初三數(shù)學知識點總結(12篇)
總結是在某一時期、某一項目或某些工作告一段落或者全部完成后進行回顧檢查、分析評價,從而得出教訓和一些規(guī)律性認識的一種書面材料,通過它可以正確認識以往學習和工作中的優(yōu)缺點,不如靜下心來好好寫寫總結吧。如何把總結做到重點突出呢?以下是小編為大家收集的初三數(shù)學知識點總結,歡迎大家借鑒與參考,希望對大家有所幫助。
初三數(shù)學知識點總結1
。ㄈ切沃形痪的定理)
三角形的中位線平行于三角形的第三邊,并且等于第三邊的一半。
。ㄆ叫兴倪呅蔚男再|(zhì))
、倨叫兴倪呅蔚膶呄嗟;
②平行四邊形的對角相等;
、燮叫兴倪呅蔚膶蔷互相平分。
。ň匦蔚男再|(zhì))
①矩形具有平行四邊形的一切性質(zhì);
②矩形的四個角都是直角;
、劬匦蔚膶蔷相等。
正方形的判定與性質(zhì)
1、判定方法:
1鄰邊相等的矩形;
2鄰邊垂直的菱形;
3對角線垂直的矩形;
4對角線相等的菱形;
2、性質(zhì):
1邊:四邊相等,對邊平行;
2角:四個角都相等都是直角,鄰角互補;
3對角線互相平分、垂直、相等,且每長對角線平分一組內(nèi)角。
等腰三角形的'判定定理
。ǖ妊切蔚呐卸ǚ椒ǎ
1、有兩條邊相等的三角形是等腰三角形。
2、判定定理:如果一個三角形有兩個角相等,那么這個三角形是等腰三角形簡稱:等角對等邊。
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,學習方法,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質(zhì)定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
標準差與方差
極差是什么:一組數(shù)據(jù)中數(shù)據(jù)與最小數(shù)據(jù)的差叫做極差,即極差=值—最小值。
計算器——求標準差與方差的一般步驟:
1、打開計算器,按“ON”鍵,按“MODE”“2”進入統(tǒng)計SD狀態(tài)。
2、在開始數(shù)據(jù)輸入之前,請務必按“SHIFT”“CLR”“1”“=”鍵清除統(tǒng)計存儲器。
3、輸入數(shù)據(jù):按數(shù)字鍵輸入數(shù)值,然后按“M+”鍵,就能完成一個數(shù)據(jù)的輸入。如果想對此輸入同樣的數(shù)據(jù)時,還可在步驟3后按“SHIET”“;”,后輸入該數(shù)據(jù)出現(xiàn)的頻數(shù),再按“M+”鍵。
4、當所有的數(shù)據(jù)全部輸入結束后,按“SHIFT”“2”,選擇的是“標準差”,就可以得到所求數(shù)據(jù)的標準差;
5、標準差的平方就是方差。
初三數(shù)學知識點總結2
1.不在同一直線上的三點確定一個圓。
2.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1 ①平分弦不是直徑的直徑垂直于弦,并且平分弦所對的兩條弧
、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對稱中心的中心對稱圖形
4.圓是定點的距離等于定長的點的集合
5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合
6.圓的外部可以看作是圓心的距離大于半徑的點的集合
7.同圓或等圓的半徑相等
8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
9.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
10.推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。
11定理圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角
12.①直線L和⊙O相交d
、谥本L和⊙O相切d=r
③直線L和⊙O相離d>r
13.切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
14.切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點的半徑
15.推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點
16.推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
17.切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
18.圓的外切四邊形的兩組對邊的和相等外角等于內(nèi)對角
19.如果兩個圓相切,那么切點一定在連心線上
20.①兩圓外離d>R+r ②兩圓外切d=R+r
③.兩圓相交R-rr
、.兩圓內(nèi)切d=R-rR>r ⑤兩圓內(nèi)含dr
21.定理相交兩圓的連心線垂直平分兩圓的公共弦
22.定理把圓分成nn≥3:
⑴依次連結各分點所得的多邊形是這個圓的內(nèi)接正n邊形
、平(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
23.定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓
24.正n邊形的每個內(nèi)角都等于n-2×180°/n
25.定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
27.正三角形面積√3a/4 a表示邊長
28.如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×n-2180°/n=360°化為n-2k-2=4
29.弧長計算公式:L=n兀R/180
30.扇形面積公式:S扇形=n兀R^2/360=LR/2
31.內(nèi)公切線長= d-R-r外公切線長= d-R+r
32.定理一條弧所對的圓周角等于它所對的圓心角的一半
33.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
34.推論2半圓或直徑所對的圓周角是直角;90°的圓周角所對的弦是直徑
35.弧長公式l=ar a是圓心角的弧度數(shù)r >0扇形面積公式s=1/2lr
初三數(shù)學復習方法
一、回歸課本,夯實基礎,做好預習。
數(shù)學的基本概念、定義、公式,數(shù)學知識點之間的內(nèi)在聯(lián)系,基本的數(shù)學解題思路與方法,是復習的重中之重;貧w課本,要先對知識點進行梳理,把教材上的每一個例題、習題再做一遍,確;靖拍、公式等牢固掌握,要穩(wěn)扎穩(wěn)打,不要盲目攀高,欲速則不達。復習課的內(nèi)容多、時間緊。要提高復習效率,必須使自己的思維與老師的思維同步。而預習則是達到這一目的的重要途徑。沒有預習,聽老師講課,會感到老師講的都重要,抓不住老師講的重點;而預習了之后,再聽老師講課,就會在記憶上對老師講的內(nèi)容有所取舍,把重點放在自己還未掌握的內(nèi)容上,提高學習效率。
二、提高課堂聽課效率,多動腦,勤動手
初三的課只有兩種形式:復習課和評講課,到初三所有課都進入復習階段,通過復習,學生要知道自己哪些知識點掌握的比較好,哪些知識點有待提高,因此在復習課之前一定要有自已的思考,這樣聽課的目的就明確了,F(xiàn)在學生手中都會有一些復習資料,在老師講課之前,要把例題做一遍,做題中發(fā)現(xiàn)的難點,就是聽課的重點;對預習中遇到的沒有掌握好的舊知識,可進行查漏補缺,以減少聽課過程中的困難,自己理解了的東西與老師的講解進行比較、分析即可提高自己的數(shù)學思維;體會分析問題的思路和解決問題的思想方法,堅持下去,就一定能舉一反三,事半功倍。此外對于老師講課中的難點,重點要作好筆記,筆記不是記錄而是將上述聽課中的`要點,思維方法等作出簡單扼要的記錄,以便復習,消化,思考。
三、建立錯題本,查漏補缺
初三復習,各類試題要做幾十套,甚至上百套。特級教師提醒學生可以建立一個錯題本,把平時做錯的題系統(tǒng)的整理好,在上面寫上評析和做錯的原因,每過一段時間,就把“錯題筆記”拿出來看一看。在看參考書時,也可以把精彩之處或做錯的題目做上標記,以后再看這本書時就會有所側重。查漏補缺的過程就是反思的過程。除了把不同的問題弄懂以外,還要學會“舉一反三,融會貫通”,及時歸納總結。每次訂正試卷或作業(yè)時,在錯題旁邊要寫明做錯的原因。
初三數(shù)學學習建議
培養(yǎng)良好的學習習慣
1制定計劃。從而使學習目的明確,時間安排合理,不慌不忙,穩(wěn)打穩(wěn)扎,它是推動學生主動學習和克服困難的內(nèi)在動力。但計劃一定要切實可行,既有長遠打算,又有短期安排,執(zhí)行過程中嚴格要求自己,磨練學習意志。
2課前自學。這是上好新課,取得較好學習效果的基礎。課前自學不僅能培養(yǎng)自學能力,而且能提高學習新課的興趣,掌握學習的主動權。自學不能搞走過場,要講究質(zhì)量,力爭在課前把教材弄懂,上課著重聽老師講思路,把握重點,突破難點,盡可能把問題解決在課堂上。
3專心上課!皩W然后知不足”,這是理解和掌握基本知識、基本技能和基本方法的關鍵環(huán)節(jié)。課前自學過的學生上課更能專心聽課,他們知道什么地方該詳細聽,什么地方可以一帶而過,該記的地方才記下來,而不是全盤抄錄,顧此失彼。
4及時復習。這是高效率學習的重要一環(huán)。通過反復閱讀教材,多方面查閱有關資料,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關舊知識聯(lián)系起來,進行分析比效,一邊復習一邊將復習成果整理在筆記本上,使對所學的新知識由“懂”到“會”。
5獨立作業(yè)。這是掌握獨立思考,分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的必要過程。這一過程也是對學生意志毅力的考驗,通過作業(yè)練習使學生對所學知識由“會”到“熟”。
6解決疑難。這是指對獨立完成作業(yè)過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。解決疑難一定要有鍥而不舍的精神,做錯的作業(yè)再做一遍。對錯誤的地方?jīng)]弄清楚要反復思考,實在解決不了的要請教老師和同學,并經(jīng)常把容易錯的地方拿來復習強化,作適當?shù)闹貜托跃毩暎褟睦蠋、同學處獲得的東西消化變成自己的知識,長期堅持使對所學知識由“熟”到“活”。
7系統(tǒng)小結。這是通過積極思考,達到全面系統(tǒng)深刻地掌握知識和發(fā)展認識能力的重要環(huán)節(jié)。小結要在系統(tǒng)復習的基礎上以教材為依據(jù),參照筆記與資料,通過分析、綜合、類比、概括,揭示知識間的內(nèi)在聯(lián)系,以達到對所學知識融會貫通的目的。經(jīng)常進行多層次小結,能對所學知識由“活”到“悟”。
8課外學習。課外學習是課內(nèi)學習的補充和繼續(xù),包括閱讀課外書籍與報刊,參加學科競賽與講座,走訪高年級同學或老師交流學習心得等。它不僅能豐富學生的文化科學知識,加深和鞏固課內(nèi)所學的知識,而且能夠滿足和發(fā)展學生的興趣愛好,培養(yǎng)獨立學習和工作的能力,激發(fā)求知欲與學習熱情。
初三數(shù)學知識點總結3
第1章 二次根式
學生已經(jīng)學過整式與分式,知道用式子可以表示實際問題中的數(shù)量關系。解決與數(shù)量關系有關的問題還會遇到二次根式。二次根式 一章就來認識這種式子,探索它的性質(zhì),掌握它的運算。
在這一章,首先讓學生了解二次根式的概念,并掌握以下重要結論:
注:關于二次根式的運算,由于二次根式的乘除相對于二次根式的加減來說更易于掌握,教科書先安排二次根式的乘除,再安排二次根式的加減。二次根式的乘除一節(jié)的內(nèi)容有兩條發(fā)展的線索。一條是用具體計算的例子體會二次根式乘除法則的合理性,并運用二次根式的乘除法則進行運算;一條是由二次根式的乘除法則得到
并運用它們進行二次根式的化簡。
二次根式的加減一節(jié)先安排二次根式加減的內(nèi)容,再安排二次根式加減乘除混合運算的內(nèi)容。在本節(jié)中,注意類比整式運算的有關內(nèi)容。例如,讓學生比較二次根式的加減與整式的加減,又如,通過例題說明在二次根式的運算中,多項式乘法法則和乘法公式仍然適用。這些處理有助于學生掌握本節(jié)內(nèi)容。
第2章 一元二次方程
學生已經(jīng)掌握了用一元一次方程解決實際問題的.方法。在解決某些實際問題時還會遇到一種新方程 一元二次方程。一元二次方程一章就來認識這種方程,討論這種方程的解法,并運用這種方程解決一些實際問題。
本章首先通過雕像設計、制作方盒、排球比賽等問題引出一元二次方程的概念,給出一元二次方程的一般形式。然后讓學生通過數(shù)值代入的方法找出某些簡單的一元二次方程的解,對一元二次方程的解加以體會,并給出一元二次方程的根的概念,
22.2降次解一元二次方程一節(jié)介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說明。
(1)在介紹配方法時,首先通過實際問題引出形如 的方程。這樣的方程可以化為更為簡單的形如 的方程,由平方根的概念,可以得到這個方程的解。進而舉例說明如何解形如 的方程。然后舉例說明一元二次方程可以化為形如 的方程,引出配方法。最后安排運用配方法解一元二次方程的例題。在例題中,涉及二次項系數(shù)不是1的一元二次方程,也涉及沒有實數(shù)根的一元二次方程。對于沒有實數(shù)根的一元二次方程,學了公式法以后,學生對這個內(nèi)容會有進一步的理解。
(2)在介紹公式法時,首先借助配方法討論方程 的解法,得到一元二次方程的求根公式。然后安排運用公式法解一元二次方程的例題。在例題中,涉及有兩個相等實數(shù)根的一元二次方程,也涉及沒有實數(shù)根的一元二次方程。由此引出一元二次方程的解的三種情況。
(3)在介紹因式分解法時,首先通過實際問題引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排運用因式分解法解一元二次方程的例題。最后對配方法、公式法、因式分解法三種解一元二次方程的方法進行小結。
22.3實際問題與一元二次方程一節(jié)安排了四個探究欄目,分別探究傳播、成本下降率、面積、勻變速運動等問題,使學生進一步體會方程是刻畫現(xiàn)實世界的一個有效的數(shù)學模型。
初三數(shù)學知識點總結4
不等式的概念
1、不等式:用不等號表示不等關系的式子,叫做不等式。
2、不等式的解集:對于一個含有未知數(shù)的不等式,任何一個適合這個不等式的未知數(shù)的值,都叫做這個不等式的解。
3、對于一個含有未知數(shù)的不等式,它的所有解的集合叫做這個不等式的解的集合,簡稱這個不等式的解集。
4、求不等式的解集的過程,叫做解不等式。
5、用數(shù)軸表示不等式的方法。
不等式基本性質(zhì)
1、不等式兩邊都加上或減去同一個數(shù)或同一個整式,不等號的方向不變。
2、不等式兩邊都乘以或除以同一個正數(shù),不等號的方向不變。
3、不等式兩邊都乘以或除以同一個負數(shù),不等號的`方向改變。
4、說明:①在一元一次不等式中,不像等式那樣,等號是不變的,是隨著加或乘的運算改變。②如果不等式乘以0,那么不等號改為等號所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立。
一元一次不等式
1、一元一次不等式的概念:一般地,不等式中只含有一個未知數(shù),未知數(shù)的次數(shù)是1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步驟:1去分母2去括號3移項4合并同類項5將x項的系數(shù)化為1。
一元一次不等式組
1、一元一次不等式組的概念:幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。
2、幾個一元一次不等式的解集的公共部分,叫做它們所組成的一元一次不等式組的解集。
3、求不等式組的解集的過程,叫做解不等式組。
4、當任何數(shù)x都不能使不等式同時成立,我們就說這個不等式組無解或其解為空集。
5、一元一次不等式組的解法
1分別求出不等式組中各個不等式的解集。
2利用數(shù)軸求出這些不等式的解集的公共部分,即這個不等式組的解集。
6、不等式與不等式組
不等式:①用符號〉,=,〈號連接的式子叫不等式。②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。③不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。④不等式的兩邊都乘以或除以同一個負數(shù),不等號方向相反。
7、不等式的解集:
、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。
②一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
、矍蟛坏仁浇饧倪^程叫做解不等式。
初三數(shù)學知識點總結5
平方根:①如果一個正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術平方根。②如果一個數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。③一個正數(shù)有2個平方根/0的平方根為0/負數(shù)沒有平方根。④求一個數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。
立方根:①如果一個數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。②正數(shù)的`立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。③求一個數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。
實數(shù):①實數(shù)分有理數(shù)和無理數(shù)。②在實數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。③每一個實數(shù)都可以在數(shù)軸上的一個點來表示。
初三數(shù)學知識點總結6
第21章二次根式
1、二次根式:一般地,式子叫做二次根式。
注意:
。1)若這個條件不成立,則不是二次根式;
。2)是一個重要的非負數(shù),即; ≥0。
2、重要公式:
3、積的算術平方根:
積的算術平方根等于積中各因式的算術平方根的積;
4、二次根式的乘法法則:。
5、二次根式比較大小的方法:
。1)利用近似值比大小;
。2)把二次根式的系數(shù)移入二次根號內(nèi),然后比大;
(3)分別平方,然后比大小。
6、商的算術平方根:,
商的算術平方根等于被除式的算術平方根除以除式的算術平方根。
7、二次根式的除法法則:
分母有理化的方法是:分式的分子與分母同乘分母的有理化因式,使分母變?yōu)檎健?/p>
8、最簡二次根式:
(1)滿足下列兩個條件的二次根式,叫做最簡二次根式,
①被開方數(shù)的因數(shù)是整數(shù),因式是整式,
、诒婚_方數(shù)中不含能開的盡的因數(shù)或因式;
。2)最簡二次根式中,被開方數(shù)不能含有小數(shù)、分數(shù),字母因式次數(shù)低于2,且不含分母;
(3)化簡二次根式時,往往需要把被開方數(shù)先分解因數(shù)或分解因式;
。4)二次根式計算的最后結果必須化為最簡二次根式。
9、同類二次根式:幾個二次根式化成最簡二次根式后,如果被開方數(shù)相同,這幾個二次根式叫做同類二次根式。
10、二次根式的混合運算:
(1)二次根式的混合運算包括加、減、乘、除、乘方、開方六種代數(shù)運算,以前學過的,在有理數(shù)范圍內(nèi)的一切公式和運算律在二次根式的混合運算中都適用;
。2)二次根式的運算一般要先把二次根式進行適當化簡,例如:化為同類二次根式才能合并;除法運算有時轉(zhuǎn)化為分母有理化或約分更為簡便;使用乘法公式等。
第22章一元二次方程
1、一元二次方程的一般形式:
a≠0時,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有關問題時,多數(shù)習題要先化為一般形式,目的是確定一般形式中的`a、 b、 c;其中a 、 b,、c可能是具體數(shù),也可能是含待定字母或特定式子的代數(shù)式。
2、一元二次方程的解法:一元二次方程的四種解法要求靈活運用,其中直接開平方法雖然簡單,但是適用范圍較。还椒m然適用范圍大,但計算較繁,易發(fā)生計算錯誤;因式分解法適用范圍較大,且計算簡便,是首選方法;配方法使用較少。
3。一元二次方程根的判別式:當ax2+bx+c=0
。╝≠0)時,Δ=b2—4ac叫一元二次方程根的判別式。請注意以下等價命題:
Δ>0 <=>有兩個不等的實根;
Δ=0 <=>有兩個相等的實根;Δ<0 <=>無實根;
4。平均增長率問題————————應用題的類型題之一(設增長率為x):
。1)第一年為a ,第二年為a(1+x) ,第三年為a(1+x)2。
。2)常利用以下相等關系列方程:第三年=第三年或第一年+第二年+第三年=總和。
第23章旋轉(zhuǎn)
1、概念:
把一個圖形繞著某一點O轉(zhuǎn)動一個角度的圖形變換叫做旋轉(zhuǎn),點O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角。
旋轉(zhuǎn)三要素:旋轉(zhuǎn)中心、旋轉(zhuǎn)方面、旋轉(zhuǎn)角
2、旋轉(zhuǎn)的性質(zhì):
。1)旋轉(zhuǎn)前后的兩個圖形是全等形;
。2)兩個對應點到旋轉(zhuǎn)中心的距離相等
。3)兩個對應點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角
3、中心對稱:
把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這個點對稱或中心對稱,這個點叫做對稱中心。
這兩個圖形中的對應點叫做關于中心的對稱點。
4、中心對稱的性質(zhì):
。1)關于中心對稱的兩個圖形,對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分。
。2)關于中心對稱的兩個圖形是全等圖形。
5、中心對稱圖形:
把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。
初三數(shù)學知識點總結7
單項式與多項式
僅含有一些數(shù)和字母的乘法包括乘方運算的式子叫做單項式單獨的一個數(shù)或字母也是單項式。
單項式中的數(shù)字因數(shù)叫做這個單項式或字母因數(shù)的數(shù)字系數(shù),簡稱系數(shù)。
當一個單項式的系數(shù)是1或—1時,“1”通常省略不寫。
一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。
如果在幾個單項式中,不管它們的系數(shù)是不是相同,只要他們所含的字母相同,并且相同字母的指數(shù)也分別相同,那么,這幾個單項式就叫做同類單項式,簡稱同類項所有的常數(shù)都是同類項。
1、多項式
有有限個單項式的代數(shù)和組成的式子,叫做多項式。
多項式里每個單項式叫做多項式的項,不含字母的項,叫做常數(shù)項。
單項式可以看作是多項式的特例
把同類單項式的系數(shù)相加或相減,而單項式中的字母的乘方指數(shù)不變。
在多項式中,所含的.不同未知數(shù)的個數(shù),稱做這個多項式的元數(shù)經(jīng)過合并同類項后,多項式所含單項式的個數(shù),稱為這個多項式的項數(shù)所含個單項式中次項的次數(shù),就稱為這個多項式的次數(shù)。
2、多項式的值
任何一個多項式,就是一個用加、減、乘、乘方運算把已知數(shù)和未知數(shù)連接起來的式子。
3、多項式的恒等
對于兩個一元多項式fx、gx來說,當未知數(shù)x同取任一個數(shù)值a時,如果它們所得的值都是相等的,即fa=ga,那么,這兩個多項式就稱為是恒等的記為fx==gx,或簡記為fx=gx。
性質(zhì)1如果fx==gx,那么,對于任一個數(shù)值a,都有fa=ga。
性質(zhì)2如果fx==gx,那么,這兩個多項式的個同類項系數(shù)就一定對應相等。
4、一元多項式的根
一般地,能夠使多項式fx的值等于0的未知數(shù)x的值,叫做多項式fx的根。
多項式的加、減法,乘法
1、多項式的加、減法
2、多項式的乘法
單項式相乘,用它們系數(shù)作為積的系數(shù),對于相同的字母因式,則連同它的指數(shù)作為積的一個因式。
3、多項式的乘法
多項式與多項式相乘,先用一個多項式等每一項乘以另一個多項式的各項,再把所得的積相加。
常用乘法公式
公式I平方差公式
a+ba—b=a^2—b^2
兩個數(shù)的和與這兩個數(shù)的差的積等于這兩個數(shù)的平方差。
初三數(shù)學知識點總結8
1、圖形的相似
相似多邊形的對應邊的比值相等,對應角相等;
兩個多邊形的對應角相等,對應邊的比值也相等,那么這兩個多邊形相似;
相似比:相似多邊形對應邊的比值。
2、相似三角形
判定:
平行于三角形一邊的直線和其它兩邊相交,所構成的三角形和原三角形相似;
如果兩個三角形的三組對應邊的`比相等,那么這兩個三角形相似;
如果兩個三角形的兩組對應邊的比相等,并且相應的夾角相等,那么兩個三角形相似;
如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么兩個三角形相似。
3相似三角形的周長和面積
相似三角形(多邊形)的周長的比等于相似比;
相似三角形(多邊形)的面積的比等于相似比的平方。
4位似
位似圖形:兩個多邊形相似,而且對應頂點的連線相交于一點,對應邊互相平行,這樣的兩個圖形叫位似圖形,相交的點叫位似中心。
初三數(shù)學知識點總結9
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三邊關系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
3、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
4、中線:在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線。
5、角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
6、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質(zhì)叫三角形的穩(wěn)定性。
7、多邊形:在平面內(nèi),由一些線段首尾順次相接組成的`圖形叫做多邊形。
8、多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。
9、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
10、多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
11、正多邊形:在平面內(nèi),各個角都相等,各條邊都相等的多邊形叫正多邊形。
12、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做多邊形覆蓋平面(平面鑲嵌)。鑲嵌的條件:當圍繞一點拼在一起的幾個多邊形的內(nèi)角加在一起恰好組成一個時,就能拼成一個平面圖形。
13、公式與性質(zhì):
、湃切蔚膬(nèi)角和:三角形的內(nèi)角和為180°
、迫切瓮饨堑男再|(zhì):
性質(zhì)1:三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和。
性質(zhì)2:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。
、嵌噙呅蝺(nèi)角和公式:邊形的內(nèi)角和等于·180°
⑷多邊形的外角和:多邊形的外角和為360°。
、啥噙呅螌蔷的條數(shù):①從邊形的一個頂點出發(fā)可以引條對角線,把多邊形分成個三角形、②邊形共有條對角線。
初三數(shù)學知識點總結10
三角形的外心定義:
外心:是三角形三條邊的垂直平分線的交點,即外接圓的圓心。
外心定理:三角形的'三邊的垂直平分線交于一點。該點叫做三角形的外心。
三角形的外心的性質(zhì):
1、三角形三條邊的垂直平分線的交于一點,該點即為三角形外接圓的圓心;
2、三角形的外接圓有且只有一個,即對于給定的三角形,其外心是的,但一個圓的內(nèi)接三角形卻有無數(shù)個,這些三角形的外心重合;
3、銳角三角形的外心在三角形內(nèi);
鈍角三角形的外心在三角形外;
直角三角形的外心與斜邊的中點重合。
在△ABC中
4、OA=OB=OC=R
5、∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA
6、S△ABC=abc/4R
初三數(shù)學知識點總結11
1、弧長公式
n°的圓心角所對的弧長l的計算公式為L=nπr/180
2、扇形面積公式,其中n是扇形的圓心角度數(shù),R是扇形的半徑,l是扇形的弧長.
S=﹙n/360﹚πR2=1/2×lR
3、圓錐的側面積,其中l(wèi)是圓錐的母線長,r是圓錐的地面半徑.
S=1/2×l×2πr=πrl
4、弦切角定理
弦切角:圓的切線與經(jīng)過切點的弦所夾的角,叫做弦切角.
弦切角定理:弦切角等于弦與切線夾的弧所對的圓周角.
一、選擇題
1.(20xxo珠海,第4題3分)已知圓柱體的底面半徑為3cm,髙為4cm,則圓柱體的側面積為()
A.24πcm2B.36πcm2C.12cm2D.24cm2
考點:圓柱的計算.
分析:圓柱的側面積=底面周長×高,把相應數(shù)值代入即可求解.
解答:解:圓柱的側面積=2π×3×4=24π.
故選A.
點評:本題考查了圓柱的計算,解題的`關鍵是弄清圓柱的側面積的計算方法.
2.(20xxo廣西賀州,第11題3分)如圖,以AB為直徑的⊙O與弦CD相交于點E,且AC=2,AE=,CE=1.則弧BD的長是()
A.B.C.D.
考點:垂徑定理;勾股定理;勾股定理的逆定理;弧長的計算.
分析:連接OC,先根據(jù)勾股定理判斷出△ACE的形狀,再由垂徑定理得出CE=DE,故=,由銳角三角函數(shù)的定義求出∠A的度數(shù),故可得出∠BOC的度數(shù),求出OC的長,再根據(jù)弧長公式即可得出結論.
解答:解:連接OC,
∵△ACE中,AC=2,AE=,CE=1,
∴AE2+CE2=AC2,
∴△ACE是直角三角形,即AE⊥CD,
∵sinA==,
∴∠A=30°,
∴∠COE=60°,
∴=sin∠COE,即=,解得OC=,
∵AE⊥CD,
∴=,
∴===.
故選B.
初三數(shù)學知識點總結12
直角三角形的判定方法:
判定1:定義,有一個角為90°的三角形是直角三角形。
判定2:判定定理:以a、b、c為邊的三角形是以c為斜邊的直角三角形。如果三角形的三邊a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形。(勾股定理的逆定理)。
判定3:若一個三角形30°內(nèi)角所對的'邊是某一邊的一半,則這個三角形是以這條長邊為斜邊的直角三角形。
判定4:兩個銳角互為余角(兩角相加等于90°)的三角形是直角三角形。
判定5:若兩直線相交且它們的斜率之積互為負倒數(shù),則兩直線互相垂直。那么
判定6:若在一個三角形中一邊上的中線等于其所在邊的一半,那么這個三角形為直角三角形。
判定7:一個三角形30°角所對的邊等于這個三角形斜邊的一半,則這個三角形為直角三角形。(與判定3不同,此定理用于已知斜邊的三角形。)
【初三數(shù)學知識點總結】相關文章:
初三數(shù)學知識點總結11-23
初三數(shù)學知識點總結08-18
初三數(shù)學知識點總結12-21
初三數(shù)學知識點總結歸納07-25
初三數(shù)學上冊的知識點總結12-20
初三數(shù)學知識點總結12篇11-23
初三數(shù)學知識點總結10篇07-14
初三數(shù)學知識點總結(10篇)07-14
初三數(shù)學知識點總結15篇01-04