成年女人色视频在线观看网站_一本久精品无码免费_亚洲成a人片在线观看无码专区_开心婷婷五月综合基地六月

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間:2023-12-28 10:29:08 海潔 總結(jié) 投訴 投稿

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

  總結(jié)是對(duì)過(guò)去一定時(shí)期的工作、學(xué)習(xí)或思想情況進(jìn)行回顧、分析,并做出客觀評(píng)價(jià)的書(shū)面材料,它可以提升我們發(fā)現(xiàn)問(wèn)題的能力,我想我們需要寫(xiě)一份總結(jié)了吧。那么如何把總結(jié)寫(xiě)出新花樣呢?以下是小編精心整理的高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié),歡迎閱讀與收藏。

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

  高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 1

  1、求函數(shù)的單調(diào)性:

  利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo)

 。1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);

 。2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);

 。3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù)。

  利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本步驟:

 、偾蠛瘮(shù)yf(x)的定義域;

 、谇髮(dǎo)數(shù)f(x);

  ③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;

 、芙獠坏仁絝(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間。

  反過(guò)來(lái),也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問(wèn)題(如確定參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),

  (1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

  (2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

 。3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立。

  2、求函數(shù)的極值:

  設(shè)函數(shù)yf(x)在x0及其附近有定義,如果對(duì)x0附近的所有的點(diǎn)都有f(x)f(x0)(或f(x)f(x0)),則稱(chēng)f(x0)是函數(shù)f(x)的極小值(或極大值)。

  可導(dǎo)函數(shù)的極值,可通過(guò)研究函數(shù)的單調(diào)性求得,基本步驟是:

 。1)確定函數(shù)f(x)的定義域;

 。2)求導(dǎo)數(shù)f(x);

 。3)求方程f(x)0的全部實(shí)根,x1x2xn,順次將定義域分成若干個(gè)小區(qū)間,并列表:x變化時(shí),f(x)和f(x)值的變化情況:

  (4)檢查f(x)的符號(hào)并由表格判斷極值。

  3、求函數(shù)的最大值與最小值:

  如果函數(shù)f(x)在定義域I內(nèi)存在x0,使得對(duì)任意的xI,總有f(x)f(x0),則稱(chēng)f(x0)為函數(shù)在定義域上的最大值。函數(shù)在定義域內(nèi)的極值不一定唯一,但在定義域內(nèi)的最值是唯一的。

  求函數(shù)f(x)在區(qū)間[a,b]上的'最大值和最小值的步驟:

 。1)求f(x)在區(qū)間(a,b)上的極值;

 。2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的最大值與最小值。

  4、解決不等式的有關(guān)問(wèn)題:

 。1)不等式恒成立問(wèn)題(絕對(duì)不等式問(wèn)題)可考慮值域。

  f(x)(xA)的值域是[a,b]時(shí),

  不等式f(x)0恒成立的充要條件是f(x)max0,即b0;

  不等式f(x)0恒成立的充要條件是f(x)min0,即a0。

  f(x)(xA)的值域是(a,b)時(shí),

  不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0。

  (2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0。

  5、導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用:

  實(shí)際生活求解最大(。┲祮(wèn)題,通常都可轉(zhuǎn)化為函數(shù)的最值。在利用導(dǎo)數(shù)來(lái)求函數(shù)最值時(shí),一定要注意,極值點(diǎn)唯一的單峰函數(shù),極值點(diǎn)就是最值點(diǎn),在解題時(shí)要加以說(shuō)明。

  高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 2

  1.定義法:

  判斷B是A的條件,實(shí)際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關(guān)系畫(huà)出箭頭示意圖,再利用定義判斷即可

  2.轉(zhuǎn)換法:

  當(dāng)所給命題的充要條件不易判斷時(shí),可對(duì)命題進(jìn)行等價(jià)裝換,例如改用其逆否命題進(jìn)行判斷

  3.集合法

  在命題的條件和結(jié)論間的關(guān)系判斷有困難時(shí),可從集合的角度考慮,記條件p、q對(duì)應(yīng)的集合分別為A、B,則:

  若A∩B,則p是q的充分條件

  若A∪B,則p是q的'必要條件

  若A=B,則p是q的充要條件

  若A∈B,且B∈A,則p是q的既不充分也不必要條件

  高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 3

  第一講相似三角形的判定及有關(guān)性質(zhì)

  1.平行線等分線段定理

  平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等。

  推理1:經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線必平分第三邊。推理2:經(jīng)過(guò)梯形一腰的中點(diǎn),且與底邊平行的直線平分另一腰。

  2.平分線分線段成比例定理

  平分線分線段成比例定理:三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例。

  推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例。

  3.相似三角形的判定及性質(zhì)

  相似三角形的判定:

  定義:對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形。相似三角形對(duì)應(yīng)邊的比值叫做相似比(或相似系數(shù))。

  由于從定義出發(fā)判斷兩個(gè)三角形是否相似,需考慮6個(gè)元素,即三組對(duì)應(yīng)角是否分別相等,三組對(duì)應(yīng)邊是否分別成比例,顯然比較麻煩。所以我們?cè)?jīng)給出過(guò)如下幾個(gè)判定兩個(gè)三角形相似的簡(jiǎn)單方法:

 。1)兩角對(duì)應(yīng)相等,兩三角形相似;

 。2)兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似;(3)三邊對(duì)應(yīng)成比例,兩三角形相似。

  預(yù)備定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與三角形相似。

  判定定理1:對(duì)于任意兩個(gè)三角形,如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三角形相似。簡(jiǎn)述為:兩角對(duì)應(yīng)相等,兩三角形相似。

  判定定理2:對(duì)于任意兩個(gè)三角形,如果一個(gè)三角形的兩邊和另一個(gè)三角形的兩邊對(duì)應(yīng)成比例,并且?jiàn)A角相等,那么這兩個(gè)三角形相似。簡(jiǎn)述為:兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似。

  判定定理3:對(duì)于任意兩個(gè)三角形,如果一個(gè)三角形的三條邊和另一個(gè)三角形的三條邊對(duì)應(yīng)成比例,那么這兩個(gè)三角形相似。簡(jiǎn)述為:三邊對(duì)應(yīng)成比例,兩三角形相似。

  引理:如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊。定理:(1)如果兩個(gè)直角三角形有一個(gè)銳角對(duì)應(yīng)相等,那么它們相似;

 。2)如果兩個(gè)直角三角形的兩條直角邊對(duì)應(yīng)成比例,那么它們相似。

  定理:如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)三角形的斜邊和直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似。相似三角形的性質(zhì):

 。1)相似三角形對(duì)應(yīng)高的比、對(duì)應(yīng)中線的比和對(duì)應(yīng)平分線的比都等于相似比;(2)相似三角形周長(zhǎng)的比等于相似比;

 。3)相似三角形面積的比等于相似比的平方。

  相似三角形外接圓的直徑比、周長(zhǎng)比等于相似比,外接圓的面積比等于相似比的平方。

  4.直角三角形的射影定理

  射影定理:直角三角形斜邊上的高是兩直角邊在斜邊上射影的比例中項(xiàng);兩直角邊分別是它們?cè)谛边吷仙溆芭c斜邊的比例中項(xiàng)。

  第二講直線與圓的位置關(guān)系

  1.圓周定理

  圓周角定理:圓上一條弧所對(duì)的圓周角等于它所對(duì)的圓周角的一半。圓心角定理:圓心角的`度數(shù)等于它所對(duì)弧的度數(shù)。

  推論1:同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧相等。

  推論2:半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑。

  2.圓內(nèi)接四邊形的性質(zhì)與判定定理

  定理1:圓的內(nèi)接四邊形的對(duì)角互補(bǔ)。

  定理2:圓內(nèi)接四邊形的外角等于它的內(nèi)角的對(duì)角。

  圓內(nèi)接四邊形判定定理:如果一個(gè)四邊形的對(duì)角互補(bǔ),那么這個(gè)四邊形的四個(gè)頂點(diǎn)共圓。

  推論:如果四邊形的一個(gè)外角等于它的內(nèi)角的對(duì)角,那么這個(gè)四邊形的四個(gè)頂點(diǎn)共圓。

  3.圓的切線的性質(zhì)及判定定理

  切線的性質(zhì)定理:圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑。

  推論1:經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)。

  推論2:經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心。

  切線的判定定理:經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線。

  4.弦切角的性質(zhì)

  弦切角定理:弦切角等于它所夾的弧所對(duì)的圓周角。

  5.與圓有關(guān)的比例線段

  相交弦定理:圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等。

  割線定理:從園外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等。

  切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)。

  切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角。

  6.垂徑定理

  垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧。

  7.三角形的五心

  (1)內(nèi)心:三條角平分線的交點(diǎn),也是三角形內(nèi)切圓的圓心。

  性質(zhì):到三邊距離相等。

  (2)外心:三條中垂線的交點(diǎn),也是三角形外接圓的圓心。

  性質(zhì):到三個(gè)頂點(diǎn)距離相等。

  (3)重心:三條中線的交點(diǎn)。

  性質(zhì):三條中線的三等分點(diǎn),到頂點(diǎn)距離為到對(duì)邊中點(diǎn)距離的2倍。

  (4)垂心:三條高所在直線的交點(diǎn)。

  (5)旁心:三角形任意兩角的外角平分線和第三個(gè)角的內(nèi)角平分線的交點(diǎn)。

  性質(zhì):到三邊的距離相等

  高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 4

  1、命題的四種形式及其相互關(guān)系是什么?

 。ɑ槟娣耜P(guān)系的命題是等價(jià)命題。)

  原命題與逆否命題同真、同假;逆命題與否命題同真同假。

  2、對(duì)映射的概念了解嗎?

  映射f:A→B,是否注意到A中元素的.任意性和B中與之對(duì)應(yīng)元素的唯一性,哪幾種對(duì)應(yīng)能構(gòu)成映射?

 。ㄒ粚(duì)一,多對(duì)一,允許B中有元素?zé)o原象。)

  3、函數(shù)的三要素是什么?如何比較兩個(gè)函數(shù)是否相同?

 。ǘx域、對(duì)應(yīng)法則、值域)

  4、反函數(shù)存在的條件是什么?

 。ㄒ灰粚(duì)應(yīng)函數(shù))

  求反函數(shù)的步驟掌握了嗎?

 。á俜唇鈞;②互換x、y;③注明定義域)

  5、反函數(shù)的性質(zhì)有哪些?

 、倩榉春瘮(shù)的圖象關(guān)于直線y=x對(duì)稱(chēng);

  ②保存了原來(lái)函數(shù)的單調(diào)性、奇函數(shù)性;

  6、函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?

 。╢(x)定義域關(guān)于原點(diǎn)對(duì)稱(chēng))

  高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 5

  一次函數(shù)

  一、定義與定義式:

  自變量x和因變量y有如下關(guān)系:

  y=kx+b

  則此時(shí)稱(chēng)y是x的一次函數(shù)。

  特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。

  即:y=kx (k為常數(shù),k0)

  二、一次函數(shù)的性質(zhì):

  1、y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k

  即:y=kx+b (k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))

  2、當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。

  三、一次函數(shù)的圖像及性質(zhì):

  1、作法與圖形:通過(guò)如下3個(gè)步驟

 。1)列表;

 。2)描點(diǎn);

 。3)連線,可以作出一次函數(shù)的圖像一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))

  2、性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(—b/k,0)正比例函數(shù)的圖像總是過(guò)原點(diǎn)。

  3、k,b與函數(shù)圖像所在象限:

  當(dāng)k0時(shí),直線必通過(guò)一、三象限,y隨x的增大而增大;

  當(dāng)k0時(shí),直線必通過(guò)二、四象限,y隨x的增大而減小。

  當(dāng)b0時(shí),直線必通過(guò)一、二象限;

  當(dāng)b=0時(shí),直線通過(guò)原點(diǎn)

  當(dāng)b0時(shí),直線必通過(guò)三、四象限。

  特別地,當(dāng)b=O時(shí),直線通過(guò)原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

  這時(shí),當(dāng)k0時(shí),直線只通過(guò)一、三象限;當(dāng)k0時(shí),直線只通過(guò)二、四象限。

  四、確定一次函數(shù)的表達(dá)式:

  已知點(diǎn)A(x1,y1);B(x2,y2),請(qǐng)確定過(guò)點(diǎn)A、B的一次函數(shù)的表達(dá)式。

 。1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。

 。2)因?yàn)樵谝淮魏瘮?shù)上的'任意一點(diǎn)P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個(gè)方程:y1=kx1+b ①和y2=kx2+b ②

 。3)解這個(gè)二元一次方程,得到k,b的值。

 。4)最后得到一次函數(shù)的表達(dá)式。

  五、一次函數(shù)在生活中的應(yīng)用:

  1、當(dāng)時(shí)間t一定,距離s是速度v的一次函數(shù)。s=vt。

  2、當(dāng)水池抽水速度f(wàn)一定,水池中水量g是抽水時(shí)間t的一次函數(shù)。設(shè)水池中原有水量S。g=S—ft。

  六、常用公式:(不全,希望有人補(bǔ)充)

  1、求函數(shù)圖像的k值:(y1—y2)/(x1—x2)

  2、求與x軸平行線段的中點(diǎn):|x1—x2|/2

  3、求與y軸平行線段的中點(diǎn):|y1—y2|/2

  4、求任意線段的長(zhǎng):(x1—x2)^2+(y1—y2)^2 (注:根號(hào)下(x1—x2)與(y1—y2)的平方和)

  二次函數(shù)

  I、定義與定義表達(dá)式

  一般地,自變量x和因變量y之間存在如下關(guān)系:

  y=ax^2+bx+c

  (a,b,c為常數(shù),a0,且a決定函數(shù)的開(kāi)口方向,a0時(shí),開(kāi)口方向向上,a0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大、)

  則稱(chēng)y為x的二次函數(shù)。

  二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

  II、二次函數(shù)的三種表達(dá)式

  一般式:y=ax^2+bx+c(a,b,c為常數(shù),a0)

  頂點(diǎn)式:y=a(x—h)^2+k [拋物線的頂點(diǎn)P(h,k)]

  交點(diǎn)式:y=a(x—x)(x—x ) [僅限于與x軸有交點(diǎn)A(x,0)和B(x,0)的拋物線]

  注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

  h=—b/2ak=(4ac—b^2)/4a x,x=(—bb^2—4ac)/2a

  III、二次函數(shù)的圖像

  在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,

  可以看出,二次函數(shù)的圖像是一條拋物線。

  IV、拋物線的性質(zhì)

  1、拋物線是軸對(duì)稱(chēng)圖形。對(duì)稱(chēng)軸為直線

  x= —b/2a。

  對(duì)稱(chēng)軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。

  特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱(chēng)軸是y軸(即直線x=0)

  2、拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

  P( —b/2a,(4ac—b^2)/4a )

  當(dāng)—b/2a=0時(shí),P在y軸上;當(dāng)= b^2—4ac=0時(shí),P在x軸上。

  3、二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大小。

  當(dāng)a0時(shí),拋物線向上開(kāi)口;當(dāng)a0時(shí),拋物線向下開(kāi)口。

  |a|越大,則拋物線的開(kāi)口越小。

  4、一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱(chēng)軸的位置。

  當(dāng)a與b同號(hào)時(shí)(即ab0),對(duì)稱(chēng)軸在y軸左;

  當(dāng)a與b異號(hào)時(shí)(即ab0),對(duì)稱(chēng)軸在y軸右。

  5、常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

  拋物線與y軸交于(0,c)

  6、拋物線與x軸交點(diǎn)個(gè)數(shù)

  = b^2—4ac0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

  = b^2—4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

  = b^2—4ac0時(shí),拋物線與x軸沒(méi)有交點(diǎn)。X的取值是虛數(shù)(x= —bb^2—4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

  V、二次函數(shù)與一元二次方程

  特別地,二次函數(shù)(以下稱(chēng)函數(shù))y=ax^2+bx+c,

  當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱(chēng)方程),

  即ax^2+bx+c=0

  此時(shí),函數(shù)圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數(shù)根。

  函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

  1、二次函數(shù)y=ax^2,y=a(x—h)^2,y=a(x—h)^2+k,y=ax^2+bx+c(各式中,a0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對(duì)稱(chēng)軸如下表:

  解析式頂點(diǎn)坐標(biāo)對(duì)稱(chēng)軸

  y=ax^2(0,0) x=0

  y=a(x—h)^2(h,0) x=h

  y=a(x—h)^2+k(h,k) x=h

  y=ax^2+bx+c(—b/2a,[4ac—b^2]/4a) x=—b/2a

  當(dāng)h0時(shí),y=a(x—h)^2的圖象可由拋物線y=ax^2向右平行移動(dòng)h個(gè)單位得到,

  當(dāng)h0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到、

  當(dāng)h0,k0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x—h)^2+k的圖象;

  當(dāng)h0,k0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x—h)^2+k的圖象;

  當(dāng)h0,k0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x—h)^2+k的圖象;

  當(dāng)h0,k0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x—h)^2+k的圖象;

  因此,研究拋物線y=ax^2+bx+c(a0)的圖象,通過(guò)配方,將一般式化為y=a(x—h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱(chēng)軸,拋物線的大體位置就很清楚了、這給畫(huà)圖象提供了方便、

  2、拋物線y=ax^2+bx+c(a0)的圖象:當(dāng)a0時(shí),開(kāi)口向上,當(dāng)a0時(shí)開(kāi)口向下,對(duì)稱(chēng)軸是直線x=—b/2a,頂點(diǎn)坐標(biāo)是(—b/2a,[4ac—b^2]/4a)、

  3、拋物線y=ax^2+bx+c(a0),若a0,當(dāng)x —b/2a時(shí),y隨x的增大而減。划(dāng)x —b/2a時(shí),y隨x的增大而增大、若a0,當(dāng)x —b/2a時(shí),y隨x的增大而增大;當(dāng)x —b/2a時(shí),y隨x的增大而減小、

  4、拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):

 。1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

 。2)當(dāng)△=b^2—4ac0,圖象與x軸交于兩點(diǎn)A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=

  (a0)的兩根、這兩點(diǎn)間的距離AB=|x—x|

  當(dāng)△=0、圖象與x軸只有一個(gè)交點(diǎn);

  當(dāng)△0、圖象與x軸沒(méi)有交點(diǎn)、當(dāng)a0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y0;當(dāng)a0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y0、

  5、拋物線y=ax^2+bx+c的最值:如果a0(a0),則當(dāng)x= —b/2a時(shí),y最。ù螅┲=(4ac—b^2)/4a、

  頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值、

  6、用待定系數(shù)法求二次函數(shù)的解析式

 。1)當(dāng)題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:

  y=ax^2+bx+c(a0)、

  (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ(chēng)軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x—h)^2+k(a0)、

 。3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x—x)(x—x)(a0)、

  7、二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn)、

  反比例函數(shù)

  形如y=k/x(k為常數(shù)且k0)的函數(shù),叫做反比例函數(shù)。

  自變量x的取值范圍是不等于0的一切實(shí)數(shù)。

  反比例函數(shù)圖像性質(zhì):

  反比例函數(shù)的圖像為雙曲線。

  由于反比例函數(shù)屬于奇函數(shù),有f(—x)=—f(x),圖像關(guān)于原點(diǎn)對(duì)稱(chēng)。

  另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個(gè)坐標(biāo)軸作垂線,這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。

  上面給出了k分別為正和負(fù)(2和—2)時(shí)的函數(shù)圖像。

  當(dāng)K0時(shí),反比例函數(shù)圖像經(jīng)過(guò)一,三象限,是減函數(shù)

  當(dāng)K0時(shí),反比例函數(shù)圖像經(jīng)過(guò)二,四象限,是增函數(shù)

  反比例函數(shù)圖像只能無(wú)限趨向于坐標(biāo)軸,無(wú)法和坐標(biāo)軸相交。

  知識(shí)點(diǎn):

  1、過(guò)反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為| k |。

  2、對(duì)于雙曲線y=k/x,若在分母上加減任意一個(gè)實(shí)數(shù)(即y=k/(xm)m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個(gè)單位。(加一個(gè)數(shù)時(shí)向左平移,減一個(gè)數(shù)時(shí)向右平移)

  高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 6

  1、按是否共面可分為兩類(lèi):

 。1)共面:平行、相交

  (2)異面:

  異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。

  異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過(guò)該點(diǎn)的直線是異面直線。

  兩異面直線所成的.角:范圍為(0°,90°)esp,空間向量法

  兩異面直線間距離:公垂線段(有且只有一條)esp,空間向量法

  2、若從有無(wú)公共點(diǎn)的角度看可分為兩類(lèi):

 。1)有且僅有一個(gè)公共點(diǎn)——相交直線;

 。2)沒(méi)有公共點(diǎn)——平行或異面

  3、直線和平面的位置關(guān)系:

  直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行

 、僦本在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn)

 、谥本和平面相交——有且只有一個(gè)公共點(diǎn)

  直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。

  高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 7

  1.一些基本概念:

  (1)向量:既有大小,又有方向的量

  (2)數(shù)量:只有大小,沒(méi)有方向的量

  (3)有向線段的三要素:起點(diǎn)、方向、長(zhǎng)度

  (4)零向量:長(zhǎng)度為0的向量

  (5)單位向量:長(zhǎng)度等于1個(gè)單位的向量

  (6)平行向量(共線向量):方向相同或相反的非零向量

  ※零向量與任一向量平行

  (7)相等向量:長(zhǎng)度相等且方向相同的.向量

  2.向量加法運(yùn)算:

 、湃切畏▌t的特點(diǎn):首尾相連

  ⑵平行四邊形法則的特點(diǎn):共起點(diǎn)

  高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 8

  1.概率與統(tǒng)計(jì):包括概率、統(tǒng)計(jì)、概率的意義、一維和二維正態(tài)分布、樣本和抽樣分布、參數(shù)估計(jì)、假設(shè)檢驗(yàn)、方差分析、回歸分析等。

  2.微積分:包括極限、導(dǎo)數(shù)、微分、不定積分、定積分、常微分方程、偏微分方程、差分方程等。

  3.線性代數(shù):包括矩陣、向量、線性方程組、矩陣的相似對(duì)角化、二次型、線性空間、線性變換、矩陣的行列式、矩陣的逆矩陣、矩陣的秩、向量組的相關(guān)性、向量組的極大線性無(wú)關(guān)組等。

  4.概率論與數(shù)理統(tǒng)計(jì):包括隨機(jī)事件與概率、概率的基本性質(zhì)與運(yùn)算法則、古典概型、條件概率、獨(dú)立性、隨機(jī)變量與分布函數(shù)、正態(tài)分布、二維隨機(jī)變量與分布函數(shù)、條件概率與相互獨(dú)立性、期望、方差、協(xié)方差與相關(guān)系數(shù)、矩、中心極限定理等。

  5.平面幾何:包括點(diǎn)和距離、平行和垂直、三角形、四邊形、圓和扇形、平面圖形和空間圖形等。

  6.平面解析幾何:包括點(diǎn)與線的坐標(biāo)、直線的方程與性質(zhì)、圓的標(biāo)準(zhǔn)方程與性質(zhì)、橢圓的標(biāo)準(zhǔn)方程與性質(zhì)、雙曲線的標(biāo)準(zhǔn)方程與性質(zhì)、拋物線的標(biāo)準(zhǔn)方程與性質(zhì)、參數(shù)方程與極坐標(biāo)方程等。

  7.集合與函數(shù):包括集合與集合運(yùn)算、函數(shù)與映射、函數(shù)圖像與性質(zhì)、指數(shù)與指數(shù)冪、對(duì)數(shù)與對(duì)數(shù)運(yùn)算、函數(shù)圖像變換等。

  8.三角函數(shù):包括三角函數(shù)的概念與圖像、同角三角函數(shù)基本關(guān)系式、正弦函數(shù)和余弦函數(shù)的圖像與性質(zhì)、正切函數(shù)的圖像與性質(zhì)、兩角和與差的正弦、余弦和正切函數(shù)、二倍角公式等。

  9.數(shù)列:包括數(shù)列的`概念與表示、等差數(shù)列與等比數(shù)列的概念與性質(zhì)、數(shù)列的通項(xiàng)公式與通項(xiàng)公式求法、數(shù)列的求和公式、數(shù)列的極限等。

  10.立體幾何:包括多面體和旋轉(zhuǎn)體的體積和表面積、平面基本性質(zhì)、直線和平面、平面和平面、直線、平面之間的位置關(guān)系、平行和垂直的判定和性質(zhì)、以及角度和平面角、距離等。

  以上是高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié),具體的學(xué)習(xí)方法和應(yīng)對(duì)考試技巧需要根據(jù)個(gè)人情況來(lái)制定。

  高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 9

  (1)《集合》

  1)集合概念不定義,屬性相同來(lái)相聚;內(nèi)有子交并補(bǔ)集,運(yùn)算結(jié)果是集合。

  2)集合元素三特征,互異無(wú)序確定性;集合元素盡相同,兩個(gè)集合才相等。

  3)書(shū)寫(xiě)規(guī)范符號(hào)化,表示列舉描述法;描述法中花括號(hào),對(duì)象xy須看清。

  4)數(shù)集點(diǎn)集須留意,點(diǎn)集本是實(shí)數(shù)對(duì);元素集合講屬于,集合之間談包含。

  5)0和空集不相同,正確區(qū)分才成功;運(yùn)算如果有難處,文氏數(shù)軸來(lái)相助。

  (2)《常用邏輯用語(yǔ)》

  1)真假能判是命題,條件結(jié)論很清晰;命題形式有四種,分成兩雙同真假。

  2)若p則q真命題,p和q充分條件;q是p必要條件,原逆皆真稱(chēng)充要。

  3)判斷條件有三法,舉出反例定義法;;由小推大集合法,逆否命題等價(jià)法。

  4)邏輯連詞或且非,或命題一真即真;且命題一假即假,非命題真假相反。

  5)且命題的否定式,否定式的或命題;或命題的否定式,否定式的且命題。

  6)量詞一般有兩個(gè),全稱(chēng)量詞所有的';存在量詞有一個(gè),全稱(chēng)特稱(chēng)兩命題。

  6)全稱(chēng)命題否定式,特稱(chēng)命題肯定式;含有量詞否定式,改寫(xiě)量詞否結(jié)論。

  (3)《函數(shù)概念》

  1)函數(shù)結(jié)構(gòu)三要素,值域法則定義域;函數(shù)形式有三法,列表圖像解析法。

  2)特殊函數(shù)有三種,分段組合和復(fù)合;定義域的要求多,分式分母不為0。

  3)偶次方根須非負(fù),0的次方要為正;底數(shù)非1為正數(shù),零和負(fù)數(shù)無(wú)對(duì)數(shù)。

  4)正切函數(shù)腳不直,數(shù)列序號(hào)正整數(shù);多個(gè)函數(shù)求交集,實(shí)際意義須滿足。

  5)函數(shù)值域的求法,配方圖像定義法;部分整體觀察法,換元代入單調(diào)法。

  6)分離常數(shù)判別式,均值定理不等法;怎樣去求解析式,題目?純尚允健

  7)抽象函數(shù)解析式,代入換元配湊法,方程思想消元法;指定類(lèi)型解析式

  8)運(yùn)用待定系數(shù)法。性質(zhì)奇偶用單調(diào),觀察圖像最美妙;若要詳細(xì)證明它

  9)還須將那定義抓。組合函數(shù)單調(diào)性,判斷它們有法則,增加上增等于增

  10)增減去減等于增,減加上減等于減,減減去增等于減。復(fù)合函數(shù)單調(diào)性

  11)同增異減巧判斷。復(fù)合函數(shù)奇偶性,偶加減偶等于偶,奇加減奇等于奇。

  12)偶加減奇非奇偶,偶乘除偶等于偶,奇乘除奇等于偶,奇乘除偶等于奇。

  13)周期對(duì)稱(chēng)兩種性,觀察結(jié)構(gòu)最可行;內(nèi)同表示周期性,內(nèi)反表示對(duì)稱(chēng)性。

  14)中心對(duì)稱(chēng)軸對(duì)稱(chēng),函數(shù)還具周期性;函數(shù)零點(diǎn)方程根,圖像交點(diǎn)橫坐標(biāo);

  15)函數(shù)零點(diǎn)有幾個(gè),畫(huà)出圖像看交點(diǎn);兩個(gè)端點(diǎn)都代入,相乘為負(fù)有零點(diǎn)。

  高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 10

  有界性

  設(shè)函數(shù)f(x)在區(qū)間X上有定義,如果存在M>0,對(duì)于一切屬于區(qū)間X上的x,恒有|f(x)|≤M,則稱(chēng)f(x)在區(qū)間X上有界,否則稱(chēng)f(x)在區(qū)間上無(wú)界。

  單調(diào)性

  設(shè)函數(shù)f(x)的定義域?yàn)镈,區(qū)間I包含于D,如果對(duì)于區(qū)間上任意兩點(diǎn)x1及x2,當(dāng)x1f(x2),則稱(chēng)函數(shù)f(x)在區(qū)間I上是單調(diào)遞減的。單調(diào)遞增和單調(diào)遞減的函數(shù)統(tǒng)稱(chēng)為單調(diào)函數(shù)。

  奇偶性

  設(shè)為一個(gè)實(shí)變量實(shí)值函數(shù),若有f(—x)=—f(x),則f(x)為奇函數(shù)。

  幾何上,一個(gè)奇函數(shù)關(guān)于原點(diǎn)對(duì)稱(chēng),亦即其圖像在繞原點(diǎn)做180度旋轉(zhuǎn)后不會(huì)改變。

  奇函數(shù)的例子有x、sin(x)、sinh(x)和erf(x)。

  設(shè)f(x)為一實(shí)變量實(shí)值函數(shù),若有f(x)=f(—x),則f(x)為偶函數(shù)。

  幾何上,一個(gè)偶函數(shù)關(guān)于y軸對(duì)稱(chēng),亦即其圖在對(duì)y軸映射后不會(huì)改變。

  偶函數(shù)的例子有|x|、x2、cos(x)和cosh(x)。

  偶函數(shù)不可能是個(gè)雙射映射。

  連續(xù)性

  在數(shù)學(xué)中,連續(xù)是函數(shù)的一種屬性。直觀上來(lái)說(shuō),連續(xù)的函數(shù)就是當(dāng)輸入值的變化足夠小的.時(shí)候,輸出的變化也會(huì)隨之足夠小的函數(shù)。如果輸入值的某種微小的變化會(huì)產(chǎn)生輸出值的一個(gè)突然的跳躍甚至無(wú)法定義,則這個(gè)函數(shù)被稱(chēng)為是不連續(xù)的函數(shù)(或者說(shuō)具有不連續(xù)性)。

  高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 11

  簡(jiǎn)單隨機(jī)抽樣的定義:

  一般地,設(shè)一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內(nèi)的各個(gè)個(gè)體被抽到的機(jī)會(huì)都相等,就把這種抽樣方法叫做簡(jiǎn)單隨機(jī)抽樣。

  簡(jiǎn)單隨機(jī)抽樣的特點(diǎn):

 。1)用簡(jiǎn)單隨機(jī)抽樣從含有N個(gè)個(gè)體的總體中抽取一個(gè)容量為n的樣本時(shí),每次抽取一個(gè)個(gè)體時(shí)任一個(gè)體被抽到的概率為_(kāi)__;在整個(gè)抽樣過(guò)程中各個(gè)個(gè)體被抽到的概率為_(kāi)___。

 。2)簡(jiǎn)單隨機(jī)抽樣的特點(diǎn)是,逐個(gè)抽取,且各個(gè)個(gè)體被抽到的概率相等。

 。3)簡(jiǎn)單隨機(jī)抽樣方法,體現(xiàn)了抽樣的客觀性與公平性,是其他更復(fù)雜抽樣方法的.基礎(chǔ)。

 。4)簡(jiǎn)單隨機(jī)抽樣是不放回抽樣;它是逐個(gè)地進(jìn)行抽;它是一種等概率抽樣。

  簡(jiǎn)單抽樣常用方法:

 。1)抽簽法:先將總體中的所有個(gè)體(共有N個(gè))編號(hào)(號(hào)碼可從1到N),并把號(hào)碼寫(xiě)在形狀、大小相同的號(hào)簽上(號(hào)簽可用小球、卡片、紙條等制作),然后將這些號(hào)簽放在同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí)每次從中抽一個(gè)號(hào)簽,連續(xù)抽取n次,就得到一個(gè)容量為n的樣本適用范圍:總體的個(gè)體數(shù)不多時(shí)優(yōu)點(diǎn):抽簽法簡(jiǎn)便易行,當(dāng)總體的個(gè)體數(shù)不太多時(shí)適宜采用抽簽法。

  (2)隨機(jī)數(shù)表法:隨機(jī)數(shù)表抽樣“三步曲”:第一步,將總體中的個(gè)體編號(hào);第二步,選定開(kāi)始的數(shù)字;第三步,獲取樣本號(hào)碼概率。

  高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 12

  (一)導(dǎo)數(shù)第一定義

  設(shè)函數(shù) y = f(x) 在點(diǎn) x0 的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量 x 在 x0 處有增量 △x ( x0 + △x 也在該鄰域內(nèi) ) 時(shí),相應(yīng)地函數(shù)取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 與 △x 之比當(dāng) △x→0 時(shí)極限存在,則稱(chēng)函數(shù) y = f(x) 在點(diǎn) x0 處可導(dǎo),并稱(chēng)這個(gè)極限值為函數(shù) y = f(x) 在點(diǎn) x0 處的導(dǎo)數(shù)記為 f(x0) ,即導(dǎo)數(shù)第一定義

  (二)導(dǎo)數(shù)第二定義

  設(shè)函數(shù) y = f(x) 在點(diǎn) x0 的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量 x 在 x0 處有變化 △x ( x - x0 也在該鄰域內(nèi) ) 時(shí),相應(yīng)地函數(shù)變化 △y = f(x) - f(x0) ;如果 △y 與 △x 之比當(dāng) △x→0 時(shí)極限存在,則稱(chēng)函數(shù) y = f(x) 在點(diǎn) x0 處可導(dǎo),并稱(chēng)這個(gè)極限值為函數(shù) y = f(x) 在點(diǎn) x0 處的導(dǎo)數(shù)記為 f(x0) ,即 導(dǎo)數(shù)第二定義

  (三)導(dǎo)函數(shù)與導(dǎo)數(shù)

  如果函數(shù) y = f(x) 在開(kāi)區(qū)間 I 內(nèi)每一點(diǎn)都可導(dǎo),就稱(chēng)函數(shù)f(x)在區(qū)間 I 內(nèi)可導(dǎo)。這時(shí)函數(shù) y = f(x) 對(duì)于區(qū)間 I 內(nèi)的每一個(gè)確定的 x 值,都對(duì)應(yīng)著一個(gè)確定的導(dǎo)數(shù),這就構(gòu)成一個(gè)新的函數(shù),稱(chēng)這個(gè)函數(shù)為原來(lái)函數(shù) y = f(x) 的`導(dǎo)函數(shù),記作 y, f(x), dy/dx, df(x)/dx。導(dǎo)函數(shù)簡(jiǎn)稱(chēng)導(dǎo)數(shù)。

  (四)單調(diào)性及其應(yīng)用

  1.利用導(dǎo)數(shù)研究多項(xiàng)式函數(shù)單調(diào)性的一般步驟

  (1)求f(x)

  (2)確定f(x)在(a,b)內(nèi)符號(hào) (3)若f(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)

  2.用導(dǎo)數(shù)求多項(xiàng)式函數(shù)單調(diào)區(qū)間的一般步驟

  (1)求f(x)

  (2)f(x)>0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為增區(qū)間; f(x)<0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為減區(qū)間

  學(xué)習(xí)了導(dǎo)數(shù)基礎(chǔ)知識(shí)點(diǎn),接下來(lái)可以學(xué)習(xí)高二數(shù)學(xué)中涉及到的導(dǎo)數(shù)應(yīng)用的部分。

  高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 13

  集合的分類(lèi):

 。1)按元素屬性分類(lèi),如點(diǎn)集,數(shù)集。

  (2)按元素的個(gè)數(shù)多少,分為有/無(wú)限集

  關(guān)于集合的概念:

  (1)確定性:作為一個(gè)集合的元素,必須是確定的,這就是說(shuō),不能確定的對(duì)象就不能構(gòu)成集合,也就是說(shuō),給定一個(gè)集合,任何一個(gè)對(duì)象是不是這個(gè)集合的元素也就確定了。

  (2)互異性:對(duì)于一個(gè)給定的集合,集合中的元素一定是不同的(或說(shuō)是互異的),這就是說(shuō),集合中的任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入同一個(gè)集合時(shí)只能算作集合的一個(gè)元素。

  (3)無(wú)序性:判斷一些對(duì)象時(shí)候構(gòu)成集合,關(guān)鍵在于看這些對(duì)象是否有明確的標(biāo)準(zhǔn)。

  集合可以根據(jù)它含有的元素的個(gè)數(shù)分為兩類(lèi):

  含有有限個(gè)元素的集合叫做有限集,含有無(wú)限個(gè)元素的集合叫做無(wú)限集。

  非負(fù)整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N。

  在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或N_。

  整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z。

  有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q。(有理數(shù)是整數(shù)和分?jǐn)?shù)的統(tǒng)稱(chēng),一切有理數(shù)都可以化成分?jǐn)?shù)的形式。)

  實(shí)數(shù)全體構(gòu)成的集合,叫做實(shí)數(shù)集,記作R。(包括有理數(shù)和無(wú)理數(shù)。其中無(wú)理數(shù)就是無(wú)限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分?jǐn)?shù)。數(shù)學(xué)上,實(shí)數(shù)直觀地定義為和數(shù)軸上的點(diǎn)一一對(duì)應(yīng)的數(shù)。)

  1、列舉法:如果一個(gè)集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來(lái),寫(xiě)在花括號(hào)“{}”內(nèi)表示這個(gè)集合,例如,由兩個(gè)元素0,1構(gòu)成的集合可表示為{0,1}。

  有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個(gè)元素作為代表,其他元素用省略號(hào)表示。

  例如:不大于100的自然數(shù)的全體構(gòu)成的`集合,可表示為{0,1,2,3,…,100}。

  無(wú)限集有時(shí)也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}。

  2、描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來(lái)描述。

  例如:正偶數(shù)構(gòu)成的集合,它的每一個(gè)元素都具有性質(zhì):“能被2整除,且大于0”

  而這個(gè)集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括號(hào)內(nèi)豎線左邊的X表示這個(gè)集合的任意一個(gè)元素,元素X從實(shí)數(shù)集合中取值,在豎線右邊寫(xiě)出只有集合內(nèi)的元素x才具有的性質(zhì)。

  一般地,如果在集合I中,屬于集合A的任意一個(gè)元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個(gè)特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡(jiǎn)稱(chēng)描述法。

  例如:集合A={x∈R│x2—1=0}的特征是X2—1=0

【高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

高中數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)08-10

高中數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)06-05

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)06-05

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)06-08

高中數(shù)學(xué)知識(shí)點(diǎn)必修總結(jié)07-29

高中數(shù)學(xué)基本知識(shí)點(diǎn)總結(jié)07-10

高中數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)4篇06-05

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15篇07-27

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(15篇)07-27