高中數(shù)學(xué)知識點(diǎn)總結(jié)(精選18篇)
總結(jié)是指社會團(tuán)體、企業(yè)單位和個人對某一階段的學(xué)習(xí)、工作或其完成情況加以回顧和分析,得出教訓(xùn)和一些規(guī)律性認(rèn)識的一種書面材料,它在我們的學(xué)習(xí)、工作中起到呈上啟下的作用,讓我們好好寫一份總結(jié)吧。那么總結(jié)應(yīng)該包括什么內(nèi)容呢?下面是小編收集整理的高中數(shù)學(xué)知識點(diǎn)總結(jié),僅供參考,希望能夠幫助到大家。
高中數(shù)學(xué)知識點(diǎn)總結(jié) 1
考點(diǎn)一、映射的概念
1.了解對應(yīng)大千世界的對應(yīng)共分四類,分別是:一對一多對一一對多多對多
2.映射:設(shè)A和B是兩個非空集合,如果按照某種對應(yīng)關(guān)系f,對于集合A中的任意一個元素x,在集合B中都存在的一個元素y與之對應(yīng),那么,就稱對應(yīng)f:A→B為集合A到集合B的一個映射(mapping).映射是特殊的對應(yīng),簡稱“對一”的對應(yīng).包括:一對一多對一
考點(diǎn)二、函數(shù)的概念
1.函數(shù):設(shè)A和B是兩個非空的數(shù)集,如果按照某種確定的對應(yīng)關(guān)系f,對于集合A中的任意一個數(shù)x,在集合B中都存在確定的數(shù)y與之對應(yīng),那么,就稱對應(yīng)f:A→B為集合A到集合B的一個函數(shù).記作y=f(x),xA.其中x叫自變量,x的.取值范圍A叫函數(shù)的定義域;與x的值相對應(yīng)的y的值函數(shù)值,函數(shù)值的集合叫做函數(shù)的值域.函數(shù)是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射.
2.函數(shù)的三要素:定義域、值域、對應(yīng)關(guān)系.這是判斷兩個函數(shù)是否為同一函數(shù)的依據(jù).
3.區(qū)間的概念:設(shè)a,bR,且a
、伲╝,b)={xa
、荩╝,+∞)={>a}⑥[a,+∞)={≥a}⑦(—∞,b)={
考點(diǎn)三、函數(shù)的表示方法
1.函數(shù)的三種表示方法列表法圖象法解析法
2.分段函數(shù):定義域的不同部分,有不同的對應(yīng)法則的函數(shù).注意兩點(diǎn):①分段函數(shù)是一個函數(shù),不要誤認(rèn)為是幾個函數(shù).②分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集.
考點(diǎn)四、求定義域的幾種情況
①若f(x)是整式,則函數(shù)的定義域是實(shí)數(shù)集R;
②若f(x)是分式,則函數(shù)的定義域是使分母不等于0的實(shí)數(shù)集;
、廴鬴(x)是二次根式,則函數(shù)的定義域是使根號內(nèi)的式子大于或等于0的實(shí)數(shù)集合;
、苋鬴(x)是對數(shù)函數(shù),真數(shù)應(yīng)大于零.
⑤.因?yàn)榱愕牧愦蝺鐩]有意義,所以底數(shù)和指數(shù)不能同時為零.
⑥若f(x)是由幾個部分的數(shù)學(xué)式子構(gòu)成的,則函數(shù)的定義域是使各部分式子都有意義的實(shí)數(shù)集合;
、呷鬴(x)是由實(shí)際問題抽象出來的函數(shù),則函數(shù)的定義域應(yīng)符合實(shí)際問題
高中數(shù)學(xué)知識點(diǎn)總結(jié) 2
軌跡,包含兩個方面的問題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。
一、求動點(diǎn)的軌跡方程的基本步驟。
1、建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動點(diǎn)M的坐標(biāo);
2、寫出點(diǎn)M的集合;
3、列出方程=0;
4、化簡方程為最簡形式;
5、檢驗(yàn)。
二、求動點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。
1、直譯法:直接將條件翻譯成等式,整理化簡后即得動點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
2、定義法:如果能夠確定動點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
3、相關(guān)點(diǎn)法:用動點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡便得到動點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。
4、參數(shù)法:當(dāng)動點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時,往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
5、交軌法:將兩動曲線方程中的.參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。
求動點(diǎn)軌跡方程的一般步驟:
、俳ㄏ怠⑦m當(dāng)?shù)淖鴺?biāo)系;
②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);
③列式——列出動點(diǎn)p所滿足的關(guān)系式;
、艽鷵Q——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;
、葑C明——證明所求方程即為符合條件的動點(diǎn)軌跡方程。
高中數(shù)學(xué)知識點(diǎn)總結(jié) 3
1.一些基本概念:
(1)向量:既有大小,又有方向的量.
(2)數(shù)量:只有大小,沒有方向的量.
(3)有向線段的三要素:起點(diǎn)、方向、長度.
(4)零向量:長度為0的向量.
(5)單位向量:長度等于1個單位的向量.
(6)平行向量(共線向量):方向相同或相反的`非零向量.
※零向量與任一向量平行.
(7)相等向量:長度相等且方向相同的向量.
2.向量加法運(yùn)算:
⑴三角形法則的特點(diǎn):首尾相連.
、破叫兴倪呅畏▌t的特點(diǎn):共起點(diǎn)
高中數(shù)學(xué)知識點(diǎn)總結(jié) 4
一、集合、簡易邏輯
1、集合;
2、子集;
3、補(bǔ)集;
4、交集;
5、并集;
6、邏輯連結(jié)詞;
7、四種命題;
8、充要條件。
二、函數(shù)
1、映射;
2、函數(shù);
3、函數(shù)的單調(diào)性;
4、反函數(shù);
5、互為反函數(shù)的函數(shù)圖象間的關(guān)系;
6、指數(shù)概念的擴(kuò)充;
7、有理指數(shù)冪的運(yùn)算;
8、指數(shù)函數(shù);
9、對數(shù);
10、對數(shù)的運(yùn)算性質(zhì);
11、對數(shù)函數(shù)。
12、函數(shù)的應(yīng)用舉例。
三、數(shù)列(12課時,5個)
1、數(shù)列;
2、等差數(shù)列及其通項(xiàng)公式;
3、等差數(shù)列前n項(xiàng)和公式;
4、等比數(shù)列及其通頂公式;
5、等比數(shù)列前n項(xiàng)和公式。
四、三角函數(shù)
1、角的概念的推廣;
2、弧度制;
3、任意角的三角函數(shù);
4、單位圓中的三角函數(shù)線;
5、同角三角函數(shù)的基本關(guān)系式;
6、正弦、余弦的誘導(dǎo)公式;
7、兩角和與差的正弦、余弦、正切;
8、二倍角的正弦、余弦、正切;
9、正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);
10、周期函數(shù);
11、函數(shù)的奇偶性;
12、函數(shù)的圖象;
13、正切函數(shù)的圖象和性質(zhì);
14、已知三角函數(shù)值求角;
15、正弦定理;
16、余弦定理;
17、斜三角形解法舉例。
五、平面向量
1、向量;
2、向量的加法與減法;
3、實(shí)數(shù)與向量的積;
4、平面向量的坐標(biāo)表示;
5、線段的定比分點(diǎn);
6、平面向量的數(shù)量積;
7、平面兩點(diǎn)間的距離;
8、平移。
六、不等式
1、不等式;
2、不等式的基本性質(zhì);
3、不等式的證明;
4、不等式的解法;
5、含絕對值的不等式。
七、直線和圓的方程
1、直線的`傾斜角和斜率;
2、直線方程的點(diǎn)斜式和兩點(diǎn)式;
3、直線方程的一般式;
4、兩條直線平行與垂直的條件;
5、兩條直線的交角;
6、點(diǎn)到直線的距離;
7、用二元一次不等式表示平面區(qū)域;
8、簡單線性規(guī)劃問題;
9、曲線與方程的概念;
10、由已知條件列出曲線方程;
11、圓的標(biāo)準(zhǔn)方程和一般方程;
12、圓的參數(shù)方程。
八、圓錐曲線
1、橢圓及其標(biāo)準(zhǔn)方程;
2、橢圓的簡單幾何性質(zhì);
3、橢圓的參數(shù)方程;
4、雙曲線及其標(biāo)準(zhǔn)方程;
5、雙曲線的簡單幾何性質(zhì);
6、拋物線及其標(biāo)準(zhǔn)方程;
7、拋物線的簡單幾何性質(zhì)。
九、直線、平面、簡單何體
1、平面及基本性質(zhì);
2、平面圖形直觀圖的畫法;
3、平面直線;
4、直線和平面平行的判定與性質(zhì);
5、直線和平面垂直的判定與性質(zhì);
6、三垂線定理及其逆定理;
7、兩個平面的位置關(guān)系;
8、空間向量及其加法、減法與數(shù)乘;
9、空間向量的坐標(biāo)表示;
10、空間向量的數(shù)量積;
11、直線的方向向量;
12、異面直線所成的角;
13、異面直線的公垂線;
14、異面直線的距離;
15、直線和平面垂直的性質(zhì);
16、平面的法向量;
17、點(diǎn)到平面的距離;
18、直線和平面所成的角;
19、向量在平面內(nèi)的射影;
20、平面與平面平行的性質(zhì);
21、平行平面間的距離;
22、二面角及其平面角;
23、兩個平面垂直的判定和性質(zhì);
24、多面體;
25、棱柱;
26、棱錐;
27、正多面體;
28、球。
十、排列、組合、二項(xiàng)式定理
1、分類計數(shù)原理與分步計數(shù)原理;
2、排列;
3、排列數(shù)公式;
4、組合;
5、組合數(shù)公式;
6、組合數(shù)的兩個性質(zhì);
7、二項(xiàng)式定理;
8、二項(xiàng)展開式的性質(zhì)。
十一、概率
1、隨機(jī)事件的概率;
2、等可能事件的概率;
3、互斥事件有一個發(fā)生的概率;
4、相互獨(dú)立事件同時發(fā)生的概率;
5、獨(dú)立重復(fù)試驗(yàn)。
必修一函數(shù)重點(diǎn)知識整理
1、函數(shù)的奇偶性
(1)若f(x)是偶函數(shù),那么f(x)=f(—x);
(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));
(3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(—x)=0或(f(x)≠0);
(4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;
(5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;
2、復(fù)合函數(shù)的有關(guān)問題
(1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。
(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;
3、函數(shù)圖像(或方程曲線的對稱性)
(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點(diǎn)關(guān)于對稱中心(對稱軸)的對稱點(diǎn)仍在圖像上;
(2)證明圖像C1與C2的對稱性,即證明C1上任意點(diǎn)關(guān)于對稱中心(對稱軸)的對稱點(diǎn)仍在C2上,反之亦然;
(3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=—x+a)的對稱曲線C2的方程為f(y—a,x+a)=0(或f(—y+a,—x+a)=0);
(4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對稱曲線C2方程為:f(2a—x,2b—y)=0;
(5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a—x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱;
(6)函數(shù)y=f(x—a)與y=f(b—x)的圖像關(guān)于直線x=對稱;
4、函數(shù)的周期性
(1)y=f(x)對x∈R時,f(x +a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);
(2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);
(3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);
(4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù);
(5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);
(6)y=f(x)對x∈R時,f(x+a)=—f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);
5、方程k=f(x)有解k∈D(D為f(x)的值域);
6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;
7、(1)(a>0,a≠1,b>0,n∈R+);
(2)l og a N=(a>0,a≠1,b>0,b≠1);
(3)l og a b的符號由口訣“同正異負(fù)”記憶;
(4)a log a N= N(a>0,a≠1,N>0);
8、判斷對應(yīng)是否為映射時,抓住兩點(diǎn):
(1)A中元素必須都有象且唯一;
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9、能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。
10、對于反函數(shù),應(yīng)掌握以下一些結(jié)論:
(1)定義域上的單調(diào)函數(shù)必有反函數(shù);
(2)奇函數(shù)的反函數(shù)也是奇函數(shù);
(3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);
(4)周期函數(shù)不存在反函數(shù);
(5)互為反函數(shù)的兩個函數(shù)具有相同的單調(diào)性;
(6)y=f(x)與y=f—1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A)。
11、處理二次函數(shù)的問題勿忘數(shù)形結(jié)合;二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關(guān)系;
12、依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號性可解決求一類參數(shù)的范圍問題
13、恒成立問題的處理方法:
(1)分離參數(shù)法;
(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解。
拓展閱讀:高中數(shù)學(xué)復(fù)習(xí)方法
1、把答案蓋住看例題
例題不能帶著答案去看,不然會認(rèn)為自己就是這么,其實(shí)自己并沒有理解透徹。
所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看。這時要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。
經(jīng)過上面的訓(xùn)練,自己的思維空間擴(kuò)展了,看問題也全面了。如果把題目徹底搞清了,在題后精煉幾個批注,說明此題的“題眼”及巧妙之處,收獲會更大。
2、研究每題都考什么
數(shù)學(xué)能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),而是要通過一題聯(lián)想到很多題。
3、錯一次反思一次
每次業(yè)及考試或多或少會發(fā)生些錯誤,這并不可怕,要緊的是避免類似的錯誤再次重現(xiàn)。因此平時注意把錯題記下來。
學(xué)生若能將每次考試或練習(xí)中出現(xiàn)的錯誤記錄下來分析,并盡力保證在下次考試時不發(fā)生同樣錯誤,那么以后人生中最重要的高考也就能避免犯錯了。
4、分析試卷總結(jié)經(jīng)驗(yàn)
每次考試結(jié)束試卷發(fā)下來,要認(rèn)真分析得失,總結(jié)經(jīng)驗(yàn)教訓(xùn)。特別是將試卷中出現(xiàn)的錯誤進(jìn)行分類。
高中數(shù)學(xué)知識點(diǎn)總結(jié) 5
一、圓及圓的相關(guān)量的定義
1.平面上到定點(diǎn)的距離等于定長的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱為圓心,定長稱為半徑。
2.圓上任意兩點(diǎn)間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點(diǎn)的線段叫做弦。經(jīng)過圓心的弦叫
做直徑。
3.頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個交點(diǎn)的角叫做圓周角。
4.過三角形的三個頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內(nèi)切圓,其圓心稱為內(nèi)心。
5.直線與圓有3種位置關(guān)系:無公共點(diǎn)為相離;有2個公共點(diǎn)為相交;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個唯一的公共點(diǎn)叫做切點(diǎn)。
6.兩圓之間有5種位置關(guān)系:無公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。
7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。
二、有關(guān)圓的字母表示方法
圓--⊙ 半徑—r 弧--⌒ 直徑—d
扇形弧長/圓錐母線—l 周長—C 面積—S三、有關(guān)圓的基本性質(zhì)與定理(27個)
1.點(diǎn)P與圓O的位置關(guān)系(設(shè)P是一點(diǎn),則PO是點(diǎn)到圓心的距離):
P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO
2.圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。
3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。逆定
理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。
4.在同圓或等圓中,如果2個圓心角,2個圓周角,2條弧,2條弦中有一組量相等,那么他們所對應(yīng)的其余各組量都分別相等。
5.一條弧所對的圓周角等于它所對的圓心角的一半。
6.直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。
7.不在同一直線上的3個點(diǎn)確定一個圓。
8.一個三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點(diǎn),到三角形3個頂點(diǎn)距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點(diǎn),到三角形3邊距離相等。
9.直線AB與圓O的位置關(guān)系(設(shè)OP⊥AB于P,則PO是AB到圓心的距
離):
AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO
10.圓的切線垂直于過切點(diǎn)的直徑;經(jīng)過直徑的一端,并且垂直于這條直徑的直線,是這個圓的切線。
11.圓與圓的位置關(guān)系(設(shè)兩圓的半徑分別為R和r,且R≥r,圓心距為P):
外離P>R+r;外切P=R+r;相交R-r
三、有關(guān)圓的計算公式
1.圓的周長C=2πr=πd
2.圓的面積S=s=πr?
3.扇形弧長l=nπr/180
4.扇形面積S=nπr? /360=rl/2
5.圓錐側(cè)面積S=πrl
四、圓的方程
1.圓的標(biāo)準(zhǔn)方程
在平面直角坐標(biāo)系中,以點(diǎn)O(a,b)為圓心,以r為半徑的'圓的標(biāo)準(zhǔn)方程是
。▁-a)^2+(y-b)^2=r^2
2.圓的一般方程
把圓的標(biāo)準(zhǔn)方程展開,移項(xiàng),合并同類項(xiàng)后,可得圓的一般方程是
x^2+y^2+Dx+Ey+F=0
和標(biāo)準(zhǔn)方程對比,其實(shí)D=-2a,E=-2b,F=a^2+b^2
相關(guān)知識:圓的離心率e=0.在圓上任意一點(diǎn)的曲率半徑都是r.
五、圓與直線的位置關(guān)系判斷
平面內(nèi),直線Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是
討論如下2種情況:
。1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],
代入x^2+y^2+Dx+Ey+F=0,即成為一個關(guān)于x的一元二次方程f(x)=0.
利用判別式b^2-4ac的符號可確定圓與直線的位置關(guān)系如下:
如果b^2-4ac>0,則圓與直線有2交點(diǎn),即圓與直線相交
如果b^2-4ac=0,則圓與直線有1交點(diǎn),即圓與直線相切
如果b^2-4ac<0,則圓與直線有0交點(diǎn),即圓與直線相離
(2)如果B=0即直線為Ax+C=0,即x=-C/A.它平行于y軸(或垂直于x軸)
將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2
令y=b,求出此時的兩個x值x1,x2,并且我們規(guī)定x1
當(dāng)x=-C/Ax2時,直線與圓相離
當(dāng)x1
當(dāng)x=-C/A=x1或x=-C/A=x2時,直線與圓相切
圓的定理:
1.不在同一直線上的三點(diǎn)確定一個圓。
2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1.①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2.圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對稱中心的中心對稱圖形
4.圓是定點(diǎn)的距離等于定長的點(diǎn)的集合
5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7.同圓或等圓的半徑相等
8.到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓
9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等
10.推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等
11.定理 圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它 的內(nèi)對角
12.①直線L和⊙O相交 d
、谥本L和⊙O相切 d=r
、壑本L和⊙O相離 d>r
13.切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
14.切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點(diǎn)的半徑
15.推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)
16.推論2 經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心
17.切線長定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等, 圓心和這一點(diǎn)的連線平分兩條切線的夾角
18.圓的外切四邊形的兩組對邊的和相等 外角等于內(nèi)對角
19.如果兩個圓相切,那么切點(diǎn)一定在連心線上
20.①兩圓外離 d>R+r ②兩圓外切 d=R+r
、蹆蓤A相交 R-rr)
④兩圓內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含dr)
21.定理 相交兩圓的連心線垂直平分兩圓的公共弦
22.定理 把圓分成n(n≥3):
。1)依次連結(jié)各分點(diǎn)所得的多邊形是這個圓的內(nèi)接正n邊形
(2)經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個圓的外切正n邊形
23.定理 任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓
24.正n邊形的每個內(nèi)角都等于(n-2)×180°/n
25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
27.正三角形面積√3a/4 a表示邊長
28.如果在一個頂點(diǎn)周圍有k個正n邊形的角,由于這些角的和應(yīng)為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
29.弧長計算公式:L=n兀R/180
30.扇形面積公式:S扇形=n兀R^2/360=LR/2
31.內(nèi)公切線長= d-(R-r) 外公切線長= d-(R+r)
32.定理 一條弧所對的圓周角等于它所對的圓心角的一半
33.推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
34.推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑
35.弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r
高中數(shù)學(xué)知識點(diǎn)總結(jié) 6
一、直線與方程高考考試內(nèi)容及考試要求:
考試內(nèi)容:
1.直線的傾斜角和斜率;直線方程的點(diǎn)斜式和兩點(diǎn)式;直線方程的一般式;
2.兩條直線平行與垂直的條件;兩條直線的交角;點(diǎn)到直線的距離;
考試要求:
1.理解直線的傾斜角和斜率的概念,掌握過兩點(diǎn)的直線的斜率公式,掌握直線方程的點(diǎn)斜式、兩點(diǎn)式、一般式,并能根據(jù)條件熟練地求出直線方程;
2.掌握兩條直線平行與垂直的條件,兩條直線所成的角和點(diǎn)到直線的距離公式能夠根據(jù)直線的方程判斷兩條直線的位置關(guān)系;
二、直線與方程
課標(biāo)要求:
1.在平面直角坐標(biāo)系中,結(jié)合具體圖形,探索確定直線位置的幾何要素;
2.理解直線的傾斜角和斜率的`概念,經(jīng)歷用代數(shù)方法刻畫直線斜率的過程,掌握過兩點(diǎn)的直線斜率的計算公式;
3.根據(jù)確定直線位置的幾何要素,探索并掌握直線方程的幾種形式(點(diǎn)斜式、兩點(diǎn)式及一般式),體會斜截式與一次函數(shù)的關(guān)系;
4.會用代數(shù)的方法解決直線的有關(guān)問題,包括求兩直線的交點(diǎn),判斷兩條直線的位置關(guān)系,求兩點(diǎn)間的距離、點(diǎn)到直線的距離以及兩條平行線之間的距離等。
要點(diǎn)精講:
1.直線的傾斜角:當(dāng)直線l與x軸相交時,取x軸作為基準(zhǔn),x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角。特別地,當(dāng)直線l與x軸平行或重合時,規(guī)定α= 0°.
傾斜角α的取值范圍:0°≤α<180°.當(dāng)直線l與x軸垂直時,α= 90°.
2.直線的斜率:一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是k = tanα
(1)當(dāng)直線l與x軸平行或重合時,α=0°,k = tan0°=0;
(2)當(dāng)直線l與x軸垂直時,α= 90°,k不存在。
由此可知,一條直線l的傾斜角α一定存在,但是斜率k不一定存在。
3.過兩點(diǎn)p1(x1,y1),p2(x2,y2)(x1≠x2)的直線的斜率公式:
(若x1=x2,則直線p1p2的斜率不存在,此時直線的傾斜角為90°)。
4.兩條直線的平行與垂直的判定
(1)若l1,l2均存在斜率且不重合:
①;②
注:上面的等價是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個前提,結(jié)論并不成立。
高中數(shù)學(xué)知識點(diǎn)總結(jié) 7
一、求導(dǎo)數(shù)的方法
(1)基本求導(dǎo)公式
(2)導(dǎo)數(shù)的四則運(yùn)算
(3)復(fù)合函數(shù)的導(dǎo)數(shù)
設(shè)在點(diǎn)x處可導(dǎo),y=在點(diǎn)處可導(dǎo),則復(fù)合函數(shù)在點(diǎn)x處可導(dǎo),且即__
二、關(guān)于極限
1、數(shù)列的極限:
粗略地說,就是當(dāng)數(shù)列的項(xiàng)n無限增大時,數(shù)列的項(xiàng)無限趨向于A,這就是數(shù)列極限的描述性定義。記作:=A。如:
2、函數(shù)的極限:
當(dāng)自變量x無限趨近于常數(shù)時,如果函數(shù)無限趨近于一個常數(shù),就說當(dāng)x趨近于時,函數(shù)的極限是,記作
三、導(dǎo)數(shù)的概念
1、在處的.導(dǎo)數(shù)。
2、在的導(dǎo)數(shù)。
3、函數(shù)在點(diǎn)處的導(dǎo)數(shù)的幾何意義:
函數(shù)在點(diǎn)處的導(dǎo)數(shù)是曲線在處的切線的斜率,
即k=,相應(yīng)的切線方程是__
注:函數(shù)的導(dǎo)函數(shù)在時的函數(shù)值,就是在處的導(dǎo)數(shù)。
例、若=2,則=()A—1B—2C1D
四、導(dǎo)數(shù)的綜合運(yùn)用
(一)曲線的切線
函數(shù)y=f(x)在點(diǎn)處的導(dǎo)數(shù),就是曲線y=(x)在點(diǎn)處的切線的斜率。由此,可以利用導(dǎo)數(shù)求曲線的切線方程。具體求法分兩步:
(1)求出函數(shù)y=f(x)在點(diǎn)處的導(dǎo)數(shù),即曲線y=f(x)在點(diǎn)處的切線的斜率k=__
(2)在已知切點(diǎn)坐標(biāo)和切線斜率的條件下,求得切線方程為x。
高中數(shù)學(xué)知識點(diǎn)總結(jié) 8
1、命題的四種形式及其相互關(guān)系是什么?
(互為逆否關(guān)系的命題是等價命題。)
原命題與逆否命題同真、同假;逆命題與否命題同真同假。
2、對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應(yīng)元素的唯一性,哪幾種對應(yīng)能構(gòu)成映射?
(一對一,多對一,允許B中有元素?zé)o原象。)
3、函數(shù)的.三要素是什么?如何比較兩個函數(shù)是否相同?
(定義域、對應(yīng)法則、值域)
4、反函數(shù)存在的條件是什么?
(一一對應(yīng)函數(shù))
求反函數(shù)的步驟掌握了嗎?
(①反解x;②互換x、y;③注明定義域)
5、反函數(shù)的性質(zhì)有哪些?
、倩榉春瘮(shù)的圖象關(guān)于直線y=x對稱;
②保存了原來函數(shù)的單調(diào)性、奇函數(shù)性;
6、函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?
(f(x)定義域關(guān)于原點(diǎn)對稱)
高中數(shù)學(xué)知識點(diǎn)總結(jié) 9
簡單隨機(jī)抽樣
(1)總體和樣本
①在統(tǒng)計學(xué)中,把研究對象的全體叫做總體。
、诎衙總研究對象叫做個體。
、郯芽傮w中個體的總數(shù)叫做總體容量。
、転榱搜芯靠傮w的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:x1,x2,…,__研究,我們稱它為樣本。其中個體的個數(shù)稱為樣本容量。
(2)簡單隨機(jī)抽樣,也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類、排隊(duì)等,完全隨
機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個樣本單位被抽中的可能性相同(概率相等),樣本的.每個單位完全獨(dú)立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。
(3)簡單隨機(jī)抽樣常用的方法:
①抽簽法;
、陔S機(jī)數(shù)表法;
、塾嬎銠C(jī)模擬法;
、凼褂媒y(tǒng)計軟件直接抽取。
在簡單隨機(jī)抽樣的樣本容量設(shè)計中,主要考慮:
、倏傮w變異情況;
、谠试S誤差范圍;
、鄹怕时WC程度。
(4)抽簽法:
、俳o調(diào)查對象群體中的每一個對象編號;
、跍(zhǔn)備抽簽的工具,實(shí)施抽簽;
、蹖颖局械拿恳粋個體進(jìn)行測量或調(diào)查
(5)隨機(jī)數(shù)表法
高中數(shù)學(xué)知識點(diǎn)總結(jié) 10
考點(diǎn)一:集合與簡易邏輯
集合部分一般以選擇題出現(xiàn),屬容易題。重點(diǎn)考查集合間關(guān)系的理解和認(rèn)識。近年的試題加強(qiáng)了對集合計算化簡能力的考查,并向無限集發(fā)展,考查抽象思維能力。在解決這些問題時,要注意利用幾何的直觀性,并注重集合表示方法的轉(zhuǎn)換與化簡。簡易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關(guān)系、邏輯聯(lián)結(jié)詞、“充要關(guān)系”、命題真?zhèn)蔚呐袛、全稱命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達(dá)數(shù)學(xué)解題過程和邏輯推理。
考點(diǎn)二:函數(shù)與導(dǎo)數(shù)
函數(shù)是高考的重點(diǎn)內(nèi)容,以選擇題和填空題的為載體針對性考查函數(shù)的定義域與值域、函數(shù)的性質(zhì)、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對數(shù)、冪函數(shù))的應(yīng)用等,分值約為10分,解答題與導(dǎo)數(shù)交匯在一起考查函數(shù)的性質(zhì)。導(dǎo)數(shù)部分一方面考查導(dǎo)數(shù)的運(yùn)算與導(dǎo)數(shù)的幾何意義,另一方面考查導(dǎo)數(shù)的簡單應(yīng)用,如求函數(shù)的單調(diào)區(qū)間、極值與最值等,通常以客觀題的形式出現(xiàn),屬于容易題和中檔題,三是導(dǎo)數(shù)的綜合應(yīng)用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式出現(xiàn),如一些不等式恒成立問題、參數(shù)的取值范圍問題、方程根的個數(shù)問題、不等式的證明等問題。
考點(diǎn)三:三角函數(shù)與平面向量
一般是2道小題,1道綜合解答題。小題一道考查平面向量有關(guān)概念及運(yùn)算等,另一道對三角知識點(diǎn)的補(bǔ)充。大題中如果沒有涉及正弦定理、余弦定理的應(yīng)用,可能就是一道和解答題相互補(bǔ)充的三角函數(shù)的圖像、性質(zhì)或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數(shù)形結(jié)合思想在解題中的應(yīng)用。向量重點(diǎn)考查平面向量數(shù)量積的概念及應(yīng)用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等結(jié)合,解決角度、垂直、共線等問題是“新熱點(diǎn)”題型。
考點(diǎn)四:數(shù)列與不等式
不等式主要考查一元二次不等式的解法、一元二次不等式組和簡單線性規(guī)劃問題、基本不等式的應(yīng)用等,通常會在小題中設(shè)置1到2道題。對不等式的工具性穿插在數(shù)列、解析幾何、函數(shù)導(dǎo)數(shù)等解答題中進(jìn)行考查.在選擇、填空題中考查等差或等比數(shù)列的概念、性質(zhì)、通項(xiàng)公式、求和公式等的靈活應(yīng)用,一道解答題大多凸顯以數(shù)列知識為工具,綜合運(yùn)用函數(shù)、方程、不等式等解決問題的能力,它們都屬于中、高檔題目。
考點(diǎn)五:立體幾何與空間向量
一是考查空間幾何體的結(jié)構(gòu)特征、直觀圖與三視圖;二是考查空間點(diǎn)、線、面之間的位置關(guān)系;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求).在高考試卷中,一般有1~2個客觀題和一個解答題,多為中檔題。
考點(diǎn)六:解析幾何
一般有1~2個客觀題和1個解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關(guān)系、圓錐曲線的定義應(yīng)用、標(biāo)準(zhǔn)方程的`求解、離心率的計算等,解答題則主要考查直線與橢圓、拋物線等的位置關(guān)系問題,經(jīng)常與平面向量、函數(shù)與不等式交匯,考查一些存在性問題、證明問題、定點(diǎn)與定值、最值與范圍問題等。
考點(diǎn)七:算法復(fù)數(shù)推理與證明
高考對算法的考查以選擇題或填空題的形式出現(xiàn),或給解答題披層“外衣”.考查的熱點(diǎn)是流程圖的識別與算法語言的閱讀理解.算法與數(shù)列知識的網(wǎng)絡(luò)交匯命題是考查的主流.復(fù)數(shù)考查的重點(diǎn)是復(fù)數(shù)的有關(guān)概念、復(fù)數(shù)的代數(shù)形式、運(yùn)算及運(yùn)算的幾何意義,一般是選擇題、填空題,難度不大.推理證明部分命題的方向主要會在函數(shù)、三角、數(shù)列、立體幾何、解析幾何等方面,單獨(dú)出題的可能性較小。對于理科,數(shù)學(xué)歸納法可能作為解答題的一小問。
高中數(shù)學(xué)知識點(diǎn)總結(jié) 11
一、高中數(shù)列基本公式:
1、一般數(shù)列的通項(xiàng)an與前n項(xiàng)和Sn的關(guān)系:an=
2、等差數(shù)列的通項(xiàng)公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項(xiàng)、ak為已知的第k項(xiàng)) 當(dāng)d≠0時,an是關(guān)于n的一次式;當(dāng)d=0時,an是一個常數(shù)。
3、等差數(shù)列的前n項(xiàng)和公式:Sn=
Sn=
Sn=
當(dāng)d≠0時,Sn是關(guān)于n的二次式且常數(shù)項(xiàng)為0;當(dāng)d=0時(a1≠0),Sn=na1是關(guān)于n的正比例式。
4、等比數(shù)列的通項(xiàng)公式: an= a1qn-1an= akqn-k
(其中a1為首項(xiàng)、ak為已知的第k項(xiàng),an≠0)
5、等比數(shù)列的前n項(xiàng)和公式:當(dāng)q=1時,Sn=n a1 (是關(guān)于n的正比例式);
當(dāng)q≠1時,Sn=
Sn=
二、高中數(shù)學(xué)中有關(guān)等差、等比數(shù)列的結(jié)論
1、等差數(shù)列{an}的任意連續(xù)m項(xiàng)的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等差數(shù)列。
2、等差數(shù)列{an}中,若m+n=p+q,則
3、等比數(shù)列{an}中,若m+n=p+q,則
4、等比數(shù)列{an}的任意連續(xù)m項(xiàng)的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等比數(shù)列。
5、兩個等差數(shù)列{an}與{bn}的和差的數(shù)列{an+bn}、{an-bn}仍為等差數(shù)列。
6、兩個等比數(shù)列{an}與{bn}的.積、商、倒數(shù)組成的數(shù)列仍為等比數(shù)列。
7、等差數(shù)列{an}的任意等距離的項(xiàng)構(gòu)成的數(shù)列仍為等差數(shù)列。
8、等比數(shù)列{an}的任意等距離的項(xiàng)構(gòu)成的數(shù)列仍為等比數(shù)列。
9、三個數(shù)成等差數(shù)列的設(shè)法:a-d,a,a+d;四個數(shù)成等差的設(shè)法:a-3d,a-d,,a+d,a+3d
10、三個數(shù)成等比數(shù)列的設(shè)法:a/q,a,aq;
四個數(shù)成等比的錯誤設(shè)法:a/q3,a/q,aq,aq3 (為什么?)
高中數(shù)學(xué)知識點(diǎn)總結(jié) 12
★高中數(shù)學(xué)導(dǎo)數(shù)知識點(diǎn)
一、早期導(dǎo)數(shù)概念————特殊的形式大約在1629年法國數(shù)學(xué)家費(fèi)馬研究了作曲線的切線和求函數(shù)極值的方法1637年左右他寫一篇手稿《求最大值與最小值的方法》。在作切線時他構(gòu)造了差分f(A+E)—f(A),發(fā)現(xiàn)的因子E就是我們所說的導(dǎo)數(shù)f(A)。
二、17世紀(jì)————廣泛使用的“流數(shù)術(shù)”17世紀(jì)生產(chǎn)力的發(fā)展推動了自然科學(xué)和技術(shù)的發(fā)展在前人創(chuàng)造性研究的基礎(chǔ)上大數(shù)學(xué)家牛頓、萊布尼茨等從不同的角度開始系統(tǒng)地研究微積分。牛頓的微積分理論被稱為“流數(shù)術(shù)”他稱變量為流量稱變量的變化率為流數(shù)相當(dāng)于我們所說的導(dǎo)數(shù)。牛頓的有關(guān)“流數(shù)術(shù)”的主要著作是《求曲邊形面積》、《運(yùn)用無窮多項(xiàng)方程的計算法》和《流數(shù)術(shù)和無窮級數(shù)》流數(shù)理論的實(shí)質(zhì)概括為他的重點(diǎn)在于一個變量的函數(shù)而不在于多變量的方程在于自變量的變化與函數(shù)的變化的比的構(gòu)成最在于決定這個比當(dāng)變化趨于零時的極限。
三、19世紀(jì)導(dǎo)數(shù)————逐漸成熟的理論1750年達(dá)朗貝爾在為法國科學(xué)家院出版的《百科全書》第五版寫的.“微分”條目中提出了關(guān)于導(dǎo)數(shù)的一種觀點(diǎn)可以用現(xiàn)代符號簡單表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《無窮小分析概論》中定義導(dǎo)數(shù)如果函數(shù)y=f(x)在變量x的兩個給定的界限之間保持連續(xù)并且我們?yōu)檫@樣的變量指定一個包含在這兩個不同界限之間的值那么是使變量得到一個無窮小增量。19世紀(jì)60年代以后魏爾斯特拉斯創(chuàng)造了ε—δ語言對微積分中出現(xiàn)的各種類型的極限重加表達(dá)導(dǎo)數(shù)的定義也就獲得了今天常見的形式。
四、實(shí)無限將異軍突起微積分第二輪初等化或成為可能微積分學(xué)理論基礎(chǔ)大體可以分為兩個部分。一個是實(shí)無限理論即無限是一個具體的東西一種真實(shí)的存在另一種是潛無限指一種意識形態(tài)上的過程比如無限接近。就歷史來看兩種理論都有一定的道理。其中實(shí)無限用了150年后來極限論就是現(xiàn)在所使用的。光是電磁波還是粒子是一個物理學(xué)長期爭論的問題后來由波粒二象性來統(tǒng)一。微積分無論是用現(xiàn)代極限論還是150年前的理論都不是最好的手段。
★高中數(shù)學(xué)導(dǎo)數(shù)要點(diǎn)
1、求函數(shù)的單調(diào)性:
利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù)。
利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導(dǎo)數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間。
反過來,也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問題(如確定參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),
。1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);
(2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);
。3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立。
2、求函數(shù)的極值:
設(shè)函數(shù)yf(x)在x0及其附近有定義,如果對x0附近的所有的點(diǎn)都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數(shù)f(x)的極小值(或極大值)。
可導(dǎo)函數(shù)的極值,可通過研究函數(shù)的單調(diào)性求得,基本步驟是:
(1)確定函數(shù)f(x)的定義域;(2)求導(dǎo)數(shù)f(x);(3)求方程f(x)0的全部實(shí)根,x1x2xn,順次將定義域分成若干個小區(qū)間,并列表:x變化時,f(x)和f(x)值的
變化情況:
。4)檢查f(x)的符號并由表格判斷極值。
3、求函數(shù)的最大值與最小值:
如果函數(shù)f(x)在定義域I內(nèi)存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數(shù)在定義域上的最大值。函數(shù)在定義域內(nèi)的極值不一定唯一,但在定義域內(nèi)的最值是唯一的。
求函數(shù)f(x)在區(qū)間[a,b]上的最大值和最小值的步驟:(1)求f(x)在區(qū)間(a,b)上的極值;
。2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的最大值與最小值。
4、解決不等式的有關(guān)問題:
(1)不等式恒成立問題(絕對不等式問題)可考慮值域。
f(x)(xA)的值域是[a,b]時,
不等式f(x)0恒成立的充要條件是f(x)max0,即b0;
不等式f(x)0恒成立的充要條件是f(x)min0,即a0。
f(x)(xA)的值域是(a,b)時,
不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0。
(2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0。
5、導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用:
實(shí)際生活求解最大(。┲祮栴},通常都可轉(zhuǎn)化為函數(shù)的最值。在利用導(dǎo)數(shù)來求函數(shù)最值時,一定要注意,極值點(diǎn)唯一的單峰函數(shù),極值點(diǎn)就是最值點(diǎn),在解題時要加以說明。
高中數(shù)學(xué)知識點(diǎn)總結(jié) 13
簡單隨機(jī)抽樣
(1)總體和樣本
、僭诮y(tǒng)計學(xué)中 , 把研究對象的全體叫做總體。
、诎衙總研究對象叫做個體。
、郯芽傮w中個體的總數(shù)叫做總體容量。
、転榱搜芯靠傮w 的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分: x1,x2 , …,xx 研究,我們稱它為樣本。其中個體的個數(shù)稱為樣本容量。
(2)簡單隨機(jī)抽樣,也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類、排隊(duì)等,完全隨機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨(dú)立,彼此間無一定的.關(guān)聯(lián)性和排斥性。簡單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。
(3)簡單隨機(jī)抽樣常用的方法:
、俪楹灧;
②隨機(jī)數(shù)表法;
、塾嬎銠C(jī)模擬法;
③使用統(tǒng)計軟件直接抽取。
在簡單隨機(jī)抽樣的樣本容量設(shè)計中,主要考慮:
、倏傮w變異情況;
、谠试S誤差范圍;
、鄹怕时WC程度。
(4)抽簽法:
①給調(diào)查對象群體中的每一個對象編號;
、跍(zhǔn)備抽簽的工具,實(shí)施抽簽;
、蹖颖局械拿恳粋個體進(jìn)行測量或調(diào)查
(5)隨機(jī)數(shù)表法
高中數(shù)學(xué)知識點(diǎn)總結(jié) 14
集合的分類:
(1)按元素屬性分類,如點(diǎn)集,數(shù)集。
(2)按元素的個數(shù)多少,分為有/無限集
關(guān)于集合的概念:
(1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構(gòu)成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。
(2)互異性:對于一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。
(3)無序性:判斷一些對象時候構(gòu)成集合,關(guān)鍵在于看這些對象是否有明確的標(biāo)準(zhǔn)。
集合可以根據(jù)它含有的元素的個數(shù)分為兩類:
含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。
非負(fù)整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N。
在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或NX。
整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z。
有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q。(有理數(shù)是整數(shù)和分?jǐn)?shù)的統(tǒng)稱,一切有理數(shù)都可以化成分?jǐn)?shù)的形式。)
實(shí)數(shù)全體構(gòu)成的集合,叫做實(shí)數(shù)集,記作R。(包括有理數(shù)和無理數(shù)。其中無理數(shù)就是無限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分?jǐn)?shù)。數(shù)學(xué)上,實(shí)數(shù)直觀地定義為和數(shù)軸上的點(diǎn)一一對應(yīng)的數(shù)。)
1、列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號“{}”內(nèi)表示這個集合,例如,由兩個元素0,1構(gòu)成的集合可表示為{0,1}。
有些集合的.元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。
例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}。
無限集有時也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}。
2、描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來描述。
例如:正偶數(shù)構(gòu)成的集合,它的每一個元素都具有性質(zhì):“能被2整除,且大于0”
而這個集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括號內(nèi)豎線左邊的X表示這個集合的任意一個元素,元素X從實(shí)數(shù)集合中取值,在豎線右邊寫出只有集合內(nèi)的元素x才具有的性質(zhì)。
一般地,如果在集合I中,屬于集合A的任意一個元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡稱描述法。
例如:集合A={x∈R│x2—1=0}的特征是X2—1=0
高中數(shù)學(xué)知識點(diǎn)總結(jié) 15
空間兩條直線只有三種位置關(guān)系:平行、相交、異面
1、按是否共面可分為兩類:
(1)共面:平行、相交
(2)異面:
異面直線的定義:不同在任何一個平面內(nèi)的兩條直線或既不平行也不相交。
異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過該點(diǎn)的直線是異面直線。
兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法
兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法
2、若從有無公共點(diǎn)的角度看可分為兩類:
(1)有且僅有一個公共點(diǎn)——相交直線;
(2)沒有公共點(diǎn)——平行或異面
直線和平面的位置關(guān)系:
直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行
、僦本在平面內(nèi)——有無數(shù)個公共點(diǎn)
②直線和平面相交——有且只有一個公共點(diǎn)
直線與平面所成的角:平面的`一條斜線和它在這個平面內(nèi)的射影所成的銳角。
高中數(shù)學(xué)知識點(diǎn)總結(jié) 16
一、平面的基本性質(zhì)與推論
1、平面的基本性質(zhì):
公理1如果一條直線的兩點(diǎn)在一個平面內(nèi),那么這條直線在這個平面內(nèi);
公理2過不在一條直線上的三點(diǎn),有且只有一個平面;
公理3如果兩個不重合的平面有一個公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線。
2、空間點(diǎn)、直線、平面之間的位置關(guān)系:
直線與直線—平行、相交、異面;
直線與平面—平行、相交、直線屬于該平面(線在面內(nèi),最易忽視);
平面與平面—平行、相交。
3、異面直線:
平面外一點(diǎn)A與平面一點(diǎn)B的連線和平面內(nèi)不經(jīng)過點(diǎn)B的直線是異面直線(判定);
所成的角范圍(0,90)度(平移法,作平行線相交得到夾角或其補(bǔ)角);
兩條直線不是異面直線,則兩條直線平行或相交(反證);
異面直線不同在任何一個平面內(nèi)。
求異面直線所成的角:平移法,把異面問題轉(zhuǎn)化為相交直線的夾角
二、空間中的平行關(guān)系
1、直線與平面平行(核心)
定義:直線和平面沒有公共點(diǎn)
判定:不在一個平面內(nèi)的一條直線和平面內(nèi)的.一條直線平行,則該直線平行于此平面(由線線平行得出)
性質(zhì):一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,則這條直線就和兩平面的交線平行
2、平面與平面平行
定義:兩個平面沒有公共點(diǎn)
判定:一個平面內(nèi)有兩條相交直線平行于另一個平面,則這兩個平面平行
性質(zhì):兩個平面平行,則其中一個平面內(nèi)的直線平行于另一個平面;如果兩個平行平面同時與第三個平面相交,那么它們的交線平行。
3、常利用三角形中位線、平行四邊形對邊、已知直線作一平面找其交線
三、空間中的垂直關(guān)系
1、直線與平面垂直
定義:直線與平面內(nèi)任意一條直線都垂直
判定:如果一條直線與一個平面內(nèi)的兩條相交的直線都垂直,則該直線與此平面垂直
性質(zhì):垂直于同一直線的兩平面平行
推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條也垂直于這個平面
直線和平面所成的角:【0,90】度,平面內(nèi)的一條斜線和它在平面內(nèi)的射影說成的銳角,特別規(guī)定垂直90度,在平面內(nèi)或者平行0度
2、平面與平面垂直
定義:兩個平面所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點(diǎn)為端點(diǎn),在兩個半平面內(nèi)分別作垂直于棱的兩條射線所成的角)
判定:一個平面過另一個平面的垂線,則這兩個平面垂直
性質(zhì):兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直
高中數(shù)學(xué)知識點(diǎn)總結(jié) 17
有界性
設(shè)函數(shù)f(x)在區(qū)間X上有定義,如果存在M>0,對于一切屬于區(qū)間X上的x,恒有|f(x)|≤M,則稱f(x)在區(qū)間X上有界,否則稱f(x)在區(qū)間上無界。
單調(diào)性
設(shè)函數(shù)f(x)的定義域?yàn)镈,區(qū)間I包含于D.如果對于區(qū)間上任意兩點(diǎn)x1及x2,當(dāng)x1f(x2),則稱函數(shù)f(x)在區(qū)間I上是單調(diào)遞減的。單調(diào)遞增和單調(diào)遞減的函數(shù)統(tǒng)稱為單調(diào)函數(shù)。
奇偶性
設(shè)為一個實(shí)變量實(shí)值函數(shù),若有f(—x)=—f(x),則f(x)為奇函數(shù)。
幾何上,一個奇函數(shù)關(guān)于原點(diǎn)對稱,亦即其圖像在繞原點(diǎn)做180度旋轉(zhuǎn)后不會改變。
奇函數(shù)的例子有x、sin(x)、sinh(x)和erf(x)。
設(shè)f(x)為一實(shí)變量實(shí)值函數(shù),若有f(x)=f(—x),則f(x)為偶函數(shù)。
幾何上,一個偶函數(shù)關(guān)于y軸對稱,亦即其圖在對y軸映射后不會改變。
偶函數(shù)的例子有|x|、x2、cos(x)和cosh(x)。
偶函數(shù)不可能是個雙射映射。
連續(xù)性
在數(shù)學(xué)中,連續(xù)是函數(shù)的一種屬性。直觀上來說,連續(xù)的.函數(shù)就是當(dāng)輸入值的變化足夠小的時候,輸出的變化也會隨之足夠小的函數(shù)。如果輸入值的某種微小的變化會產(chǎn)生輸出值的一個突然的跳躍甚至無法定義,則這個函數(shù)被稱為是不連續(xù)的函數(shù)(或者說具有不連續(xù)性)。
高中數(shù)學(xué)知識點(diǎn)總結(jié) 18
一、集合與簡易邏輯
1、集合的元素具有確定性、無序性和互異性
2、對集合,時,必須注意到“極端”情況:或;求集合的子集時是否注意到是任何集合的子集、是任何非空集合的真子集
3、對于含有個元素的有限集合,其子集、真子集、非空子集、非空真子集的個數(shù)依次為
4、“交的補(bǔ)等于補(bǔ)的并,即”;“并的補(bǔ)等于補(bǔ)的交,即”
5、判斷命題的真假關(guān)鍵是“抓住關(guān)聯(lián)字詞”;注意:“不‘或’即‘且’,不‘且’即‘或’”
6、“或命題”的真假特點(diǎn)是“一真即真,要假全假”;“且命題”的真假特點(diǎn)是“一假即假,要真全真”;“非命題”的真假特點(diǎn)是“一真一假”
7、四種命題中“‘逆’者‘交換’也”、“‘否’者‘否定’也”
原命題等價于逆否命題,但原命題與逆命題、否命題都不等價、反證法分為三步:假設(shè)、推矛、得果
注意:命題的否定是“命題的非命題,也就是‘條件不變,僅否定結(jié)論’所得命題”,但否命題是“既否定原命題的條件作為條件,又否定原命題的結(jié)論作為結(jié)論的所得命題” L
8、充要條件
二、函數(shù)
1、指數(shù)式、對數(shù)式
2、(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一個集合中的元素必有像,但第二個集合中的元素不一定有原像(中元素的像有且僅有下一個,但中元素的原像可能沒有,也可任意個);函數(shù)是“非空數(shù)集上的映射”,其中“值域是映射中像集的子集”
。2)函數(shù)圖像與軸垂線至多一個公共點(diǎn),但與軸垂線的公共點(diǎn)可能沒有,也可任意個
(3)函數(shù)圖像一定是坐標(biāo)系中的曲線,但坐標(biāo)系中的曲線不一定能成為函數(shù)圖像
3、單調(diào)性和奇偶性
。1)奇函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上若有單調(diào)性,則其單調(diào)性完全相同
偶函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上若有單調(diào)性,則其單調(diào)性恰恰相反
注意:
。1)確定函數(shù)的奇偶性,務(wù)必先判定函數(shù)定義域是否關(guān)于原點(diǎn)對稱、確定函數(shù)奇偶性的常用方法有:定義法、圖像法等等、對于偶函數(shù)而言有:
。2)若奇函數(shù)定義域中有0,則必有、即的定義域時,是為奇函數(shù)的必要非充分條件
(3)確定函數(shù)的單調(diào)性或單調(diào)區(qū)間,在解答題中常用:定義法(取值、作差、鑒定)、導(dǎo)數(shù)法;在選擇、填空題中還有:數(shù)形結(jié)合法(圖像法)、特殊值法等等
。4)既奇又偶函數(shù)有無窮多個(,定義域是關(guān)于原點(diǎn)對稱的任意一個數(shù)集)
(7)復(fù)合函數(shù)的單調(diào)性特點(diǎn)是:“同性得增,增必同性;異性得減,減必異性”
復(fù)合函數(shù)的奇偶性特點(diǎn)是:“內(nèi)偶則偶,內(nèi)奇同外”、復(fù)合函數(shù)要考慮定義域的變化。(即復(fù)合有意義)
4、對稱性與周期性(以下結(jié)論要消化吸收,不可強(qiáng)記)
。1)函數(shù)與函數(shù)的圖像關(guān)于直線(軸)對稱
推廣一:如果函數(shù)對于一切,都有成立,那么的圖像關(guān)于直線(由“和的一半確定”)對稱
推廣二:函數(shù),的圖像關(guān)于直線(由確定)對稱
。2)函數(shù)與函數(shù)的圖像關(guān)于直線(軸)對稱
。3)函數(shù)與函數(shù)的圖像關(guān)于坐標(biāo)原點(diǎn)中心對稱
推廣:曲線關(guān)于直線的對稱曲線是;
曲線關(guān)于直線的對稱曲線是
(5)類比“三角函數(shù)圖像”得:若圖像有兩條對稱軸,則必是周期函數(shù),且一周期為
如果是R上的周期函數(shù),且一個周期為,那么
特別:若恒成立,則、若恒成立,則、若恒成立,則
三、數(shù)列
1、數(shù)列的通項(xiàng)、數(shù)列項(xiàng)的項(xiàng)數(shù),遞推公式與遞推數(shù)列,數(shù)列的通項(xiàng)與數(shù)列的前項(xiàng)和公式的關(guān)系:(必要時請分類討論)
注意:;、
2、等差數(shù)列中:
。1)等差數(shù)列公差的取值與等差數(shù)列的單調(diào)性
。2);
。3)、也成等差數(shù)列
。4)兩等差數(shù)列對應(yīng)項(xiàng)和(差)組成的新數(shù)列仍成等差數(shù)列
。5)仍成等差數(shù)列、
。8)“首正”的遞等差數(shù)列中,前項(xiàng)和的最大值是所有非負(fù)項(xiàng)之和;
“首負(fù)”的遞增等差數(shù)列中,前項(xiàng)和的最小值是所有非正項(xiàng)之和;
。9)有限等差數(shù)列中,奇數(shù)項(xiàng)和與偶數(shù)項(xiàng)和的存在必然聯(lián)系,由數(shù)列的總項(xiàng)數(shù)是偶數(shù)還是奇數(shù)決定、若總項(xiàng)數(shù)為偶數(shù),則“偶數(shù)項(xiàng)和”—“奇數(shù)項(xiàng)和”=總項(xiàng)數(shù)的一半與其公差的積;若總項(xiàng)數(shù)為奇數(shù),則“奇數(shù)項(xiàng)和”—“偶數(shù)項(xiàng)和”=此數(shù)列的中項(xiàng)
。10)兩數(shù)的等差中項(xiàng)惟一存在、在遇到三數(shù)或四數(shù)成等差數(shù)列時,常考慮選用“中項(xiàng)關(guān)系”轉(zhuǎn)化求解
。11)判定數(shù)列是否是等差數(shù)列的主要方法有:定義法、中項(xiàng)法、通項(xiàng)法、和式法、圖像法(也就是說數(shù)列是等差數(shù)列的充要條件主要有這五種形式)
3、等比數(shù)列中:
。1)等比數(shù)列的符號特征(全正或全負(fù)或一正一負(fù)),等比數(shù)列的首項(xiàng)、公比與等比數(shù)列的單調(diào)性
。2)成等比數(shù)列;成等比數(shù)列成等比數(shù)列
。3)兩等比數(shù)列對應(yīng)項(xiàng)積(商)組成的新數(shù)列仍成等比數(shù)列
。4)“首大于1”的正值遞減等比數(shù)列中,前項(xiàng)積的最大值是所有大于或等于1的項(xiàng)的積;“首小于1”的正值遞增等比數(shù)列中,前項(xiàng)積的最小值是所有小于或等于1的項(xiàng)的積;
。5)有限等比數(shù)列中,奇數(shù)項(xiàng)和與偶數(shù)項(xiàng)和的存在必然聯(lián)系,由數(shù)列的總項(xiàng)數(shù)是偶數(shù)還是奇數(shù)決定、若總項(xiàng)數(shù)為偶數(shù),則“偶數(shù)項(xiàng)和”=“奇數(shù)項(xiàng)和”與“公比”的積;若總項(xiàng)數(shù)為奇數(shù),則“奇數(shù)項(xiàng)和”=“首項(xiàng)”加上“公比”與“偶數(shù)項(xiàng)和”積的和
(6)并非任何兩數(shù)總有等比中項(xiàng)、僅當(dāng)實(shí)數(shù)同號時,實(shí)數(shù)存在等比中項(xiàng)、對同號兩實(shí)數(shù)的等比中項(xiàng)不僅存在,而且有一對、也就是說,兩實(shí)數(shù)要么沒有等比中項(xiàng)(非同號時),如果有,必有一對(同號時)、在遇到三數(shù)或四數(shù)成等差數(shù)列時,常優(yōu)先考慮選用“中項(xiàng)關(guān)系”轉(zhuǎn)化求解
。7)判定數(shù)列是否是等比數(shù)列的方法主要有:定義法、中項(xiàng)法、通項(xiàng)法、和式法(也就是說數(shù)列是等比數(shù)列的充要條件主要有這四種形式)、
4、等差數(shù)列與等比數(shù)列的聯(lián)系
(1)如果數(shù)列成等差數(shù)列,那么數(shù)列(總有意義)必成等比數(shù)列
(2)如果數(shù)列成等比數(shù)列,那么數(shù)列必成等差數(shù)列
(3)如果數(shù)列既成等差數(shù)列又成等比數(shù)列,那么數(shù)列是非零常數(shù)數(shù)列;但數(shù)列是常數(shù)數(shù)列僅是數(shù)列既成等差數(shù)列又成等比數(shù)列的必要非充分條件
。4)如果兩等差數(shù)列有公共項(xiàng),那么由他們的公共項(xiàng)順次組成的新數(shù)列也是等差數(shù)列,且新等差數(shù)列的'公差是原兩等差數(shù)列公差的最小公倍數(shù)
如果一個等差數(shù)列與一個等比數(shù)列有公共項(xiàng)順次組成新數(shù)列,那么常選用“由特殊到一般的方法”進(jìn)行研討,且以其等比數(shù)列的項(xiàng)為主,探求等比數(shù)列中那些項(xiàng)是他們的公共項(xiàng),并構(gòu)成新的數(shù)列、
注意:
。1)公共項(xiàng)僅是公共的項(xiàng),其項(xiàng)數(shù)不一定相同,即研究、但也有少數(shù)問題中研究,這時既要求項(xiàng)相同,也要求項(xiàng)數(shù)相同
。2)三(四)個數(shù)成等差(比)的中項(xiàng)轉(zhuǎn)化和通項(xiàng)轉(zhuǎn)化法
5、數(shù)列求和的常用方法:
。1)公式法:
①等差數(shù)列求和公式(三種形式)
、诘缺葦(shù)列求和公式(三種形式)
(2)分組求和法:在直接運(yùn)用公式法求和有困難時,常將“和式”中“同類項(xiàng)”先合并在一起,再運(yùn)用公式法求和
。3)倒序相加法:在數(shù)列求和中,若和式中到首尾距離相等的兩項(xiàng)和有其共性或數(shù)列的通項(xiàng)與組合數(shù)相關(guān)聯(lián),則?煽紤]選用倒序相加法,發(fā)揮其共性的作用求和(這也是等差數(shù)列前和公式的推導(dǎo)方法)
。4)錯位相減法:如果數(shù)列的通項(xiàng)是由一個等差數(shù)列的通項(xiàng)與一個等比數(shù)列的通項(xiàng)相乘構(gòu)成,那么常選用錯位相減法,將其和轉(zhuǎn)化為“一個新的的等比數(shù)列的和”求解(注意:一般錯位相減后,其中“新等比數(shù)列的項(xiàng)數(shù)是原數(shù)列的項(xiàng)數(shù)減一的差”。ㄟ@也是等比數(shù)列前和公式的推導(dǎo)方法之一)
。5)裂項(xiàng)相消法:如果數(shù)列的通項(xiàng)可“分裂成兩項(xiàng)差”的形式,且相鄰項(xiàng)分裂后相關(guān)聯(lián),那么常選用裂項(xiàng)相消法求和、常用裂項(xiàng)形式有:
特別聲明:L運(yùn)用等比數(shù)列求和公式,務(wù)必檢查其公比與1的關(guān)系,必要時分類討論
。6)通項(xiàng)轉(zhuǎn)換法。
四、三角函數(shù)
1、終邊與終邊相同(的終邊在終邊所在射線上)
終邊與終邊共線(的終邊在終邊所在直線上)
終邊與終邊關(guān)于軸對稱
終邊與終邊關(guān)于軸對稱
終邊與終邊關(guān)于原點(diǎn)對稱
一般地:終邊與終邊關(guān)于角的終邊對稱。
與的終邊關(guān)系由“兩等分各象限、一二三四”確定。
2、弧長公式:,扇形面積公式:,1弧度(1rad)。
3、三角函數(shù)符號特征是:一是全正、二正弦正、三是切正、四余弦正
注意:
4、三角函數(shù)線的特征是:正弦線“站在軸上(起點(diǎn)在軸上)”、余弦線“躺在軸上(起點(diǎn)是原點(diǎn))”、正切線“站在點(diǎn)處(起點(diǎn)是)”、務(wù)必重視“三角函數(shù)值的大小與單位圓上相應(yīng)點(diǎn)的坐標(biāo)之間的關(guān)系,‘正弦’ ‘縱坐標(biāo)’、‘余弦’ ‘橫坐標(biāo)’、‘正切’ ‘縱坐標(biāo)除以橫坐標(biāo)之商’”;務(wù)必記住:單位圓中角終邊的變化與值的大小變化的關(guān)系、為銳角
5、三角函數(shù)同角關(guān)系中,平方關(guān)系的運(yùn)用中,務(wù)必重視“根據(jù)已知角的范圍和三角函數(shù)的取值,精確確定角的范圍,并進(jìn)行定號”;
6、三角函數(shù)誘導(dǎo)公式的本質(zhì)是:奇變偶不變,符號看象限
7、三角函數(shù)變換主要是:角、函數(shù)名、次數(shù)、系數(shù)(常值)的變換,其核心是“角的變換”!
角的變換主要有:已知角與特殊角的變換、已知角與目標(biāo)角的變換、角與其倍角的變換、兩角與其和差角的變換。
常值變換主要指“1”的變換:
三角式變換主要有:三角函數(shù)名互化(切割化弦)、三角函數(shù)次數(shù)的降升(降次、升次)、運(yùn)算結(jié)構(gòu)的轉(zhuǎn)化(和式與積式的互化)、解題時本著“三看”的基本原則來進(jìn)行:“看角、看函數(shù)、看特征”,基本的技巧有:巧變角,公式變形使用,化切割為弦,用倍角公式將高次降次。
注意:和(差)角的函數(shù)結(jié)構(gòu)與符號特征;余弦倍角公式的三種形式選用;降次(升次)公式中的符號特征、“正余弦‘三兄妹— ’的聯(lián)系”(常和三角換元法聯(lián)系在一起)。
輔助角公式中輔助角的確定:(其中角所在的象限由a,b的符號確定,角的值由確定)在求最值、化簡時起著重要作用、尤其是兩者系數(shù)絕對值之比為的情形有實(shí)數(shù)解。
8、三角函數(shù)性質(zhì)、圖像及其變換:
。1)三角函數(shù)的定義域、值域、單調(diào)性、奇偶性、有界性和周期性
注意:正切函數(shù)、余切函數(shù)的定義域;絕對值對三角函數(shù)周期性的影響:一般說來,某一周期函數(shù)解析式加絕對值或平方,其周期性是:弦減半、切不變、既為周期函數(shù)又是偶函數(shù)的函數(shù)自變量加絕對值,其周期性不變;其他不定、如的周期都是,但的周期為,y=|tanx|的周期不變,問函數(shù)y=cos|x|,y=cos|x|是周期函數(shù)嗎?
。2)三角函數(shù)圖像及其幾何性質(zhì):
(3)三角函數(shù)圖像的變換:兩軸方向的平移、伸縮及其向量的平移變換。
。4)三角函數(shù)圖像的作法:三角函數(shù)線法、五點(diǎn)法(五點(diǎn)橫坐標(biāo)成等差數(shù)列)和變換法。
9、三角形中的三角函數(shù):
。1)內(nèi)角和定理:三角形三角和為,任意兩角和與第三個角總互補(bǔ),任意兩半角和與第三個角的半角總互余、銳角三角形三內(nèi)角都是銳角三內(nèi)角的余弦值為正值任兩角和都是鈍角任意兩邊的平方和大于第三邊的平方。
。2)正弦定理:(R為三角形外接圓的半徑)。
注意:已知三角形兩邊一對角,求解三角形時,若運(yùn)用正弦定理,則務(wù)必注意可能有兩解。
(3)余弦定理:等,常選用余弦定理鑒定三角形的類型。
【高中數(shù)學(xué)知識點(diǎn)總結(jié)】相關(guān)文章:
高中數(shù)學(xué)知識點(diǎn)總結(jié)12-28
高中數(shù)學(xué)重點(diǎn)知識點(diǎn)總結(jié)08-29
高中數(shù)學(xué)知識點(diǎn)總結(jié)(精選22篇)03-09
高中數(shù)學(xué)立體幾何知識點(diǎn)總結(jié)03-01
高中數(shù)學(xué)知識點(diǎn)總結(jié)通用15篇02-20
高中數(shù)學(xué)?家族e知識點(diǎn)整理11-01