【必備】平行四邊形教案4篇
作為一名優(yōu)秀的教育工作者,通常需要準備好一份教案,教案是教材及大綱與課堂教學的紐帶和橋梁。那么你有了解過教案嗎?下面是小編精心整理的平行四邊形教案4篇,希望能夠幫助到大家。
平行四邊形教案 篇1
教材分析
本節(jié)課是在學生已經(jīng)掌握平行四邊形的特征,理解并能正確運用長方形面積計算公式的基礎上進行教學的,在本節(jié)課中學生要經(jīng)歷平行四邊形面積計算公式的推導過程,理解平行四邊形的面積計算公式,為今后學習三角形、梯形等平面圖形面積計算公式奠定基礎。
教材首先以比較花壇大小的情境引入,充分體現(xiàn)數(shù)學源于生活的課程理念;通過數(shù)格法,比較平行四邊形和長方形的面積大小,再通過割補法,將平行四邊形轉(zhuǎn)化成與它面積相等的長方形,從而滲透“轉(zhuǎn)化”的數(shù)學思想。
教學目標
1.探索平行四邊形的面積公式,掌握并能正確運用公式解決實際問題。
2.通過操作、觀察、比較,培養(yǎng)學生分析、抽象概括能力,滲透轉(zhuǎn)化思想。
3.在探索的過程中獲得成功的體驗,激發(fā)學生學習數(shù)學的興趣。
根據(jù)目標的'定位,我將“掌握平行四邊形的面積計算公式”作為本節(jié)課的重點,而本課要突破的難點是“經(jīng)歷平行四邊形面積公式的探究過程”
教學方法
《數(shù)學課程標準》提出了重視學生學習過程的全新理念。在本節(jié)課中我主要以引導探究法為主,以學生參與活動為主線,引導學生大膽猜想、通過數(shù)格子和剪拼驗證、觀察比較,使小組教學和班級教學緊密聯(lián)系,并通過自主探索、合作交流發(fā)展能力。
教學過程
教學環(huán)節(jié)
教學活動
設計意圖
一、創(chuàng)設情境,引入新知
二、動手實踐、探索新知
三、嘗試練習,提升能力
四、課堂小結(jié),梳理提高
以爭論面積大小的故事情境引入,引出要比較大小就得先算面積;仡櫫碎L方形面積計算公式=長×寬,并通過回憶長方形
。ㄒ唬┨岢霾孪
【提問】平行四邊形的面積可能等于什么?
受長方形面積公式的遷移學生可能會出現(xiàn)兩種答案:①底×高 ②底×斜邊(學生爭論)
。ǘ﹦邮烛炞C
(課前準備好剪刀、方格紙、尺子、兩個圖形紙的學具,放在信封里。)請大家拿出信封,小組合作,驗證你的猜想。教師巡視并扮演好合作者的角色,給予適當?shù)刂笇А?/p>
1.多數(shù)學生會選用數(shù)格法,得到兩個圖形面積相等。
【追問】如果讓你測量花壇的面積,你也用數(shù)格法嗎?
【詢問】我們能不能把平行四邊形轉(zhuǎn)化成我們熟悉的圖形,再計算它的面積呢?
再次驗證,并提出活動要求
(1) 你把平行四邊形轉(zhuǎn)化成什么圖形?
(2) 什么變了,什么沒變?
。3) 平行四邊形的面積怎么算?
2.交流反饋(一個演示,一個講解)
【提問】看懂這種方法嗎?有誰的和他不同?
(三)動眼觀察
【提問】這兩種方法有什么共同之處?
學生可能會發(fā)現(xiàn),都是沿著高剪的,因為只有這樣才會有直角,而且都拼成了長方形。
【追問】什么變了,什么沒變?
學生發(fā)現(xiàn),形狀變了,面積沒有變。因為平行四邊形的底就相當于長方形的長,平行四邊形的高就相當于長方形的寬,根據(jù)長方形的面積等于長乘寬,所以得到平行四邊形的面積等于底乘高。
。ㄐ〗M內(nèi)、同桌間說一說變化的過程,加深對公式的理解)
(四)自學課本
引導學生自學課本,用字母表示公式。
S=ah(用S表示平行四邊形的面積,用a表示平行四邊形的底,h表示平行四邊形的高)
【追問】要求平行四邊形的面積,必須知道什么?
(一)基本技能訓練
。1) 計算平行四邊形的面積
(2) 藍色線這條高的長度
。ǘ┙鉀Q實際問題
快樂公園由三個高都是16m的平行四邊形組成,其中中間是一條長河,兩邊種植花草樹木。(如下圖)
。ㄈ┨嵘季S能力
1.在方格紙上畫一個面積是24平方厘米的平行四邊形
2.如果這個平行四邊形的底是4厘米,那么能畫出幾種?
這節(jié)課你學習了什么,有哪些收獲?
教材是以比較花壇大小的情境導入,但我認為這一情境不是很貼切學生的認知,教師在尊重教材的同時但又不能拘泥于教材,因此我對教材進行創(chuàng)造性地改編。
感受數(shù)格法不受用,從而激發(fā)起探究欲望。
本環(huán)節(jié)以“大膽猜想—動手操作—動眼觀察—動腦思考”為主線,引導學生帶著猜想自主探究,讓不同起點的學生都能經(jīng)歷平行四邊形面積公式的推導過程,體驗轉(zhuǎn)化思想,發(fā)展探索的能力,使學生在做數(shù)學的過程中感悟數(shù)學。
打破學生思維定勢,感受高和底的對應。
發(fā)散學生思維,同時滲透變與不變的辯證唯物思想,感受同底等高。
通過對全課進行總結(jié),幫助學生梳理知識,形成知識體系,并幫助學生對自己的學習方法進行小結(jié)。
平行四邊形教案 篇2
一、 教學目標:
1.掌握用一組對邊平行且相等來判定平行四邊形的方法.
2.會綜合運用平行四邊形的四種判定方法和性質(zhì)來證明問題.
3.通過平行四邊形的性質(zhì)與判定的應用,啟迪學生的思維,提高分析問題的能力.
二、 重點、難點
1.重點:平行四邊形各種判定方法及其應用,尤其是根據(jù)不同條件能正確地選擇判定方法.
2.難點:平行四邊形的判定定理與性質(zhì)定理的綜合應用.
三、例題的意圖分析
本節(jié)課的兩個例題都是補充的題目,目的是讓學生能掌握平行四邊形的第三種判定方法和會綜合運用平行四邊形的判定方法和性質(zhì)來解決問題.學生程度好一些的學校,可以適當?shù)刈约涸傺a充一些題目,使同學們會應用這些方法進行幾何的推理證明,通過學習,培養(yǎng)學生分析問題、尋找最佳解題途徑的能力.
四、課堂引入
1. 平行四邊形的性質(zhì);
2. 平行四邊形的判定方法;
3. 【探究】 取兩根等長的木條AB、CD,將它們平行放置,再用兩根木條BC、AD加固,得到的四邊形ABCD是平行四邊形嗎?
結(jié)論:一組對邊平行且相等的四邊形是平行四邊形.
五、例習題分析
例1(補充)已知:如圖, ABCD中,E、F分別是AD、BC的中點,求證:BE=DF.
分析:證明BE=DF,可以證明兩個三角形全等,也可以證明
四邊形BEDF是平行四邊形,比較方法,可以看出第二種方法簡單.
證明:∵ 四邊形ABCD是平行四邊形,
AD∥CB,AD=CD.
∵ E、F分別是AD、BC的`中點,
DE∥BF,且DE= AD,BF= BC.
DE=BF.
四邊形BEDF是平行四邊形(一組對邊平行且相等的四邊形平行四邊形).
BE=DF.
此題綜合運用了平行四邊形的性質(zhì)和判定,先運用平行四邊形的性質(zhì)得到判定另一個四邊形是平行四邊形的條件,再應用平行四邊形的性質(zhì)得出結(jié)論;題目雖不復雜,但層次有三,且利用知識較多,因此應使學生獲得清晰的證明思路.
例2(補充)已知:如圖, ABCD中,E、F分別是AC上兩點,且BEAC于E,DFAC于F.求證:四邊形BEDF是平行四邊形.
分析:因為BEAC于E,DFAC于F,所以BE∥DF.需再證明BE=DF,這需要證明△ABE與△CDF全等,由角角邊即可.
證明:∵ 四邊形ABCD是平行四邊形,
AB=CD,且AB∥CD.
BAE=DCF.
平行四邊形教案 篇3
教學
目標綜合運用平行四邊形的性質(zhì)和四邊形是平行四邊形的條件解決問題
重點
難點平行四邊形的有關性質(zhì)和四邊形是平行四邊形的條件的靈活的運用。
導學過程教師復備
(學生筆記)
復習回顧
1.平行四邊形有哪些性質(zhì)?
2.判別四邊形是平行四邊形的條件有哪些?
3.平行四邊形的性質(zhì)與條件的.區(qū)別?
例題精講
例1、如圖,在□ABCD中,點E、F分別在AB、CD上,AE=CF.四邊形DEBF是平行四邊形嗎?為什么?
例2、如圖,□ABCD的對角線相交于點O,直線EF過點O分別交BC、AD于點E、F,G、H分別為OB、OD的中點,四邊形GEHF是平行四邊形嗎?為什么?
反饋練習
1.如圖,在□ABCD中,AB=5,AD=8,∠A、∠D的角平分線分別交BC于E、F,則EF=__________(在右邊寫出過程)
2.如圖,在□ABCD中,過其對角線的交點O,引一條直線交BC于E,交AD于F,若AB=2.4CM,BC=4CM,OE=1.1CM。則四邊形CDFE的周長為多少?
3.如圖,在□ABCD中,點E、F在對角線BD上,且BE=DF.四邊形AECF是平行四邊形嗎?請說明你的理由.
平行四邊形教案 篇4
一、教學目標
1知識目標
理解平行四邊形的概念;探索并掌握平行四邊形的對邊相等,對角相等的性質(zhì)。
2能力目標
在探索過程中發(fā)展學生的探究能力,提高學生運用數(shù)學知識解決問題的能力;
3情感目標
培養(yǎng)學生合作交流的習慣,提高克復困難的勇氣和信心。
二、教學重點、難點
教學重點:探索平行四邊形的性質(zhì)
教學難點:通過操作、思考、歸納出結(jié)論
三、教學方法
探索歸納法
四、教學過程
(一)創(chuàng)設情境,引入新課
1.(幻燈片展示)觀察圖片中有你熟悉的'哪種圖形?(平行四邊形)請你舉出自己身邊存在的平行四邊形的例子。
例如:汽車的防護鏈,地板磚,籬笆格子等(用幻燈打出實物的照片) 2.觀察圖形有什么特征?(有兩組對邊分別平行)
平行四邊形的定義:兩組對邊分別平行的四邊形叫做平行四邊形如圖:四邊形ABCD是平行四邊形記作:ABCD今天我們就來探究平形四邊形的性質(zhì)。
(二)講授新課
1、拼一拼(出示幻燈片)小組合作,探究新知
用兩個全等的三角形紙片可以拼出幾種形狀不同的平行四邊形?從拼圖中你能得到哪些啟示?相對的邊、角分別有什么關系?
(讓學生實際動手操作,可分組討論結(jié)論,用ppt課件展示)
2、學生分析總結(jié)出:平行四邊形的對邊平行
平行四邊形的對邊相等
平行四邊形的對角相等
平行四邊形的鄰角互補
用符號語言表示:如圖
小結(jié):平行四邊形的性質(zhì)是證明線段相等、角相等的重要依據(jù)和方法。 3.用什么方法驗證平行四邊形:兩組對邊分別相等
兩組對角分別相等
(小組討論比一比看誰的速度最快、方法最多)
4、例題講解
如圖:小明用一根36m長的繩子圍成了一個平行四邊形的場地,其中一條邊AB長為8m,其他三條邊各長多少?
解:∵四邊形ABCD是平行四邊形
∴AB=CD, AD=BC
∵AB=8m
∴CD=8m
又AB+BC+CD+AD=36
∴ AD=BC=10m
(三)隨堂練習(幻燈片展示)
(四)感悟與收獲
1.兩組對邊分別平行的四邊形叫做平行四邊形. 2.平行四邊形的性質(zhì):對邊平行
對邊相等
對角相等
鄰角互補
3.解決平行四邊形的有關問題經(jīng)常連結(jié)對角線轉(zhuǎn)化為三角形。
(五)作業(yè)
(六)板書與設計
(見幻燈片)
【平行四邊形教案】相關文章:
《平行四邊形的面積》教案01-02
平行四邊形面積教案02-09
認識平行四邊形教案03-05
平行四邊形教案優(yōu)秀03-27
平行四邊形的面積教案03-17
平行四邊形的認識教案07-30
平行四邊形的面積教案07-24
數(shù)學《平行四邊形的面積》教案02-14
數(shù)學平行四邊形的面積教案02-28
平行四邊形面積的計算教案03-03