- 初三上冊數(shù)學學習資料 推薦度:
- 相關(guān)推薦
初三上冊數(shù)學學習資料4篇
在社會發(fā)展不斷提速的今天,大家都看過不少學習資料,對學習資料應該很熟悉吧?學習資料能夠幫助我們更快速高效的學習。你還在尋找有用的學習資料嗎?下面是小編精心整理的初三上冊數(shù)學學習資料,供大家參考借鑒,希望可以幫助到有需要的朋友。
初三上冊數(shù)學學習資料1
知識點1:一元二次方程的基本概念
1、一元二次方程3x2+5x-2=0的常數(shù)項是-2。
2、一元二次方程3x2+4x-2=0的一次項系數(shù)為4,常數(shù)項是-2。
3、一元二次方程3x2-5x-7=0的二次項系數(shù)為3,常數(shù)項是-7。
4、把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0。
知識點2:直角坐標系與點的位置
1、直角坐標系中,點A(3,0)在y軸上。
2、直角坐標系中,x軸上的任意點的橫坐標為0。
3、直角坐標系中,點A(1,1)在第一象限。
4、直角坐標系中,點A(-2,3)在第四象限。
5、直角坐標系中,點A(-2,1)在第二象限。
知識點3:已知自變量的值求函數(shù)值
1、當x=2時,函數(shù)y=的值為1。
2、當x=3時,函數(shù)y=的值為1。
3、當x=-1時,函數(shù)y=的值為1。
知識點4:基本函數(shù)的概念及性質(zhì)
1、函數(shù)y=-8x是一次函數(shù)。
2、函數(shù)y=4x+1是正比例函數(shù)。
3、函數(shù)是反比例函數(shù)。
4、拋物線y=-3(x-2)2-5的'開口向下。
5、拋物線y=4(x-3)2-10的對稱軸是x=3。
6、拋物線的頂點坐標是(1,2)。
7、反比例函數(shù)的圖象在第一、三象限。
知識點5:數(shù)據(jù)的平均數(shù)中位數(shù)與眾數(shù)
1、數(shù)據(jù)13,10,12,8,7的平均數(shù)是10。
2、數(shù)據(jù)3,4,2,4,4的眾數(shù)是4。
3、數(shù)據(jù)1,2,3,4,5的中位數(shù)是3。
知識點6:特殊三角函數(shù)值
1.cos30°=。
2.sin260°+cos260°=1。
3.2sin30°+tan45°=2。
4.tan45°=1。
5.cos60°+sin30°=1。
知識點7:圓的基本性質(zhì)
1、半圓或直徑所對的圓周角是直角。
2、任意一個三角形一定有一個外接圓。
3、在同一平面內(nèi),到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。
4、在同圓或等圓中,相等的圓心角所對的弧相等。
5、同弧所對的圓周角等于圓心角的一半。
6、同圓或等圓的半徑相等。
7、過三個點一定可以作一個圓。
8、長度相等的兩條弧是等弧。
9、在同圓或等圓中,相等的圓心角所對的弧相等。
10、經(jīng)過圓心平分弦的直徑垂直于弦。
知識點8:直線與圓的位置關(guān)系
1、直線與圓有公共點時,叫做直線與圓相切。
2、三角形的外接圓的圓心叫做三角形的外心。
3、弦切角等于所夾的弧所對的圓心角。
4、三角形的內(nèi)切圓的圓心叫做三角形的內(nèi)心。
5、垂直于半徑的直線必為圓的切線。
6、過半徑的外端點并且垂直于半徑的直線是圓的切線。
7、垂直于半徑的直線是圓的切線。
8、圓的切線垂直于過切點的半徑。
初三上冊數(shù)學學習資料2
一、圓的定義
1、以定點為圓心,定長為半徑的點組成的圖形。
2、在同一平面內(nèi),到一個定點的距離都相等的點組成的圖形。
二、圓的各元素
1、半徑:圓上一點與圓心的連線段。
2、直徑:連接圓上兩點有經(jīng)過圓心的線段。
3、弦:連接圓上兩點線段(直徑也是弦)。
4、。簣A上兩點之間的曲線部分。半圓周也是弧。
(1)劣弧:小于半圓周的弧。
(2)優(yōu)弧:大于半圓周的弧。
5、圓心角:以圓心為頂點,半徑為角的邊。
6、圓周角:頂點在圓周上,圓周角的兩邊是弦。
7、弦心距:圓心到弦的垂線段的長。
三、圓的基本性質(zhì)
1、圓的對稱性
(1)圓是圖形,它的對稱軸是直徑所在的直線。
(2)圓是中心對稱圖形,它的對稱中心是圓心。
(3)圓是對稱圖形。
2、垂徑定理。
(1)垂直于弦的直徑平分這條弦,且平分這條弦所對的兩條弧。
(2)推論:
平分弦(非直徑)的直徑,垂直于弦且平分弦所對的'兩條弧。
平分弧的直徑,垂直平分弧所對的弦。
3、圓心角的度數(shù)等于它所對弧的度數(shù)。圓周角的度數(shù)等于它所對弧度數(shù)的一半。
(1)同弧所對的圓周角相等。
(2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。
4、在同圓或等圓中,兩條弦、兩條弧、兩個圓周角、兩個圓心角、兩條弦心距五對量中只要有一對量相等,其余四對量也分別相等。
5、夾在平行線間的兩條弧相等。
6、設⊙O的半徑為r,OP=d。
7、(1)過兩點的圓的圓心一定在兩點間連線段的中垂線上。
(2)不在同一直線上的三點確定一個圓,圓心是三邊中垂線的交點,它到三個點的距離相等。
(直角的外心就是斜邊的中點。)
8、直線與圓的位置關(guān)系。d表示圓心到直線的距離,r表示圓的半徑。
直線與圓有兩個交點,直線與圓相交;直線與圓只有一個交點,直線與圓相切;
直線與圓沒有交點,直線與圓相離。
9、中,A(x1,y1)、B(x2,y2)。
10、圓的切線判定。
(1)d=r時,直線是圓的切線。
切點不明確:畫垂直,證半徑。
(2)經(jīng)過半徑的外端且與半徑垂直的直線是圓的切線。
切點明確:連半徑,證垂直。
11、圓的切線的性質(zhì)(補充)。
(1)經(jīng)過切點的直徑一定垂直于切線。
(2)經(jīng)過切點并且垂直于這條切線的直線一定經(jīng)過圓心。
12、切線長定理。
(1)切線長:從圓外一點引圓的兩條切線,切點與這點之間連線段的長叫這個點到圓的切線長。
(2)切線長定理。
∵PA、PB切⊙O于點A、B
∴PA=PB,∠1=∠2。
13、內(nèi)切圓及有關(guān)計算。
(1)內(nèi)切圓的圓心是三個內(nèi)角平分線的交點,它到三邊的距離相等。
(2)如圖,△ABC中,AB=5,BC=6,AC=7,⊙O切△ABC三邊于點D、E、F。
求:AD、BE、CF的長。
分析:設AD=x,則AD=AF=x,BD=BE=5-x,CE=CF=7-x.
可得方程:5-x+7-x=6,解得x=3
(3)△ABC中,∠C=90°,AC=b,BC=a,AB=c。
求內(nèi)切圓的半徑r。
分析:先證得正方形ODCE,
得CD=CE=r
AD=AF=b-r,BE=BF=a-r
b-r+a-r=c
14、(1)弦切角:角的頂點在圓周上,角的一邊是圓的切線,另一邊是圓的弦。
BC切⊙O于點B,AB為弦,∠ABC叫弦切角,∠ABC=∠D。
(2)相交弦定理。
圓的兩條弦AB與CD相交于點P,則PA?PB=PC?PD。
(3)切割線定理。
如圖,PA切⊙O于點A,PBC是⊙O的割線,則PA2=PB?PC。
(4)推論:如圖,PAB、PCD是⊙O的割線,則PA?PB=PC?PD。
15、圓與圓的位置關(guān)系。
(1)外離:d>r1+r2,交點有0個;
外切:d=r1+r2,交點有1個;
相交:r1-r2
內(nèi)切:d=r1-r2,交點有1個;
內(nèi)含:0≤d
(2)性質(zhì)。
相交兩圓的連心線垂直平分公共弦。
相切兩圓的連心線必經(jīng)過切點。
16、圓中有關(guān)量的計算。
(1)弧長有L表示,圓心角用n表示,圓的半徑用R表示。
(2)扇形的面積用S表示。
(3)圓錐的側(cè)面展開圖是扇形。
r為底面圓的半徑,a為母線長。
初三上冊數(shù)學學習資料3
1、絕對值
一個數(shù)的絕對值就是表示這個數(shù)的點與原點的距離,|a|≥0。零的絕對值時它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。正數(shù)大于零,負數(shù)小于零,正數(shù)大于一切負數(shù),兩個負數(shù),絕對值大的反而小。
(1)一個正實數(shù)的絕對值是它本身;一個負實數(shù)的絕對值是它的相反數(shù);0的絕對值是0.即:﹝另有兩種寫法﹞
(2)實數(shù)的絕對值是一個非負數(shù),從數(shù)軸上看,一個實數(shù)的絕對值就是數(shù)軸上表示這個數(shù)的點到原點的距離.
(3)幾個非負數(shù)的和等于零則每個非負數(shù)都等于零。
注意:│a│≥0,符號"││"是"非負數(shù)"的標志;數(shù)a的絕對值只有一個;處理任何類型的題目,只要其中有"││"出現(xiàn),其關(guān)鍵一步是去掉"││"符號。
2、解一元二次方程
解一元二次方程的基本思想方法是通過“降次”將它化為兩個一元一次方程。
(1)直接開平方法:
用直接開平方法解形如(x-m)2=n(n≥0)的方程,其解為x=±m(xù).
直接開平方法就是平方的逆運算.通常用根號表示其運算結(jié)果.
(2)配方法
通過配成完全平方式的方法,得到一元二次方程的根的方法。這種解一元二次方程的方法稱為配方法,配方的依據(jù)是完全平方公式。
1)轉(zhuǎn)化:將此一元二次方程化為ax^2+bx+c=0的形式(即一元二次方程的一般形式)
2)系數(shù)化1:將二次項系數(shù)化為1
3)移項:將常數(shù)項移到等號右側(cè)
4)配方:等號左右兩邊同時加上一次項系數(shù)一半的平方
5)變形:將等號左邊的代數(shù)式寫成完全平方形式
6)開方:左右同時開平方
7)求解:整理即可得到原方程的根
(3)公式法
公式法:把一元二次方程化成一般形式,然后計算判別式△=b2-4ac的值,當b2-4ac≥0時,把各項系數(shù)a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
3、圓的必考知識點
(1)圓
在一個平面內(nèi),一動點以一定點為中心,以一定長度為距離旋轉(zhuǎn)一周所形成的封閉曲線叫做圓。圓有無數(shù)條對稱軸。
(2)圓的相關(guān)特點
1)徑
連接圓心和圓上的任意一點的線段叫做半徑,字母表示為r
通過圓心并且兩端都在圓上的線段叫做直徑,字母表示為d
直徑所在的直線是圓的對稱軸。在同一個圓中,圓的`直徑d=2r
2)弦
連接圓上任意兩點的線段叫做弦.在同一個圓內(nèi)最長的弦是直徑。直徑所在的直線是圓的對稱軸,因此,圓的對稱軸有無數(shù)條。
3)弧
圓上任意兩點間的部分叫做圓弧,簡稱弧,以“⌒”表示。
大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧,所以半圓既不是優(yōu)弧,也不是劣弧。優(yōu)弧一般用三個字母表示,劣弧一般用兩個字母表示。優(yōu)弧是所對圓心角大于180度的弧,劣弧是所對圓心角小于180度的弧。
在同圓或等圓中,能夠互相重合的兩條弧叫做等弧。
4)角
頂點在圓心上的角叫做圓心角。
頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。圓周角等于相同弧所對的圓心角的一半。
初三上冊數(shù)學學習資料4
第一單元二次根式
1、二次根式
式子叫做二次根式,二次根式必須滿足:含有二次根號“”;被開方數(shù)a必須是非負數(shù)。
2、最簡二次根式
若二次根式滿足:被開方數(shù)的因數(shù)是整數(shù),因式是整式;被開方數(shù)中不含能開得盡方的因數(shù)或因式,這樣的二次根式叫做最簡二次根式。
化二次根式為最簡二次根式的方法和步驟:
1如果被開方數(shù)是分數(shù)包括小數(shù)或分式,先利用商的算數(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化進行化簡。
2如果被開方數(shù)是整數(shù)或整式,先將他們分解因數(shù)或因式,然后把能開得盡方的因數(shù)或因式開出來。
3、同類二次根式
幾個二次根式化成最簡二次根式以后,如果被開方數(shù)相同,這幾個二次根式叫做同類二次根式。
4、二次根式的性質(zhì)
5、二次根式混合運算
二次根式的混合運算與實數(shù)中的運算順序一樣,先乘方,再乘除,最后加減,有括號的先算括號里的或先去括號。
第二單元一元二次方程
一、一元二次方程
1、一元二次方程
含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式
,它的特征是:等式左邊十一個關(guān)于未知數(shù)x的二次多項式,等式右邊是零,其中叫做二次項,a叫做二次項系數(shù);bx叫做一次項,b叫做一次項系數(shù);c叫做常數(shù)項。
二、一元二次方程的解法
1、直接開平方法
2、配方法
配方法是一種重要的數(shù)學方法,它不僅在解一元二次方程上有所應用,而且在數(shù)學的其
3、公式法
4、因式分解法
因式分解法就是利用因式分解的手段,求出方程的解的方法,這種方法簡單易行,是解一元二次方程最常用的方法。
三、一元二次方程根的判別式
根的判別式
四、一元二次方程根與系數(shù)的關(guān)系
第三單元旋轉(zhuǎn)
一、旋轉(zhuǎn)
1、定義
把一個圖形繞某一點O轉(zhuǎn)動一個角度的圖形變換叫做旋轉(zhuǎn),其中O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角。
2、性質(zhì)
1對應點到旋轉(zhuǎn)中心的距離相等。
2對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角。
二、中心對稱
1、定義
把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。
2、性質(zhì)
1關(guān)于中心對稱的兩個圖形是全等形。
2關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分。
3關(guān)于中心對稱的兩個圖形,對應線段平行或在同一直線上且相等。
3、判定
如果兩個圖形的對應點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱。
4、中心對稱圖形
把一個圖形繞某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個店就是它的對稱中心。
考點五、坐標系中對稱點的特征
1、關(guān)于原點對稱的點的特征
兩個點關(guān)于原點對稱時,它們的坐標的符號相反,即點Px,y關(guān)于原點的對稱點為P’-x,-y
2、關(guān)于x軸對稱的點的特征
兩個點關(guān)于x軸對稱時,它們的坐標中,x相等,y的符號相反,即點Px,y關(guān)于x軸的對稱點為P’x,-y
3、關(guān)于y軸對稱的點的特征
兩個點關(guān)于y軸對稱時,它們的坐標中,y相等,x的符號相反,即點Px,y關(guān)于y軸的對稱點為P’-x,y
第四單元圓
一、圓的相關(guān)概念
1、圓的定義
在一個個平面內(nèi),線段OA繞它固定的一個端點O旋轉(zhuǎn)一周,另一個端點A隨之旋轉(zhuǎn)所形成的圖形叫做圓,固定的端點O叫做圓心,線段OA叫做半徑。
2、圓的幾何表示
以點O為圓心的圓記作“⊙O”,讀作“圓O”
二、弦、弧等與圓有關(guān)的定義
1弦
連接圓上任意兩點的線段叫做弦。如圖中的AB
2直徑
經(jīng)過圓心的弦叫做直徑。如途中的CD
直徑等于半徑的2倍。
3半圓
圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫做半圓。
4弧、優(yōu)弧、劣弧
圓上任意兩點間的部分叫做圓弧,簡稱弧。
弧用符號“⌒”表示,以A,B為端點的弧記作“”,讀作“圓弧AB”或“弧AB”。
大于半圓的弧叫做優(yōu)弧多用三個字母表示;小于半圓的弧叫做劣弧多用兩個字母表示
三、垂徑定理及其推論
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。
推論1:1平分弦不是直徑的直徑垂直于弦,并且平分弦所對的兩條弧。
2弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。
3平分弦所對的一條弧的直徑垂直平分弦,并且平分弦所對的另一條弧。
推論2:圓的兩條平行弦所夾的弧相等。
垂徑定理及其推論可概括為:
過圓心
垂直于弦
直徑平分弦知二推三
平分弦所對的優(yōu)弧
平分弦所對的劣弧
四、圓的對稱性
1、圓的軸對稱性
圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸。
2、圓的中心對稱性
圓是以圓心為對稱中心的中心對稱圖形。
五、弧、弦、弦心距、圓心角之間的關(guān)系定理
1、圓心角
頂點在圓心的角叫做圓心角。
2、弦心距
從圓心到弦的距離叫做弦心距。
3、弧、弦、弦心距、圓心角之間的關(guān)系定理
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦想等,所對的弦的弦心距相等。
推論:在同圓或等圓中,如果兩個圓的圓心角、兩條弧、兩條弦或兩條弦的'弦心距中有一組量相等,那么它們所對應的其余各組量都分別相等。
六、圓周角定理及其推論
1、圓周角
頂點在圓上,并且兩邊都和圓相交的角叫做圓周角。
2、圓周角定理
一條弧所對的圓周角等于它所對的圓心角的一半。
推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
推論2:半圓或直徑所對的圓周角是直角;90°的圓周角所對的弦是直徑。
推論3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。
七、點和圓的位置關(guān)系
設⊙O的半徑是r,點P到圓心O的距離為d,則有:
d
d=r點P在⊙O上;
d>r點P在⊙O外。
八、過三點的圓
1、過三點的圓
不在同一直線上的三個點確定一個圓。
2、三角形的外接圓
經(jīng)過三角形的三個頂點的圓叫做三角形的外接圓。
3、三角形的外心
三角形的外接圓的圓心是三角形三條邊的垂直平分線的交點,它叫做這個三角形的外心。
4、圓內(nèi)接四邊形性質(zhì)四點共圓的判定條件
圓內(nèi)接四邊形對角互補。
九、反證法
先假設命題中的結(jié)論不成立,然后由此經(jīng)過推理,引出矛盾,判定所做的假設不正確,從而得到原命題成立,這種證明方法叫做反證法。
十、直線與圓的位置關(guān)系
直線和圓有三種位置關(guān)系,具體如下:
1相交:直線和圓有兩個公共點時,叫做直線和圓相交,這時直線叫做圓的割線,公共點叫做交點;
2相切:直線和圓有唯一公共點時,叫做直線和圓相切,這時直線叫做圓的切線,
3相離:直線和圓沒有公共點時,叫做直線和圓相離。
如果⊙O的半徑為r,圓心O到直線l的距離為d,那么:
直線l與⊙O相交d
直線l與⊙O相切d=r;
直線l與⊙O相離d>r;
十一、切線的判定和性質(zhì)
1、切線的判定定理
經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。
2、切線的性質(zhì)定理
圓的切線垂直于經(jīng)過切點的半徑。
十二、切線長定理
1、切線長
在經(jīng)過圓外一點的圓的切線上,這點和切點之間的線段的長叫做這點到圓的切線長。
2、切線長定理
從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角。
十三、三角形的內(nèi)切圓
1、三角形的內(nèi)切圓
與三角形的各邊都相切的圓叫做三角形的內(nèi)切圓。
2、三角形的內(nèi)心
三角形的內(nèi)切圓的圓心是三角形的三條內(nèi)角平分線的交點,它叫做三角形的內(nèi)心。
十四、圓和圓的位置關(guān)系
1、圓和圓的位置關(guān)系
如果兩個圓沒有公共點,那么就說這兩個圓相離,相離分為外離和內(nèi)含兩種。
如果兩個圓只有一個公共點,那么就說這兩個圓相切,相切分為外切和內(nèi)切兩種。
如果兩個圓有兩個公共點,那么就說這兩個圓相交。
2、圓心距
兩圓圓心的距離叫做兩圓的圓心距。
3、圓和圓位置關(guān)系的性質(zhì)與判定
設兩圓的半徑分別為R和r,圓心距為d,那么
兩圓外離d>R+r
兩圓外切d=R+r
兩圓相交R-r
兩圓內(nèi)切d=R-rR>r
兩圓內(nèi)含dr
4、兩圓相切、相交的重要性質(zhì)
如果兩圓相切,那么切點一定在連心線上,它們是軸對稱圖形,對稱軸是兩圓的連心線;相交的兩個圓的連心線垂直平分兩圓的公共弦。
十五、正多邊形和圓
1、正多邊形的定義
各邊相等,各角也相等的多邊形叫做正多邊形。
2、正多邊形和圓的關(guān)系
只要把一個圓分成相等的一些弧,就可以做出這個圓的內(nèi)接正多邊形,這個圓就是這個正多邊形的外接圓。
十六、與正多邊形有關(guān)的概念
1、正多邊形的中心
正多邊形的外接圓的圓心叫做這個正多邊形的中心。
2、正多邊形的半徑
正多邊形的外接圓的半徑叫做這個正多邊形的半徑。
3、正多邊形的邊心距
正多邊形的中心到正多邊形一邊的距離叫做這個正多邊形的邊心距。
4、中心角
正多邊形的每一邊所對的外接圓的圓心角叫做這個正多邊形的中心角。
十七、正多邊形的對稱性
1、正多邊形的軸對稱性
正多邊形都是軸對稱圖形。一個正n邊形共有n條對稱軸,每條對稱軸都通過正n邊形的中心。
2、正多邊形的中心對稱性
邊數(shù)為偶數(shù)的正多邊形是中心對稱圖形,它的對稱中心是正多邊形的中心。
3、正多邊形的畫法
先用量角器或尺規(guī)等分圓,再做正多邊形。
十八、弧長和扇形面積
1、弧長公式
n°的圓心角所對的弧長l的計算公式為
2、扇形面積公式
其中n是扇形的圓心角度數(shù),R是扇形的半徑,l是扇形的弧長。
3、圓錐的側(cè)面積
其中l(wèi)是圓錐的母線長,r是圓錐的地面半徑。
補充:此處為大綱要求外的知識,但對開發(fā)學生智力,改善學生數(shù)學思維模式有很大幫助
1、相交弦定理
2、弦切角定理
弦切角:圓的切線與經(jīng)過切點的弦所夾的角,叫做弦切角。
弦切角定理:弦切角等于弦與切線夾的弧所對的圓周角。
即:∠BAC=∠ADC
【初三上冊數(shù)學學習資料】相關(guān)文章:
初三上冊數(shù)學學習資料02-24
必備的高等數(shù)學的學習資料02-23
初三數(shù)學暑假的學習計劃06-16
初三數(shù)學學習方法11-09
《詠雪》學習資料10-10
《春》學習資料02-07
初三數(shù)學暑假的學習計劃3篇06-17
有關(guān)學習資料的介紹11-08