方程.

  例1 解方程組

 。1)觀察上面的方程組,應該如何消元?(把①代入②)

 。2)把①代入②后可消掉 ,得到關于 的一元一次方程,求出 .

 。3)求出 后代入哪個方程中求 比較簡單?(①)

  學生活動:依次回答問題后,教師板書

  解:把①代入②,得

  ∴

  把 代入①,得

  ∴

  如何檢驗得到的結果是否正確?

  學生活動:口答檢驗.

  教師:要把所得結果分別代入原方程組的每一個方程中.

  給出例1后提出的三個問題,恰好是學生的思維過程,明確了解題思路;教師板演例1,規(guī)范了解二元一次方程組的解題格式;通過檢驗,可使學生養(yǎng)成嚴謹認真的學習習慣.

  例2 解方程組

  要把某個方程化成如例1中方程①的形式后,代入另一個方程中才能消元.方程②中 的系數是1,比較簡單.因此,可以先將方程②變形,用含 的代數式表示 ,再代入方程①求解.

  學生活動:嘗試完成例2.

  教師巡視指導,發(fā)現并糾正學生的問題,把書寫過程規(guī)范化.

  解:由②,得 ③

  把③代入①,得

  ∴

  ∴

  把 代入③,得

  ∴

  ∴

  檢驗后,師生共同討論:

 。1)由②得到③后,再代入②可以嗎?(不可以)為什么?(得到的是恒等式,不能求解)

 。2)把 代入①或②可以求出 嗎?(可以)代入③有什么好處?(運算簡便)

  學生活動:根據例1、例2的解題過程,嘗試總結用代入法解二元一次方程組的一般步驟,討論后選代表發(fā)言.之后,看課本第12頁,用幾個字概括每個步驟.

  教師板書:

 。1)變形( )

  (2)代入消元( )

 。3)解一元一次方程得( )

  (4)把 代入 求解

  練習:P13 1.(1)(2);P14 2.(1)(2).

  3.變式訓練,培養(yǎng)能力

 、儆 可以得到用 表示 .

 、谠 中,當 時, ;當 時, ,則 ; .

 、圻x擇:若 是方程組 的解,則( )

  A. B. C. D.

  (四)總結、擴展

  1.解二元一次方程組的思想:

  2.用代入法解二元一次方程組的步驟.

  3.用代入法解二元一次方程組的技巧:①變形的技巧②代入的技巧.

  通過這節(jié)課的學習,我們要熟練運用代入法解二元一次方程組,并能檢驗結果是否正確.

  八、布置作業(yè)

 。ㄒ唬┍刈鲱}:P15 1.(2)(4),2.(1)(2)(3)(4).

  (二)選做題:P15 B組1.

二元一次方程教案5

  教學目的

  1.使學生了解二元一次方程,二元一次方程組的概念。

  2.使學生了解二元一次方程;二元一次方程組的解的含義,會檢驗一對數是不是它們的解。

  3.通過引例的教學,使學生進一步使用代數中的方程去反映現實世界中的等量關系,體會代數方法的優(yōu)越性。

  重點:了解二元一次方程、二元一次方程組以及二元一次方程組的解的含

  難點;了解二元一次方程組的解的含義。

  導學提綱:

  1.什么叫一元一次方程?什么叫一元一次方程的解?怎樣檢驗一個數是否是這個方程的解?

  2.閱讀教材問題1思考下列問題

 、.能否用我們已經學過的`知識來解決這個問題?

  用算術法解答

  用一元一次方程解答

  解后反思:既然是求兩個未知量,那么能不能同時設兩個未知數?

  ⑵.此問題中有兩個問題如果分別設為x、y,怎樣列式呢?(完成教材中的表格)

  ⑶.對于方程x十y=73x+y=17請思考下列問題

 、偎鼈兪且辉淮畏匠虇?

 、谶@兩個方程有沒有共同特點/若有,有河共同特點?

 、垲惐纫辉淮畏匠痰母拍,總結二元一次方程的概念

  3.從教材中找出二元一次方程和二元一次方程組的概念(結合一元一次方程,二元一次方程對“元”和“次”作進一步的解釋)

  注意二元一次方程組的書寫方式,方程組中的各方程中,同一個字母必須代表同一個量

  4.與是否滿足方程①與是否滿足方程②類比一元一次方程的解總結二元一次方程組的解的概念

  注意:(1)未知數的值必須同時滿足兩個方程時,才是方程組的解.若取,時,它們能滿足方程①,但不滿足方程②,所以它們不是方程組的解.

  (2)二元一次方程組的解是一對數,而不是一個數,所以必須把與合起來,才是方程組的解.

  5.思考討論在方程組①②③④

  ⑤⑥中,屬于二元一次方程組的有

  達標檢測:

  1.根據下列語句,分別設適當的未知數,列出二元一次方程或方程組:

  (1)甲數的比乙數的2倍少7:_____________________________;

  (2)摩托車的時速是貨車的倍,它們的速度之和是200千米/時:________;

  (3)某種時裝的價格是某種皮裝的價格的1.4倍,5件皮裝比3件時裝貴700元:______________________________.

  2.下列方程是二元一次方程的是()

  A、2x+x=1B、x-3yC、x+x-3=0D、x+y=2

  3.下列不是二元一次方程組的是()

  x+3y=5m+3m=152x+3x=0m+n=5

  A、B、C、D、

  2x-3x=3+=3-5y=02m+n=6

  x=2

  4.在方程3x-ky=0中,如果是它的一個解,則k的值為_______.

  y=-3

  5.若mxy+9x+3y=-9是關于x、y的二元一次方程,則m=_______n=_______.

二元一次方程教案6

  一、復習引入

  (學生活動)解下列方程:

  (1)2x2+x=0(用配方法) (2)3x2+6x=0(用公式法)

  老師點評:(1)配方法將方程兩邊同除以2后,x前面的系數應為12,12的`一半應為14,因此,應加上(14)2,同時減去(14)2.(2)直接用公式求解.

  二、探索新知

  (學生活動)請同學們口答下面各題.

  (老師提問)(1)上面兩個方程中有沒有常數項?

  (2)等式左邊的各項有沒有共同因式?

  (學生先答,老師解答)上面兩個方程中都沒有常數項;左邊都可以因式分解.

  因此,上面兩個方程都可以寫成:

  (1)x(2x+1)=0 (2)3x(x+2)=0

  因為兩個因式乘積要等于0,至少其中一個因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.

  (2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何實現降次的?)

  因此,我們可以發(fā)現,上述兩個方程中,其解法都不是用開平方降次,而是先因式分解使方程化為兩個一次式的乘積等于0的形式,再使這兩個一次式分別等于0,從而實現降次,這種解法叫做因式分解法.

  例1 解方程:

  (1)10x-4.9x2=0 (2)x(x-2)+x-2=0 (3)5x2-2x-14=x2-2x+34 (4)(x-1)2=(3-2x)2

  思考:使用因式分解法解一元二次方程的條件是什么?

  解:略 (方程一邊為0,另一邊可分解為兩個一次因式乘積.)

  練習:下面一元二次方程解法中,正確的是( )

  A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7

  B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35

  C.(x+2)2+4x=0,∴x1=2,x2=-2

  D.x2=x,兩邊同除以x,得x=1

  三、鞏固練習

  教材第14頁 練習1,2.

  四、課堂小結

  本節(jié)課要掌握:

  (1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其應用.

  (2)因式分解法要使方程一邊為兩個一次因式相乘,另一邊為0,再分別使各一次因式等于0.

  五、作業(yè)布置

  教材第17頁習題6,8,10,11

二元一次方程教案7

  教學目標

  1.會列二元一次方程組解簡單的應用題并能檢驗結果的合理性。

  2.提高分析問題、解決問題的能力。

  3.體會數學的應用價值。

  教學重點

  根據實際問題列二元一次方程組。

  教學難點

  1.找實際問題中的相等關系。

  2.徹底理解題意。

  教學過程

  一、引入。

  本節(jié)課我們繼續(xù)學習用二元一次方程組解決簡單實際問題。

  二、新課。

  例1. 小琴去縣城,要經過外祖母家,頭一天下午從她家走到個祖母家里,第二天上午,從外外祖母家出發(fā)勻速前進,走了2小時、5小時后,離她自己家分別為13千米、25千米。你能算出她的速度嗎?還能算出她家與外祖母家相距多遠嗎?

  探究: 1. 你能畫線段表示本題的數量關系嗎?

  2.填空:(用含S、V的代數式表示)

  設小琴速度是V千米/時,她家與外祖母家相距S千米,第二天她走2小時趟的路程是______千米。此時她離家距離是______千米;她走5小時走的.路程是______千米,此時她離家的距離是________千米20xx年-20xx學年七年級數學下冊全冊教案(人教版)教案。

  3.列方程組。

  4.解方程組。

  5.檢驗寫出答案。

  討論:本題是否還有其它解法?

  三、練習。

  1.建立方程模型。

 。1)兩在相距280千米,一般順流航行需14小時,逆流航行需20小時,求船在靜水中速度,水流的速度

 。2)420個零件由甲、乙兩人制造。甲先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,還需3天完成。問:甲、乙每天各做多少個零件?

  2.P38練習第2題。

  3.小組合作編應用題:兩個寫一方程組,另兩人根據方程組編應用題。

  四、小結。

  本節(jié)課你有何收獲?

二元一次方程教案8

  教學目標1、經歷用方程組解決實際問題的過程,體會方程組是刻畫現實世界的有效數學模型;

  2、能夠找出實際問題中的已知數和未知數,分析它們之間的數量關系,列出方程組;

  3、學會開放性地尋求設計方案,培養(yǎng)分析

  教學難點用方程組刻畫和解決實際問題的過程。

  知識重點經歷和體驗用方程組解決實際問題的過程。

  教學過程(師生活動)設計理念

  創(chuàng)設情境前面我們初步體驗了用方程組解決實際問題的全過程,其實生產、生活中還有許多問題也能用方程組解決.

 。ǔ鍪締栴})據以往的統(tǒng)計資料,甲、乙兩種作物的單位面積產量的比是1:1:5,現要在一塊長200 m,寬100 m的長方形土地上種植這兩種作物,怎樣把這塊地分為兩個長方形,使甲、乙兩種作物的總產量的比是3:4(結果取整數)?以學生身邊的實際問題展開學習,突出數學與現實的聯系,培養(yǎng)學生用數學的意識。

  探索分析

  研究策略以上問題有哪些解法?

  學生自主探索,合作交流,整理思路:

  (1)先確定有兩種方法分割長方形;再分別求出兩個小長方形的面積;最后計算分割線的位置.

  (2)先求兩個小長方形的面積比,再計算分割線的位置.

  (3)設未知數,列方程組求解.

  ……

  學生經討論后發(fā)現列方程組求解較為方便.多角度分析問題,多策略解決問題,提高思維的發(fā)散性。

  合作交流

  解決問題引導學生回顧列方程解決實際問題的基本思路

 。1)設未知數

 。2)找相等關系

 。3)列方程組

 。4)檢驗并作答

  如圖,一種種植方案為:甲、乙兩種作物的種植區(qū)域分別為長方形aefd和bcfe.設ae=xm,be=ym,根據問題中涉及長度、產量的數量關系,列方程組

  解這個方程組得

  過長方形土地的長邊上離一端約106 m處,把這塊地分

  為兩個長方形.較大一塊地種甲作物,較小一塊地種乙作物.

  你還能設計別的'種植方案嗎?

  用類似的方法,可沿平行于線段ab的方向分割長

  方形.

  教師巡視、指導,師生共同講評.

  比較分析,加深對方程組的認識。

  畫圖,數形結合,輔助學生分析。

  進一步滲透模型化的思想。

  引發(fā)學生思考,尋求解決途徑。

  拓展探究

  綜合應用學生在手工實踐課中,遇到這樣一個問題:要用20張白卡紙制作包裝紙盒,每張白卡紙可以做盒身2個,或者做盒底蓋3個,如果1個盒身和2個盒底蓋可以做成一個包裝紙盒,那么能否將這些白卡紙分成兩部分,一部分做盒身,一部分做盒底蓋,使做成的盒身和盒底蓋正好配套?請你設計一種分法.

  按以下步驟展開問題的討論:

 。╨)學生獨立思考,構建數學模型.

  (2)小組討論達成共識.

 。3)學生板書講解.

 。4)對方程組的解進行探究和討論,從而得到實際問題的結果.

  (5)針對以上結論,你能再提出幾個探索性問題嗎?以學生學習生活中遇到的

  問題展開討論,鞏固用二元一次

  方程組解決實際問題的一般過程,并不斷提高分析問題的能力.安排開放題,以利于培養(yǎng)學生探索精神和創(chuàng)新意識.

  小結與作業(yè)

  小結提高提問:通過本節(jié)課的討論,你對用方程解決實際的方法又有何新的認識?

  學生思考后回答、整理.

  布置作業(yè)12、必做題:教科書116頁習題8.3第1(2)、4題。

  13、選做題:教科書117頁習題8.3第7題。

  14、備15、選題:

 。3)解方程組

  (2)小穎在拼圖時,發(fā)現8個一樣大小的矩形(如圖1所示),恰好可以拼成一個大的矩形.

  小彬看見了,說:“我來試一試.”結果小彬七拼八湊,拼成如圖2那樣的正方形.咳,怎么中間還留下一個洞,恰好是邊長2 mm的小正方形!

  你能幫他們解開其中的奧秘嗎?

  提示學生先動手實踐,再分析討論.

  分層次布1作業(yè).其中“必

  做題”面向全體學生,鞏固知識、

  方法,加深理解廠選做題”面向

  部分學有余力的學生,給他們一

  定的時間和空間,相互合作,自主探究,增強實踐能力.備選通供教師參考.

  本課教育評注(課堂設計理念,實際教學效果及改進設想)

  本課所提供的例題、練習題、作業(yè)題突出體現以下特點:

  1、活動性.學生在圖形分割、手工操作、拼圖游戲中展開數學問題的討論,更具趣味性,學生在玩中學、做中學,在增強能力的同時,收獲快樂.

  2、探索性.問題解決的策略不易獲得,問題中的數量關系不易發(fā)現,問題中的未知數不

  易設定,這為學生開展探究活動提供了機會.

  3、開放性.解決問題的策略、方法、問題的結論的開放性設計,意在增強學生的創(chuàng)新意識和培養(yǎng)勇于挑戰(zhàn)、克服困難的能力.

二元一次方程教案9

  一、教材分析

  1.教材的地位和作用

  本節(jié)課是華東師大版七年級數學下冊第七章《二元一次方程組》中第二節(jié)的第四課時,它是在學習了代入消元法和加減消元法的基礎上進行學習的。能夠靈活熟練地掌握加減消元法,在解方程組時會更簡便準確,也是為以后學習用待定系數法求一次函數、二次函數關系式打下了基礎,特別是在聯系實際,應用方程組解決問題方面,它會起到事半功倍的效果。

  2.教學目標

 。1)知識目標:進一步了解加減消元法,并能夠熟練地運用這種方法解較為復雜的二元一次方程組。

 。2)能力目標:經歷探索用“加減消元法”解二元一次方程組的過程,培養(yǎng)學生分析問題、解決問題的能力和創(chuàng)新意識。

 。3)情感目標:在自由探索與合作交流的過程中,不斷讓學生體驗獲得成功的喜悅,培養(yǎng)學生的合作精神,激發(fā)學生的學習熱情,增強學生的自信心。

  3.教學重點難點

  教學重點:利用加減法解二元一次方程組。

  教學難點:二元一次方程組加減消元法的靈活應用。

  4.教學準備:多媒體、課件。

  二、學情分析

  我所任教的初一(2)班學生基礎比較好,他們已經具備了一定的探索能力,也初步養(yǎng)成了合作交流的習慣。大多數學生的好勝心比較強,性格比較活潑,他們希望有展現自我才華的機會,但是對于七年級的鄉(xiāng)鎮(zhèn)中學的學生來說,他們獨立分析問題的能力和靈活應用的能力還有待提高,很多時候還需要教師的點撥和引導。因此,我遵循學生的認識規(guī)律,由淺入深,適時引導,調動學生的積極性,并適當地給予表揚和鼓勵,借此增強他們的自信心。

  三、教法與學法分析

  說教法:啟發(fā)引導法,任務驅動法,情境教學法,演示法。

  說學法:合作探究法,觀察比較法。

  四.教學設計

  (一)復習舊知

  1、解二元一次方程組的'基本思想是什么?(消元)

  2、前面我們學過了哪些消元方法?(“單身”代入法、“朋友”加減法)

  下列兩題可以用什么方法來求解?

  2x3y=16①

  X-y=3②3

  學生:觀察、思考、討論和交流,然后口述解題方法。

  教師:肯定、鼓勵、板書。

  [設計意圖:通過復習,讓學生鞏固了相關的舊知識,同時也為本節(jié)課做了鋪墊]

 。ǘ┨骄啃轮

  1、情境導入

  師:我們用代入法來解題第一步是找“單身”,用加減法來解題第一步是找“朋友”,再用同減異加的法則進行解答,那么我們一起來看一下這道題目:

  問:這題能否用“單身”代入法或“朋友”加減法來求解?為什么?導入課題,板書課題。[設計意圖:利用富有挑戰(zhàn)性的問題,激發(fā)學生的好奇心和求知欲,可引發(fā)學生對問題的思考,并促進學生運用已有的知識去發(fā)現和獲取新的知識]

  2、合作探究

 。ㄗ寣W生分組討論交流,主動探索出解法,教師巡視指導并肯定和鼓勵他們。)

  總結解題方法:如果一個方程組中x或y的系

  數不相同時,也就是說它們不是“朋友”時,先要想辦法把“陌生人”變成“朋友”。

  方法一:將方程①變形后消去x。

  方法二:將方程②變形后消去y。

  讓學生嘗試著寫出解題過程,請兩位同學上臺展示結果,集體訂正。請做對的同學舉手,全班同學都為自己鼓鼓掌,做對的表示給自己一次祝賀,暫時還沒做對的表示給自己一次鼓勵。[設計意圖:讓學生探索這道過渡性的題目,是遵循了學生的認識規(guī)律,由淺入深,為學習下面這道例題做好準備,同時通過變“陌生人”為“朋友”這一設想過程,也培養(yǎng)了學生的創(chuàng)新意識。]

  3、例題探索例5、解方程組:3x-4y=10①

  5x6y=42②

  師:這道題的x與y的系數有何特點?如何變成“朋友”?

 。ㄗ寣W生思考、分組討論、交流,教師引導并板書解題過程。)

  [設計意圖:讓學生通過探討,逐步發(fā)現可以用加減消元法去解較為復雜的二元一次方程組,也讓他們再次體會了消元化歸的數學思想,同時也培養(yǎng)了學生分析問題和解決問題的能力。在整個探討的過程中也增強了學生的信心,學生有了發(fā)現的樂趣和成功的喜悅后,會產生一種想表現自己的欲望。]

  4、試一試

  學生完成課本第30頁的試一試,讓學生用本節(jié)課的加減消元法和前面例2的代入消元法進行比較,看一看哪種方法更簡便?

 。ㄐ〗M之間互相交流,寫出解答過程,并請一些同學談談自己的看法,教師展示兩種解題方法讓學生們進行比較。)

  [設計意圖:通過對比兩種方法,使學生更清晰地掌握知識,當學生發(fā)現本節(jié)課的方法比例2的方法更簡便時,學生會產生一種用本節(jié)課的知識去解題的沖動。]

 。ㄈ┓答伋C正

  解方程組:

 。ńo學生提供展現自我才華的機會,以前后兩桌為一個小組進行討論交流,此時可輕聲播放一首鋼琴曲,為學生創(chuàng)造一種輕松和諧的學習氛圍)

  讓兩個同學上臺解題,教師巡視,并每一個組選兩名代表檢查本組同學的完成情況和及時幫助有困難的同學,待全班同學完成后,讓臺上這兩位同學試著當一下小老師,為全班同學講解自己所做的題目,教師為評委,進行點評并總結,全班同學為他們鼓掌。

  [設計意圖:由于學生人數較多,教師不能兼顧每個學生,所以讓學生自做自講,培養(yǎng)了學生綜合能力的同時,也活躍了課堂氣氛。選代表巡視并幫助有困難的同學,會讓學生感受到老師對他們的重視,這樣就能讓他們主動參與到課堂中來。同時也培養(yǎng)了學生的合作精神和激發(fā)了學生的學習熱情。]

 。ㄋ模┱n堂小結:學完這節(jié)課,大家有什么收獲?請同學們談談對這節(jié)課的體會。

  [設計意圖:加深對本節(jié)知識的理解和記憶,培養(yǎng)學生歸納、概括能力。]

  (五)布置作業(yè):

  必做題:課本第31頁的練習。

  選做題:

 、

  (2)

 、

  [設計意圖:進一步鞏固本節(jié)課知識的同時,也給學生留下思考的余地和空間,學生是帶著問題走進課堂,現在又帶著新的問題走出課堂。]

  五、板書設計:二元一次方程組的解法(四)

  找“朋友”——變“陌生人”為“朋友”——同減異加

  例題分析習題分析

  [設計意圖:為了更好地突出本節(jié)課的教學重點和讓學生更明確本節(jié)課的教學目標。]

二元一次方程教案10

  教學目標

  1.使學生會用加減法解二元一次方程組。

  2.學生通過解決問題,了解代入法與加減法的共性及個性。

  重點:探尋用加減法解二元一次的方程組的進程。

  難點:消元轉化的過程

  教學方法:講練結合、探索交流課型新授課教具投影儀

  教師活動:學生活動

  情景設置:

  小明買了兩份水果,一份是3kg蘋果、2kg香蕉,共用去13.2元;另一份是2kg蘋果、5kg香蕉,共用去19.8元。設蘋果x元/kg,香蕉y元/kg.列出方程。

  新課講解:

  列出方程組

  1.解方程組

  分析:關鍵的出方程〈1〉中的2y與方程〈2〉中的-2y互為相反數。想象出如果相加兩個方程,會是什么結果?

  板演:

  解:〈1〉+〈2〉得:

  4x=6

  x=

  把x= 代入〈1〉得

  +2y=1

  解出這個方程,得

  y=

  所以原方程組的`解是

  2.解方程組

  通過議一議,讓學生都有感覺消去含x或y的項都可以,但哪個更簡便?

  解:〈1〉 3,得

  15x-6y=12 〈3〉

  〈2〉 2,得

  4x-6y=-10 〈4〉

  〈3〉-〈4〉,得

  11x=22

  x=2

  將x=2代入〈1〉,得

  5 2-2y=4

  y=3

  所以原方程組的解是

  加減消元法:把方程組的兩個防城(或先作適當變形)相加或相減,消去其中一個未知數,把解二元一次方程組轉化為解一元一次方程。

  練一練:

  解方程組

  小結:

  加減消元法關鍵是如何消元,化二元為一元。

  先觀察后確定消元。

  教學素材:

  A組題:解下列方程組:

  (1)

  (2)

  (3)

  (4)

  (5)

  B組題:運用轉化的思想方法,你能解下面的三元一次方程組嗎?

  (1)

  (2)

  學生讀題,議一議

  學生想一想,如感到困難則看道簡單題。

  由學生觀察,如何求出x,y的值,學生再討論。

  試一試。學生口述。

  老師板演

  得到一元一次方程

  學生再觀察,議一議

 、傧ツ膫未知數

 、谠鯓酉?

  P112 1(1)(2)(3)(4)

  作業(yè)習題11.3 P112 1(3)(4) 3 , 4

二元一次方程教案11

  一、學情分析:

  學生能夠正確解方程(組),掌握了一次函數及其圖像的基礎知識,能夠根據已知條件準確畫出一次函數圖象,已經具備了函數的初步思想,在過去已有經驗基礎上能夠加深對“數”和“形”間的相互轉化的認識,有小組合作學習經驗.

  二、 學習目標:

  本節(jié)課通過探索“方程”與“函數圖像”的關系,培養(yǎng)學生數學轉化的思想,通過學習二元一次方程方程組的解與直線交點坐標之間的關系,使學生初步建立了“數”(二元一次方程)與“形”(一次函數的圖像)之間的對應關系,進一步培養(yǎng)了學生數形結合的意識和能力.因此確定本節(jié)課的教學目標為:

  1.初步理解二元一次方程和一次函數兩種數學模型之間的關系;

  2.掌握二元一次方程組和對應的兩條直線交點之間的關系,通過對兩種模型關系的理解解決問題;

  3.發(fā)展學生數形結合的意識和能力,使學生在自主探索中學會不同數學模型間的聯系.

  教學重點

  二元一次方程和一次函數的關系,二元一次方程組和對應的兩條直線交點之間的關系;

  教學難點

  通過對數學模型關系的探究發(fā)展學生數形結合和數學轉化的思想意識.

  四、教法學法

  1.教法學法

  啟發(fā)引導與自主探索相結合.

  2.課前準備

  教具:多媒體課件、三角板.

  學具:鉛筆、直尺、練習本、坐標紙.

  五、教學過程

  第一環(huán)節(jié): 探究二元一次方程和一次函數兩種數學模型之間的關系

  1. 某水箱有5噸水,若用水管向外排水,每小時排水1噸,則X小時后還剩余Y噸水.

 。1) 請找出自變量和因變量

  (2) 你能列出X,Y的關系式嗎?

 。3) X,Y的取值范圍是什么?

 。4) 在平面直角坐標系中畫出這個函數的圖形.(注意XY的取值范圍).

  2.(1)方程x+y=5的解有多少個?你能寫出這個方程的幾個解嗎?

 。2).在直角坐標系內分別描出以這些解為坐標的點,它們在一次函數Y=5-X的圖象上嗎?

  (3).在一次函數y=?x?5的圖像上任取一點,它的坐標適合方程x+y=5嗎?

 。4).以方程x+y=5的解為坐標的所有點組成的圖像與一次函數y=?x?5的圖像相同嗎?

  x+y=5與 y=?x?5表示的關系相同

  一般地,以一個二元一次方程的解為坐標的點組成的圖象與相應的一次函數的圖象相同,是一條直線.

  目的:通過設置問題情景,讓學生感受方程x+y=5和一次函數y=?x?5相互轉化,啟發(fā)引導學生總結二元一次方程與一次函數的對應關系.

  前面研究了一個二元一次方程和相應的一個一次函數的關系,現在來研究兩個二元一次方程組成的方程組和相應的兩個一次函數的關系.順其自然進入下一環(huán)節(jié).

  第二環(huán)節(jié) 自主探索方程組與一次函數兩種數學模型之間的關系

  探究方程與函數的相互轉化

  1.兩個一次函數圖象的交點坐標是相應的二元

  一次方程組的解

 。1)一次函數y=5-x圖象上點的坐標適合方程x+y=5,那么一次函數y=2x-1圖象上點的坐標適合哪個方程?

 。2)兩個函數的交點坐標適合哪個方程?

  ?x?y?5(3).解方程組?驗證一下你的發(fā)現。 2x?y?1?

  練習:隨堂練習1 。鞏固由一次函數的交點坐標找相應的二元一次方程組的解。

  2.二元一次方程組的解是相應的兩個一次函數圖象的交點坐標。

  ?x?y?2(1)解?

  ?2x?y?5(2)以方程x+y=2

 。3)以方程2x+y=5(4)方程組的解為坐標的點在圖象上是哪個點?

 。5目的.:通過自主探索,使學生初步體會“數”(二元一次方程組的解)與“形”(兩條直線)兩種模型之間的對應關系,

  由學生自主學習,十分自然地建立了數形結合的意識,學生初步感受到了“數”的問題可以轉化為“形”來處理,反之“形”的問題可以轉化成“數”來處理,培養(yǎng)了學生的創(chuàng)新意識和變式能力.

  練習:知識技能1。鞏固由方程組的解求相應的一次函數的交點坐標。更深入的體會二元一次方程組的解與一次函數交點坐標之間的對應關系。

  第三環(huán)節(jié)模型應用

  1.某公司要印制產品宣傳材料.

  1500元制版費. 甲印刷廠:每份材料收1元印制費, 另收 乙印刷廠:每份材料收2.5元印制費, 不收制版費.若公司要印制x份宣傳材料,y甲表示甲印刷廠的費用,y乙表示乙

  印刷廠的費用。

 。1) 請分別表示出兩個印刷廠費用與X的關系式。

  (2) 在同一直角坐標系中畫出函數的圖象。

  (3) 如何根據印刷材料的份數選擇印刷廠比較合算?

  第四環(huán)節(jié) 模型特例

  想一想

  內容:在同一直角坐標系內, 一次函數y = x + 1 和 y = x - 2 的圖象(教材

  ?x?y??1124頁圖5-2)有怎樣的位置關系?方程組?解的情況如何?你發(fā)現了什x?y?2?

  么?

  二元一次方程的解和相應的兩條直線的關系2.

 。1)觀察發(fā)現直線平行無交點;

 。2)小組研究計算發(fā)現方程組無解;

 。3)從側面驗證了兩直線有交點,對應的方程組有解,反之也成立;

 。4)歸納小結:兩平行直線的k相等;方程組中兩方程未知數的系數對應成比例方程組無解。

  目的:進一步揭示“數”與“形”轉化關系.通過想一想,將兩直線的另一種位置關系:平行與方程組無解相結合,這是對第二環(huán)節(jié)的有益補充。體現了從一般到特殊的的思想方法,有利于培養(yǎng)學生全面考慮問題的習慣.

  進一步培養(yǎng)了學生數形結合的意識和能力,充分展示了方程與函數的相互轉化.進一步挖掘出兩直線平行與k的關系。

  效果:加深了兩條直線交點的坐標就是對應的函數表達式所組成的方程組的解的印象,培養(yǎng)了學生的計算能力和數學轉化的能力,使學生進一步領悟到應用數形結合的思想方法解題的重要性.

  第五環(huán)節(jié) 課堂小結

  內容:以“問題串”的形式,要求學生自主總結有關知識、方法:

  1.二元一次方程和一次函數的圖像的關系;

  以二元一次方程的解為坐標的點都在相應的函數圖像上;

  一次函數圖像上的點的坐標都適合相應的二元一次方程.

  2.方程組和對應的兩條直線的關系:

  方程組的解是對應的兩條直線的交點坐標;

  兩條直線的交點坐標是對應的方程組的解;

  第六環(huán)節(jié) 作業(yè)布置

  習題5.7

二元一次方程教案12

  一、教學目標

  1、通過與一元一次方程的比較,能說出二元一次方程的概念,并會辨別一個方程是不是二元一次方程;

  2、通過探索交流,會辨別一個解是不是二元一次方程的解,能寫出給定的二元一次方程的解,了解方程解的不唯一性;

  3、會將一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式。

  過程與方法目標:

  經歷觀察、比較、猜想、驗證等數學學習活動,培養(yǎng)分析問題的能力和數學說理能力;

  情感與態(tài)度目標

  1、通過與一元一次方程的類比,探究二元一次方程及其解的概念,進一步培養(yǎng)運用類比轉化的思想解決問題的能力;

  2、通過對實際問題的分析,培養(yǎng)關注生活,進一步體會方程是刻畫現實世界的有效數學模型,培養(yǎng)良好的數學應用意識。

  二、重點、難點

  重點:二元一次方程的概念及二元一次方程的解的概念。

  難點

  1、了解二元一次方程的解的不唯一性和相關性。即了解二元一次方程的解有無數個,但不是任意的兩個數是它的解。

  2、把一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式,其實質是解一個含有字母系數的方程。

  三、教學方法與教學手段

  1、 通過創(chuàng)設問題情境,讓學生在尋求問題解決的過程中認識二元一次方程,了解二元一次方程的特點,體會到二元一次方程的引入是解決實際問題的需要。

  2、 通過觀察、思考、交流等活動,激發(fā)學習情緒,營造學習氣氛,給學生一定的時間和空間,自主探討,了解二元一次方程的解的不唯一性和相關性。

  3、 通過學練結合,以游戲的形式讓學生及時鞏固所學知識。

  四、教學過程

  創(chuàng)設情境 導入新課

  1、一個數的3倍比這個數大6,這個數是多少?

  2、寫有數字5的黃卡和寫有數字2的藍卡若干張,問黃卡和藍卡各取幾張,才能使取到的卡片上的數字之和為22?

  思考:這個問題中,有幾個未知數?能列一元一次方程求解嗎?如果設黃卡取x張,藍卡取y張,你能列出方程嗎?

  3、在高速公路上,一輛轎車行駛2時的.路程比一輛卡車行駛3時的路程還多20千米。如果設轎車的速度是a千米/時,卡車的速度是b千米/時,你能列出怎樣的方程?

  師生互動 探索新知

  1、 發(fā)現新知

  引導學生觀察所列的方程: 這兩個方程有哪些共同特征?這些特征與一元一次方程比較,哪些是相同的,哪些是不同的?你能給它們取個名字嗎?

  根據它們的共同特征,你認為怎樣的方程叫做二元一次方程? (二元一次方程的定義:含有兩個未知數,且含有未知數的項的次數都是一次的方程叫做二元一次方程。)

  2、 鞏固新知

  判斷下列各式是不是二元一次方程(1) (2) (3) (4)

  3、師生互動 再探新知

  (1)什么是方程的解?(使方程兩邊的值相等的未知數的值,叫做方程的解。)

  (2)你能給二元一次方程的解下一個定義嗎?(使二元一次方程兩邊的值相等的一對未知數的值,叫做二元一次方程的一個解。)

  若未知數設為,記做 ,若未知數設為,記做

  4、 檢驗新知

  (1)檢驗下列各組數是不是方程 的解:(學生感悟二元一次方程解的不唯一性)

  (2)你能寫出方程x-y=1的一個解嗎?(再一次讓學生感悟二元一次方程的解的不唯一性)

  5、自我挑戰(zhàn) 三探新知

  有3張寫有相同數字的藍卡和2張寫有相同數字的黃卡,這五張卡片上的數字之和為10。設藍卡上的數字為x ,黃卡上的數字為y ,根據題意列方程。

  請找出這個方程的一個解,并寫出你得到這個解的過程。

  學生在解二元一次方程的過程中體驗和了解二元一次方程解的不唯一性。

  五、 總結

  比較一元一次方程和二元一次方程的相同點和不同點

  相同點: 方程兩邊都是整式,含有未知數的項的次數都是一次。

  如果一個方程含有兩個未知數,并且所含未知項都為1次方,那么這個整式方程就叫做二元一次方程,有無窮個解,若加條件限定有有限個解。

二元一次方程教案13

  【教學目標】

  知識目標:

  ①使學生初步理解二元一次方程與一次函數的關系。

 、谀芨鶕淮魏瘮档膱D象求二元一次方程組的近似解。

  能力目標:

  通過學生的思考和操作,力圖提示出方程與圖象之間的關系,引入二元一次方程組圖象解法,同時培養(yǎng)學生初步的數形結合的意識和能力。

  情感目標:

  通過學生的自主探索,提示出方程和圖象之間的對應關系,加強新舊知識的聯系,培養(yǎng)學生的創(chuàng)新意識,激發(fā)學生學習數學的興趣。

  重點要求:

  1、二元一次方程和一次函數的關系。

  2、能根據一次函數的圖象求二元一次方程組的近似解。

  難點突破:

  經歷觀察、思考、操作、探究、交流等數學活動,培養(yǎng)學生抽象思維能力,并體會方程和函數之間的對應關系,即數形結合思想。

  【教學過程】

  一、學前先思

  師:請同學們思考,我們已經學過的二元一次方程組的解法有哪些?

  生:代入消元法、加減消元法。

  師:請你猜測還有其他的解法嗎?

  生:(小聲議論,有人提出圖象解法)

  師:看來的同學似乎已經提前做了預習工作,很好!那么對于課題“二元一次方程組的圖象解法”,你想提什么問題?

  生:二元一次方程組怎么會有圖象?它的圖象應該怎樣畫?

  生:二元一次方程組的圖象解法怎么做?

  師:同學們都問得很好!那你有喜歡的二元一次方程組嗎?

  生:(比較害羞)

  師:看來大家比較害羞,那么請大家把各自喜歡的二元一次方程組留在心里。讓我們帶著同學們提出的問題從二元一次方程開始今天的學習。

  二、探究導學

  題目:

  判斷上面幾組解中哪些是二元一次方程的解?

  生:和不是,其余各組均是方程的解。

  師:請在學案上的直角坐標系中先畫出一次函數的圖象,再標出以上述的方程的解中為橫坐標,為縱坐標的點,思考:二元一次方程的解與一次函數圖象上的點有什么關系?

  教學引入

  師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形,F在請同學們拿出一個長方形紙條,按動畫所示進行折疊處理。

  動畫演示:

  場景一:正方形折疊演示

  師:這就是我們得到的正方形。下面請同學們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質—邊、角以及對角線之間的關系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。

  [學生活動:各自測量。]

  鼓勵學生將測量結果與鄰近同學進行比較,找出共同點。

  講授新課

  找一兩個學生表述其結論,表述是要注意糾正其語言的規(guī)范性。

  動畫演示:

  場景二:正方形的性質

  師:這些性質里那些是矩形的性質?

  [學生活動:尋找矩形性質。]

  動畫演示:

  場景三:矩形的性質

  師:同樣在這些性質里尋找屬于菱形的性質。

  [學生活動;尋找菱形性質。]

  動畫演示:

  場景四:菱形的性質

  師:這說明正方形具有矩形和菱形的全部性質。

  及時提出問題,引導學生進行思考。

  師:根據這些性質,我們能不能給正方形下一個定義?怎么樣給正方形下一個準確的定義?

  [學生活動:積極思考,有同學做躍躍欲試狀。]

  師:請同學們回想矩形與菱形的定義,可以根據矩形與菱形的定義類似的給出正方形的定義。

  學生應能夠向出十種左右的定義方式,其余作相應鼓勵,把以下三種板書:

  “有一組鄰邊相等的矩形叫做正方形!

  “有一個角是直角的菱形叫做正方形!

  “有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形!

  [學生活動:討論這三個定義正確不正確?三個定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]

  師:根據定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關系梳理一下。

  生:我發(fā)現二元一次方程的解就是相對應的一次函數圖象上的點的坐標。

  師:很好!反過來,請問:一次函數圖象上的點的坐標是否是與其相對應的二元一次方程的解呢?

  生:是的。并且二元一次方程的解中的、的值就是相對應的一次函數圖象上點的橫、縱坐標的值。

  三、鞏固基礎

  師:非常好!那下面的題目你會解嗎?

  (學生讀題)題目:方程有一個解是,則一次函數的圖象上必有一個點的坐標為______.

  生:(2,1)

  (學生讀題)題目:一次函數的圖象上有一個點的坐標為(3,2),則方程必有一個解是_________.

  生:

  師:你能把下面的二元一次方程轉化成相應的一次函數嗎?

  (學生讀題)把下列二元一次方程轉化成的形式:

  (1)(2)

  生:第(1)題利用移項,得到,所以

  第(2)題利用移項,得到,兩邊同時除以2,所以

  四、感悟提升

  師:如果將和組成二元一次方程組,你能用代入消元法或者加減消元法求出它的解嗎?

  生:能,我算出

  師:很好!你能在同一直角坐標系中畫出一次函數與的圖象嗎?

  生:可以。(動手在學案上畫圖)

  師:觀察兩條直線的位置關系,你有什么發(fā)現?

  生:我發(fā)現這兩條直線相交,并且交點坐標是(2,1)。

  師:通過以上活動,你能得到什么結論?

  生:我發(fā)現剛剛求出的二元一次方程的解剛好就是一次函數與的圖象的交點坐標(2,1)。

  師:很好!你能抽象成一般的結論嗎?

  生:如果兩個一次函數的圖象有一個交點,那么交點的坐標就是相應的二元一次方程組的解。

  師:非常好!用一次函數的圖象解二元一次方程組的方法就是我們今天要學習的二元一次方程組的圖象解法。

  師:你能學以致用嗎?

  y=2x-5

  y=-x+1

  題目:如圖,方程組的解是___________.

  生:根據圖象可知:一次函數與的圖象的交點是(2,-1),因此,方程組的解是。

  師:回答得真棒!

  五、例題教學

  例題:利用一次函數的圖象解二元一次方程組。

  師:請大家在學案的做中感悟欄內上大膽地寫出解題過程。

  生:(投影展示解題過程)略。

  師:很好!讓我們一起來看一下老師準備的解題過程(略)

  師:你能就此歸納出二元一次方程組的圖象解法的一般步驟嗎?

  生:先將二元一次方程組中的方程化成相應的一次函數,然后畫出一次函數的圖象,找出它們的交點坐標,就可以得出二元一次方程組的解。

  師:非常好!我們可以用12個字的口訣來記住剛才同學的步驟:變函數,畫圖象,找交點,寫結論。

  師:接下來請同學們在學案上的鞏固強化欄內利用圖象解法求出你心里埋你所喜歡的二元一次方程組的解。

  生:(各自動手操作,教師展示學生求解過程)

  師:觀察你作的圖象,你有什么發(fā)現嗎?

  生:我發(fā)現有些一次函數圖象的交點比較容易看出來,而有些一次函數圖象的交點不容易看出來是多少。

  師:是的,所以在這里老師需要說明的是我們用圖象法求解一元二次方程組的解得到的是近似解。

  師:請大家比較一下,二元一次方程組的圖象解法和我們以前學過的代數解法——代入消元法、加減消元法相比,那種方法簡單一些?

  生:代入消元法、加減消元法簡單。

  師:二元一次方程組的圖象解法既不比代數解法簡單,且得到的解又是近似的,為什么我們還要學習這種解法呢?原因有以下幾個方面:一是要讓我們學會從多種角度思考問題,用多種方法解決問題;二是說明了“數”與“形”存在著這樣或那樣的密切聯系,有時我們要從“數”的角度去考慮“形”的問題,有時我們又要從“形”的角度去考慮“數”的問題,這里是從“形”的角度來考慮“數”的問題;三是為了以后進一步學習的需要。

  師:看來大家都很愛動腦筋,那么接下來我們將例題加以變化。

  六、例題變式

  題目:用圖象法求解二元一次方程組時,兩條直線相交于點(2,-4),求一次函數的關系式。

  師:請一位同學來分析一下。

  生:由兩條直線的交點坐標(2,-4)可知,二元一次方程組的解就是,把代入到二元一次方程組中,可得:,解得,所以一次函數的關系式為。

  師:非常好!

  七、感悟歸納

  師:再請同學們思考,如果二元一次方程組轉化成的一次函數的圖象沒有交點,那么所對應的二元一次方程組的解是什么呢?

  生:我想如果二元一次方程組轉化成的一次函數的圖象沒有交點,那么所對應的二元一次方程組應該無解。

  八、拓寬提升

  題目:不畫函數的圖象,判斷下列兩條直線是否有交點?它們的位置關系如何?每組一次函數中的有什么關系?

  (1)與;

  (2)與

  師:你會怎樣分析這道題?

  生:我們只要求解一下由這兩個一次函數所組成的二元一次方程組的解的情況就可以判斷兩條直線的位置關系。如果方程組有解,那么相應的兩條直線就是相交,如果方程組無解,那么相應的兩條直線就是平行的位置關系。

  師:很好!抽象成一般結論怎樣敘述?

  生:對于直線與,當時,兩直線平行;當時,兩直線相交。

  九、例題再探

  題目:利用一次函數的圖象解二元一次方程組

  問:(1)這兩條直線有什么特殊的位置關系?

  (2)這兩個一次函數的有何特殊的關系?

  (3)由此,你能得出怎樣的結論?

  師:哪位同學來嘗試一下?

  生:(1)這兩條直線是垂直的位置關系;

  (2)這兩個一次函數的相乘的結果等于-1;

  (3)仿照剛才的結論,我得出的結論是:對于直線與,當時,兩直線垂直。

  師:太棒了!那下面的這一題你會做嗎?

  題目:已知直線和直線

  (1)若,求的值;

  (2)若,求垂足的坐標。

  師:誰來試一下?

  生:由前面的結論我們可以得出,如果,則,解得:;如果,則,解得,將代入二元一次方程組,可得,求出方程組的解就可以得出垂足的坐標。

  十、學會創(chuàng)新

  師:請你根據這節(jié)課中的例題(或習題)在學案中編(或出)一道題?凑l出的題新穎、精妙!

  生:(暢所欲言,踴躍嘗試)

  十一、小結與思考

  師:(1)這節(jié)課你學到了什么?

  (2)你還存在哪些疑問?

  生:(分組討論,代表發(fā)言總結)

  【設計說明】

  本節(jié)課的兩個知識點:二元一次方程和一次函數的關系,二元一次方程組的圖象解法對于學生來說都是難點。就本節(jié)課而言,前者較為重要,后者難度較大。確定本節(jié)課的重點為前者,是因為學生必須首先理解二元一次方程和一次函數在數與形兩方面的聯系,在此基礎上才能解決好后面的難點。在重難點的處理上,為了解決學生對重點的理解,用一組二元一次方程組串起一節(jié)課,加以變式,既使得學生理解了重點內容,又為后面的難點突破留下了一定的時間和空間。本節(jié)課的教學,主要以問題為線索,注重引導學生仔細觀察、獨立思考、認真操作、分組討論、合作交流、師生互動,這對本節(jié)課的`重難點的突破還是有效的,同時也體現了新課改提倡的學生的“自主、合作、探究”的學習方式的培養(yǎng)。另外,對利用二元一次方程組的解判斷直線的位置關系作為補充,滲透數形結合思想,也對教學目標中的情感態(tài)度和價值觀的又一方面體現。

  【教學反思】

  這節(jié)課以“回顧、先思”為先導,以“操作、思考”為手段,以“數、形結合”為要求,以“引導探究,變式拓寬”為主線,從舊知引入,自然過渡、不落痕跡。首先提出學生所熟知的二元一次方程并討論其解的情況,為后面探究二元一次方程與一次函數之間的關系作了必要的準備,結構安排自然、緊湊。在操作中,提出問題、深化認識。一切知識來自于實踐。只有實踐,才能發(fā)現問題、提出問題;只有實踐,才能把握知識、深化認識。先讓學生畫出一次函數的圖象,在畫圖的過程中發(fā)現:“以二元一次方程的解為坐標的點都在相應的函數圖象上。”在應用結論探索一元二次方程組的圖象解法時,也是在操作中來發(fā)現問題。這樣,就給了學生充分體驗、自主探索知識的機會;使他們在自主探索、合作交流中找到了快樂,深化了認識。以能力培養(yǎng)為核心,引導探究為主線,數、形結合為要求。能力培養(yǎng),特別是創(chuàng)新能力的培養(yǎng)是新課程關注的焦點。能力培養(yǎng)是以自主探究為平臺!白灾鳌辈皇且槐P散沙,“探究”不是漫無邊際。要提高探究的質量和效益必須在教師的引導下進行。為達到這一目的,教案中設計了“探究導學”、“例題變式”、“例題再探”、“學會創(chuàng)新”和“拓展提升”。新課程理念指出:教師是課程的研究者和開發(fā)者。這就要求我們:在新課程標準的指導下,認真研究教材,體會教材的編寫意圖。在此基礎上,設計出既體現課程精神,又適合本班學生實際的教學案例。本節(jié)課前半部分時間有些慢,后半部分例題再探和學會創(chuàng)新時間不夠。建議有針對性的學生板演多一點,進一步加強雙基的落實。

  【同伴點評】

  本節(jié)課教師創(chuàng)設問題情境,引導學生觀察、思考、操作、探究、合作交流。問題的設計層層遞進,通過問題的逐一解決,師生最終形成共識,達到了揭示二元一次方程組與一次函數的圖象關系的目的。(李曉紅)

  在例題教學及學生動手嘗試時,教師在學生大膽嘗試之后給出解題過程,強調了解題的規(guī)范性,有利于培養(yǎng)學生的嚴謹認真的學習態(tài)度。同時強調了由于二元一次方程組的圖象解法得到的解往往是近似的,因此必須檢驗。教師對學習二元一次方程組的圖象解法的必要性的解釋,是非常有必要的,這一解釋解決了學生的疑惑,同時也滲透了數形結合思想,也是教學目標中的情感態(tài)度和價值觀的體現。對于這一解釋,相當一部分教師在這一節(jié)課中并沒有很好解決。這一處理方法值得他人借鑒。(丁葉謙)

  本節(jié)課老師準備充分,教學環(huán)節(jié)緊緊相扣。授課老師充分體現了課題:“先思后導,變式拓寬教學設計”的精神,不斷地創(chuàng)設問題情境,引導學生學習新知,在探索二元一次方程組的圖象解法時給了學生充分體驗、自主探索知識的機會,使他們在自主探索、合作交流中找到了快樂,深化了認識。同時對例題連續(xù)的再利用,不斷變化,讓學生在變式中不斷豐富對二元一次方程組圖象解法的認識,充分認識二元一次方程組圖象解法的實用性,學會創(chuàng)新環(huán)節(jié)的設計更是極大地調動學生學習的積極性。教師教態(tài)親切,語言生動,娓娓道來。

二元一次方程教案14

  一、復習引入

  1.已知方程x2-ax-3a=0的一個根是6,則求a及另一個根的值.

  2.由上題可知一元二次方程的系數與根有著密切的關系.其實我們已學過的求根公式也反映了根與系數的關系,這種關系比較復雜,是否有更簡潔的關系?

  3.由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的兩根為x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.觀察兩式右邊,分母相同,分子是-b+b2-4ac與-b-b2-4ac.兩根之間通過什么計算才能得到更簡潔的關系?

  二、探索新知

  解下列方程,并填寫表格:

  方程 x1 x2 x1+x2 x1?x2

  x2-2x=0

  x2+3x-4=0

  x2-5x+6=0

  觀察上面的表格,你能得到什么結論?

  (1)關于x的方程x2+px+q=0(p,q為常數,p2-4q≥0)的兩根x1,x2與系數p,q之間有什么關系?

  (2)關于x的'方程ax2+bx+c=0(a≠0)的兩根x1,x2與系數a,b,c之間又有何關系呢?你能證明你的猜想嗎?

  解下列方程,并填寫表格:

  方程 x1 x2 x1+x2 x1?x2

  2x2-7x-4=0

  3x2+2x-5=0

  5x2-17x+6=0

  小結:根與系數關系:

  (1)關于x的方程x2+px+q=0(p,q為常數,p2-4q≥0)的兩根x1,x2與系數p,q的關系是:x1+x2=-p,x1?x2=q(注意:根與系數關系的前提條件是根的判別式必須大于或等于零.)

  (2)形如ax2+bx+c=0(a≠0)的方程,可以先將二次項系數化為1,再利用上面的結論.

  即:對于方程 ax2+bx+c=0(a≠0)

  ∵a≠0,∴x2+bax+ca=0

  ∴x1+x2=-ba,x1?x2=ca

  (可以利用求根公式給出證明)

  例1 不解方程,寫出下列方程的兩根和與兩根積:

  (1)x2-3x-1=0 (2)2x2+3x-5=0

  (3)13x2-2x=0 (4)2x2+6x=3

  (5)x2-1=0 (6)x2-2x+1=0

  例2 不解方程,檢驗下列方程的解是否正確?

  (1)x2-22x+1=0 (x1=2+1,x2=2-1)

  (2)2x2-3x-8=0 (x1=7+734,x2=5-734)

  例3 已知一元二次方程的兩個根是-1和2,請你寫出一個符合條件的方程.(你有幾種方法?)

  例4 已知方程2x2+kx-9=0的一個根是-3,求另一根及k的值.

  變式一:已知方程x2-2kx-9=0的兩根互為相反數,求k;

  變式二:已知方程2x2-5x+k=0的兩根互為倒數,求k.

  三、課堂小結

  1.根與系數的關系.

  2.根與系數關系使用的前提是:(1)是一元二次方程;(2)判別式大于等于零.

  四、作業(yè)布置

  1.不解方程,寫出下列方程的兩根和與兩根積.

  (1)x2-5x-3=0 (2)9x+2=x2 (3)6x2-3x+2=0

  (4)3x2+x+1=0

  2.已知方程x2-3x+m=0的一個根為1,求另一根及m的值.

  3.已知方程x2+bx+6=0的一個根為-2,求另一根及b的值

二元一次方程教案15

  教學目標:

  1. 認識二元一次方程和二元一次方程組.

  2. 了解二元一次方程和二元一次方程組的解,會求二元一次方程的正整數解.

  教學重點:

  理解二元一次方程組的解的意義.

  教學難點:

  求二元一次方程的正整數解.

  教學過程:

  籃球聯賽中,每場比賽都要分出勝負,每隊勝一場得2分.負一場得1分,某隊為了爭取較好的名次,想在全部22場比賽中得到40分,那么這個隊勝負場數分別是多少?

  思考:

  這個問題中包含了哪些必須同時滿足的條件?設勝的場數是x,負的場數是y,你能用方程把這些條件表示出來嗎?

  由問題知道,題中包含兩個必須同時滿足的條件:

  勝的場數+負的場數=總場數,

  勝場積分+負場積分=總積分.

  這兩個條件可以用方程

  x+y=22

  2x+y=40

  表示.

  上面兩個方程中,每個方程都含有兩個未知數(x和y),并且未知數的指數都是1,像這樣的方程叫做二元一次方程.

  把兩個方程合在一起,寫成

  x+y=22

  2x+y=40

  像這樣,把兩個二元一次方程合在一起,就組成了一個二元一次方程組.

  探究:

  滿足方程①,且符合問題的實際意義的x、y的值有哪些?把它們填入表中.

  x

  y

  上表中哪對x、y的'值還滿足方程②

  一般地,使二元一次方程兩邊的值相等的兩個未知數的值,叫做二元一次方程的解.

  二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解.

  例1 (1)方程(a+2)x +(b-1)y = 3是二元一次方程,試求a、b的取值范圍.

  (2)方程x∣a∣ – 1+(a-2)y = 2是二元一次方程,試求a的值.

  例2 若方程x2 m –1 + 5y3n – 2 = 7是二元一次方程.求m、n的值

  例3 已知下列三對值:

  x=-6 x=10 x=10

  y=-9 y=-6 y=-1

  (1) 哪幾對數值使方程 x-y=6的左、右兩邊的值相等?

  (2) 哪幾對數值是方程組 的解?

  例4 求二元一次方程3x+2y=19的正整數解.

  課堂練習:

  教科書第102頁練習

  習題8.1 1、2題

  作業(yè):

  教科書第102頁3、4、5題

【二元一次方程教案】相關文章:

二元一次方程教案03-27

二元一次方程公開課教案04-24

代入法解二元一次方程組教案04-04

二元一次方程與一次函數教案04-01

二元一次方程公開課教案6篇03-27

《實際問題與二元一次方程組》教案03-11

二元一次方程教學設計04-06

二元一次方程組教后反思04-07

解二元一次方程組教學反思04-07

Copyright©2013-2024duanmeiwen.com版權所有