成年女人色视频在线观看网站_一本久精品无码免费_亚洲成a人片在线观看无码专区_开心婷婷五月综合基地六月

高中數(shù)學(xué)教學(xué)設(shè)計(jì)

時(shí)間:2023-03-27 17:49:51 教學(xué)資源 投訴 投稿

高中數(shù)學(xué)教學(xué)設(shè)計(jì)(15篇)

  作為一位兢兢業(yè)業(yè)的人民教師,時(shí)常要開展教學(xué)設(shè)計(jì)的準(zhǔn)備工作,教學(xué)設(shè)計(jì)是一個(gè)系統(tǒng)化規(guī)劃教學(xué)系統(tǒng)的過(guò)程。那要怎么寫好教學(xué)設(shè)計(jì)呢?下面是小編為大家收集的高中數(shù)學(xué)教學(xué)設(shè)計(jì),歡迎閱讀,希望大家能夠喜歡。

高中數(shù)學(xué)教學(xué)設(shè)計(jì)(15篇)

高中數(shù)學(xué)教學(xué)設(shè)計(jì)1

  一、教學(xué)目標(biāo)

  1、在初中學(xué)過(guò)原命題、逆命題知識(shí)的基礎(chǔ)上,初步理解四種命題。

  2、給一個(gè)比較簡(jiǎn)單的命題(原命題),可以寫出它的逆命題、否命題和逆否命題。

  3、通過(guò)對(duì)四種命題之間關(guān)系的學(xué)習(xí),培養(yǎng)學(xué)生邏輯推理能力

  4、初步培養(yǎng)學(xué)生反證法的數(shù)學(xué)思維。

  二、教學(xué)分析

  重點(diǎn):四種命題;難點(diǎn):四種命題的關(guān)系

  1。本小節(jié)首先從初中數(shù)學(xué)的命題知識(shí),給出四種命題的概念,接著,講述四種命題的關(guān)系,最后,在初中的基礎(chǔ)上,結(jié)合四種命題的知識(shí),進(jìn)一步講解反證法。

  2。教學(xué)時(shí),要注意控制教學(xué)要求。本小節(jié)的內(nèi)容,只涉及比較簡(jiǎn)單的命題,不研究含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的命題的逆命題、否命題和逆否命題,

 。常叭魀則q”形式的命題,也是一種復(fù)合命題,并且,其中的p與q,可以是命題也可以是開語(yǔ)句,例如,命題“若,則x,y全為0”,其中的p與q,就是開語(yǔ)句。對(duì)學(xué)生,只要求能分清命題“若p則q”中的條件與結(jié)論就可以了,不必考慮p與q是命題,還是開語(yǔ)句。

  三、教學(xué)手段和方法(演示教學(xué)法和循序漸進(jìn)導(dǎo)入法)

  1。以故事形式入題

  2多媒體演示

  四、教學(xué)過(guò)程

 。ㄒ唬┮耄阂粋(gè)生活中有趣的與命題有關(guān)的笑話:某人要請(qǐng)甲乙丙丁吃飯,時(shí)間到了,只有甲乙丙三人按時(shí)赴約。丁卻打電話說(shuō)“有事不能參加”主人聽了隨口說(shuō)了句“該來(lái)的沒(méi)來(lái)”甲聽了臉色一沉,一聲不吭的走了,主人愣了一下又說(shuō)了一句“哎,不該走的走了”乙聽了大怒,拂袖即去。主人這時(shí)還沒(méi)意識(shí)到又順口說(shuō)了一句:“俺說(shuō)的又不是你”。這時(shí)丙怒火中燒不辭而別。四個(gè)客人沒(méi)來(lái)的沒(méi)來(lái),來(lái)的又走了。主人請(qǐng)客不成還得罪了三家。大家肯定都覺(jué)得這個(gè)人不會(huì)說(shuō)話,但是你想過(guò)這里面所蘊(yùn)涵的數(shù)學(xué)思想嗎?通過(guò)這節(jié)課的學(xué)習(xí)我們就能揭開它的廬山真面,學(xué)生的興奮點(diǎn)被緊緊抓住,躍躍欲試!

  設(shè)計(jì)意圖:創(chuàng)設(shè)情景,激發(fā)學(xué)生學(xué)習(xí)興趣

 。ǘ⿵(fù)習(xí)提問(wèn):

  1.命題“同位角相等,兩直線平行”的條件與結(jié)論各是什么?

  2.把“同位角相等,兩直線平行”看作原命題,它的逆命題是什么?

  3.原命題真,逆命題一定真嗎?

  “同位角相等,兩直線平行”這個(gè)原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.

  學(xué)生活動(dòng):

  口答:(l)若同位角相等,則兩直線平行;(2)若一個(gè)四邊形是正方形,則它的四條邊相等.

  設(shè)計(jì)意圖: 通過(guò)復(fù)習(xí)舊知識(shí),打下學(xué)習(xí)否命題、逆否命題的基礎(chǔ).

 。ㄈ┬抡n講解:

  1.命題“同位角相等,兩直線平行”的條件是“同位角相等”,結(jié)論是“兩直線平行”;如果把“同位角相等,兩直線平行”看作原命題,它的逆命題就是“兩直線平行,同位角相等”。也就是說(shuō),把原命題的結(jié)論作為條件,條件作為結(jié)論,得到的命題就叫做原命題的逆命題。

  2.把命題“同位角相等,兩直線平行”的條件與結(jié)論同時(shí)否定,就得到新命題“同位角不相等,兩直線不平行”,這個(gè)新命題就叫做原命題的否命題。

  3.把命題“同位角相等,兩直線平行”的條件與結(jié)論互相交換并同時(shí)否定,就得到新命題“兩直線不平行,同位角不相等”,這個(gè)新命題就叫做原命題的逆否命題。

 。ㄋ模┙M織討論:

  讓學(xué)生歸納什么是否命題,什么是逆否命題。

  例1及例2

  (五)課堂探究:“兩條直線不平行,則同位角不相等”是否真?“若一個(gè)四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?

  學(xué)生活動(dòng):

  討論后回答

  這兩個(gè)逆否命題都真.

  原命題真,逆否命題也真

  引導(dǎo)學(xué)生討論原命題的真假與其他三種命題的真

  假有什么關(guān)系?舉例加以說(shuō)明,同學(xué)們踴躍發(fā)言。

 。┱n堂小結(jié):

  1、一般地,用p和q分別表示原命題的條件和結(jié)論,用¬p和¬q分別表示p和q否定時(shí),四種命題的形式就是:

  原命題若p則q;

  逆命題若q則p;(交換原命題的條件和結(jié)論)

  否命題,若¬p則¬q;(同時(shí)否定原命題的條件和結(jié)論)

  逆否命題若¬q則¬p。(交換原命題的條件和結(jié)論,并且同時(shí)否定)

  2、四種命題的關(guān)系

  (1).原命題為真,它的逆命題不一定為真.

 。2).原命題為真,它的否命題不一定為真.

 。3).原命題為真,它的逆否命題一定為真

  (七)回扣引入

  分析引入中的'笑話,先討論,后總結(jié):現(xiàn)在我們來(lái)分析一下主人說(shuō)的四句話:

  第一句:“該來(lái)的沒(méi)來(lái)”

  其逆否命題是“不該來(lái)的來(lái)了”,甲認(rèn)為自己是不該來(lái)的,所以甲走了。

  第二句:“不該走的走了”,其逆否命題為“該走的沒(méi)走”,乙認(rèn)為自己該走,所以乙也走了。

  第三句:“俺說(shuō)的不是你(指乙)”其值為真其非命題:“俺說(shuō)的是你”為假,則說(shuō)的是他(指丙)為真。所以,丙認(rèn)為說(shuō)的是自己,所以丙也走了。

  同學(xué)們,生活中處處是數(shù)學(xué),期待我們善于發(fā)現(xiàn)的眼睛

  五、作業(yè)

  1.設(shè)原命題是“若

  斷它們的真假. ,則 ”,寫出它的逆命題、否命題與逆否命題,并分別判

  2.設(shè)原命題是“當(dāng) 時(shí),若 ,則 ”,寫出它的逆命題、否定命與逆否命題,并分別判斷它們的真假.

高中數(shù)學(xué)教學(xué)設(shè)計(jì)2

  一、學(xué)習(xí)目標(biāo)與任務(wù)

  1、學(xué)習(xí)目標(biāo)描述

  知識(shí)目標(biāo)

  (A)理解和掌握?qǐng)A錐曲線的第一定義和第二定義,并能應(yīng)用第一定義和第二定義來(lái)解題。

  (B)了解圓錐曲線與現(xiàn)實(shí)生活中的聯(lián)系,并能初步利用圓錐曲線的知識(shí)進(jìn)行知識(shí)延伸和知識(shí)創(chuàng)新。

  能力目標(biāo)

  (A)通過(guò)學(xué)生的操作和協(xié)作探討,培養(yǎng)學(xué)生的實(shí)踐能力和分析問(wèn)題、解決問(wèn)題的能力。

  (B)通過(guò)知識(shí)的再現(xiàn)培養(yǎng)學(xué)生的創(chuàng)新能力和創(chuàng)新意識(shí)。

  (C)專題網(wǎng)站中提供各層次的例題和習(xí)題,解決各層次學(xué)生的學(xué)習(xí)過(guò)程中的各種的需要,從而培養(yǎng)學(xué)生應(yīng)用知識(shí)的能力。

  德育目標(biāo)

  讓學(xué)生體會(huì)知識(shí)產(chǎn)生的全過(guò)程,培養(yǎng)學(xué)生運(yùn)動(dòng)變化的辯證唯物主義思想。

  2、學(xué)習(xí)內(nèi)容與學(xué)習(xí)任務(wù)說(shuō)明

  本節(jié)課的內(nèi)容是圓錐曲線的第一定義和圓錐曲線的統(tǒng)一定義,以及利用圓錐曲線的定義來(lái)解決軌跡問(wèn)題和最值問(wèn)題。

  學(xué)習(xí)重點(diǎn):圓錐曲線的第一定義和統(tǒng)一定義。

  學(xué)習(xí)難點(diǎn):圓錐曲線第一定義和統(tǒng)一定義的應(yīng)用。

  明確本課的重點(diǎn)和難點(diǎn),以學(xué)習(xí)任務(wù)驅(qū)動(dòng)為方式,以圓錐曲線定義和定義應(yīng)用為中心,主動(dòng)操作實(shí)驗(yàn)、大膽分析問(wèn)題和解決問(wèn)題。

  抓住本節(jié)課的重點(diǎn)和難點(diǎn),采取的基于學(xué)科專題網(wǎng)站下的三者結(jié)合的教學(xué)模式,突出重點(diǎn)、突破難點(diǎn)。

  充分利用《圓錐曲線》專題網(wǎng)站內(nèi)的內(nèi)容,在著重學(xué)習(xí)內(nèi)容的'基礎(chǔ)上,內(nèi)延外拓,培養(yǎng)學(xué)生的創(chuàng)新精神和克服困難的信心。

  二、學(xué)習(xí)者特征分析

  (說(shuō)明學(xué)生的學(xué)習(xí)特點(diǎn)、學(xué)習(xí)習(xí)慣、學(xué)習(xí)交往特點(diǎn)等)

  l本課的學(xué)習(xí)對(duì)象為高二下學(xué)期學(xué)生,他們經(jīng)過(guò)近兩年的高中學(xué)習(xí),已經(jīng)有一定的學(xué)習(xí)基礎(chǔ)和分析問(wèn)題、解決問(wèn)題的能力,基本的計(jì)算機(jī)操作較為熟練。

  高二年下學(xué)期學(xué)生由于高考的壓力,他們保持著傳統(tǒng)教學(xué)的學(xué)習(xí)習(xí)慣,在

  l課堂上的主體作用的體現(xiàn)不是太充分,但是如果他們還是樂(lè)于嘗試、勇于探索的。

  高二年的學(xué)生在學(xué)習(xí)交往上“個(gè)別化學(xué)習(xí)”和“協(xié)作討論學(xué)習(xí)”并存,也就是說(shuō)學(xué)生是具有一定的群體性小組交流能力與協(xié)同討論學(xué)習(xí)能力的,還是能完成上課時(shí)教師布置的協(xié)作學(xué)習(xí)任務(wù)的。

  三、學(xué)習(xí)環(huán)境選擇與學(xué)習(xí)資源設(shè)計(jì)

  1.學(xué)習(xí)環(huán)境選擇(打√)

 。1)Web教室(√)(2)局域網(wǎng)(3)城域網(wǎng)(4)校園網(wǎng)(√)(5)Internet(√)

 。6)其它

  2、學(xué)習(xí)資源類型(打√)

 。1)課件(網(wǎng)絡(luò)課件)(√)(2)工具(3)專題學(xué)習(xí)網(wǎng)站(√)(4)多媒體資源庫(kù)

  (5)案例庫(kù)(6)題庫(kù)(7)網(wǎng)絡(luò)課程(8)其它

  3、學(xué)習(xí)資源內(nèi)容簡(jiǎn)要說(shuō)明

 。ㄕf(shuō)明名稱、網(wǎng)址、主要內(nèi)容等)

  《圓錐曲線專題網(wǎng)站》:從自然與科技、定義與應(yīng)用、性質(zhì)與實(shí)踐和創(chuàng)新與未來(lái)四個(gè)方面圍繞圓錐曲線進(jìn)行探討與研究。(IP:192.168.3.134)

  用Flash5、幾何畫板和Authorware6制作可操作且具有交互性的網(wǎng)絡(luò)課件放在專題網(wǎng)站里。

  四、學(xué)習(xí)情境創(chuàng)設(shè)

  1、學(xué)習(xí)情境類型(打√)

 。1)真實(shí)性情境(√)(2)問(wèn)題性情境(√)

  (3)虛擬性情境(√)(4)其它

  2、學(xué)習(xí)情境設(shè)計(jì)

  真實(shí)性情境:用Flash5制作的一系列教學(xué)軟件。用幾何畫板制作的《圓錐曲線的統(tǒng)一定義》的教學(xué)軟件。

  問(wèn)題性情境:圓錐曲線的截取方法、圓錐曲線的各種定義、典型例題。

  虛擬性情境:Authorware6制作的《圓錐曲線的截取》,模擬曲線截取。

  五、學(xué)習(xí)活動(dòng)的組織

  1、自主學(xué)習(xí)設(shè)計(jì)(打√并填寫相關(guān)內(nèi)容)

  (1)拋錨式

  (2)支架式(√)相應(yīng)內(nèi)容:圓錐曲線的第一定義和統(tǒng)一定義。

  使用資源:數(shù)學(xué)教材、專題網(wǎng)站及專題網(wǎng)站下的多媒體教學(xué)軟件。

  學(xué)生活動(dòng):分析、操作、協(xié)作討論、總結(jié)、提交結(jié)論。

  教師活動(dòng):?jiǎn)栴}的提出。學(xué)習(xí)資源獲取路徑的指導(dǎo)。問(wèn)題解答和咨詢。

  (3)隨機(jī)進(jìn)入式(√)相應(yīng)內(nèi)容:圓錐曲線定義的典型應(yīng)用。

  使用資源:軌跡問(wèn)題、最值問(wèn)題、其它問(wèn)題三種典型例題以及各個(gè)題目的動(dòng)畫演示和答案。

  學(xué)生活動(dòng):根據(jù)自身情況選題、分析題目、協(xié)作討論、解答題目。

  教師活動(dòng):講解例題,總結(jié)點(diǎn)評(píng)學(xué)生做題過(guò)程中的問(wèn)題。

  (4)其它

  2、協(xié)作學(xué)習(xí)設(shè)計(jì)(打√并填寫相關(guān)內(nèi)容)

 。1)競(jìng)爭(zhēng)

 。2)伙伴(√)

  相應(yīng)內(nèi)容:圓錐曲線的第一定義和統(tǒng)一定義

  使用資源:數(shù)學(xué)教材、專題網(wǎng)站及專題網(wǎng)站下的多媒體教學(xué)軟件。

  分組情況:每組三人

  學(xué)生活動(dòng):學(xué)生之間對(duì)圓錐曲線的定義展開討論,從而達(dá)到對(duì)定義的理解和掌握。

  教師活動(dòng):?jiǎn)栴}的提出。學(xué)習(xí)資源獲取路徑的指導(dǎo)。問(wèn)題解答和咨詢。

 。3)協(xié)同(√)

  相應(yīng)內(nèi)容:圓錐曲線定義的典型應(yīng)用。

  使用資源:軌跡問(wèn)題、最值問(wèn)題、其它問(wèn)題三種典型例題以及各個(gè)題目的動(dòng)畫演示和答案。

  分組情況:每組三人。

  學(xué)生活動(dòng):通過(guò)協(xié)作討論區(qū),同學(xué)之間互相配合、互相幫助、各種觀點(diǎn)互相補(bǔ)充。

  教師活動(dòng):總結(jié)點(diǎn)評(píng)學(xué)生做題過(guò)程中的問(wèn)題。

 。4)辯論

  (5)角色扮演

 。6)其它

  4、教學(xué)結(jié)構(gòu)流程的設(shè)計(jì)

  六、學(xué)習(xí)評(píng)價(jià)設(shè)計(jì)

  1、測(cè)試形式與工具(打√)

 。1)堂上提問(wèn)(√)(2)書面練習(xí)(3)達(dá)標(biāo)測(cè)試(4)學(xué)生自主網(wǎng)上測(cè)試(√)(5)合作完成作品(6)其它

  2、測(cè)試內(nèi)容

  教師堂上提問(wèn):圓錐曲線的定義、學(xué)生提交的結(jié)論的完整性、學(xué)生協(xié)作討論時(shí)的疑問(wèn)、例題講解過(guò)程中問(wèn)題,課堂總結(jié)。

  學(xué)生自主網(wǎng)上測(cè)試:解決軌跡問(wèn)題、最值問(wèn)題、其它問(wèn)題三種典型題目。

  (附)圓錐曲線專題網(wǎng)站設(shè)計(jì)分析

  (1)設(shè)計(jì)思路

  (A)給學(xué)生操作與實(shí)踐的機(jī)會(huì):在每一環(huán)節(jié)中建設(shè)一個(gè)可供學(xué)生操作的實(shí)驗(yàn)平臺(tái)。

  (B)突出教學(xué)中“主導(dǎo)和主體”的作用:在每一環(huán)節(jié)中建設(shè)一個(gè)可供師生交流的平臺(tái)。

  (C)突出知識(shí)的再創(chuàng)新過(guò)程和知識(shí)的延伸:如圓錐曲線的作法和知識(shí)的創(chuàng)新與應(yīng)用。

  (D)強(qiáng)調(diào)教學(xué)軟件的交互性:如在題目中給出提示的動(dòng)畫過(guò)程和解答過(guò)程。

  (E)突出和各學(xué)科的聯(lián)系:如斜拋運(yùn)動(dòng)和行星運(yùn)動(dòng)等等。

  (F)強(qiáng)調(diào)分層次的教學(xué):

  如在知識(shí)應(yīng)用中的配置不同層次的例題和練習(xí):

  (2)網(wǎng)站導(dǎo)航圖

高中數(shù)學(xué)教學(xué)設(shè)計(jì)3

  教學(xué)目標(biāo)

 。1)理解四種命題的概念;

 。2)理解四種命題之間的相互關(guān)系,能由原命題寫出其他三種形式;

 。3)理解一個(gè)命題的真假與其他三個(gè)命題真假間的關(guān)系;

 。4)初步掌握反證法的概念及反證法證題的基本步驟;

 。5)通過(guò)對(duì)四種命題之間關(guān)系的學(xué)習(xí),培養(yǎng)學(xué)生邏輯推理能力;

 。6)通過(guò)對(duì)四種命題的存在性和相對(duì)性的認(rèn)識(shí),進(jìn)行辯證唯物主義觀點(diǎn)教育;

  (7)培養(yǎng)學(xué)生用反證法簡(jiǎn)單推理的技能,從而發(fā)展學(xué)生的思維能力.

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):四種命題之間的關(guān)系;難點(diǎn):反證法的運(yùn)用.

  教學(xué)過(guò)程設(shè)計(jì)

  第一課時(shí):四種命題

  一、導(dǎo)入新課

  【練習(xí)】1.把下列命題改寫成“若p則q”的形式:

 。╨)同位角相等,兩直線平行;

 。2)正方形的四條邊相等.

  2.什么叫互逆命題?上述命題的逆命題是什么?

  將命題寫成“若p則q”的形式,關(guān)鍵是找到命題的條件p與q結(jié)論.

  如果第一個(gè)命題的條件是第二個(gè)命題的結(jié)論,且第一個(gè)命題的結(jié)論是第二個(gè)命題的條件,那么這兩個(gè)命題叫做互道命題.

  上述命題的道命題是“若一個(gè)四邊形的四條邊相等,則它是正方形”和“若兩條直線平行,則同位角相等”.

  值得指出的是原命題和逆命題是相對(duì)的.我們也可以把逆命題當(dāng)成原命題,去求它的逆命題.

  3.原命題真,逆命題一定真嗎?

  “同位角相等,兩直線平行”這個(gè)原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.

  學(xué)生活動(dòng):

  口答:(l)若同位角相等,則兩直線平行;(2)若一個(gè)四邊形是正方形,則它的四條邊相等.

  設(shè)計(jì)意圖:

  通過(guò)復(fù)習(xí)舊知識(shí),打下學(xué)習(xí)否命題、逆否命題的基礎(chǔ).

  二、新課

  【設(shè)問(wèn)】命題“同位角相等,兩條直線平行”除了能構(gòu)成它的`逆命題外,是否還可以構(gòu)成其它形式的命題?

  【講述】可以將原命題的條件和結(jié)論分別否定,構(gòu)成“同位角不相等,則兩直線不平行”,這個(gè)命題叫原命題的否命題.

  【提問(wèn)】你能由原命題“正方形的四條邊相等”構(gòu)成它的否命題嗎?

  學(xué)生活動(dòng):

  口答:若一個(gè)四邊形不是正方形,則它的四條邊不相等.

  教師活動(dòng):

  【講述】一個(gè)命題的條件和結(jié)論分別是另一個(gè)命題的條件的否定和結(jié)論的否定,這樣的兩個(gè)命題叫做互否命題.把其中一個(gè)命題叫做原命題,另一個(gè)命題叫做原命題的否命題.

  若用p和q分別表示原命題的條件和結(jié)論,用┐p和┐q分別表示p和q的否定.

  【板書】原命題:若p則q;

  否命題:若┐p則q┐.

  【提問(wèn)】原命題真,否命題一定真嗎?舉例說(shuō)明?

  學(xué)生活動(dòng):

  講論后回答:

  原命題“同位角相等,兩直線平行”真,它的否命題“同位角不相等,兩直線不平行”不真.

  原命題“正方形的四條邊相等”真,它的否命題“若一個(gè)四邊形不是正方形,則它的四條邊不相等”不真.

  由此可以得原命題真,它的否命題不一定真.

  設(shè)計(jì)意圖:

  通過(guò)設(shè)問(wèn)和討論,讓學(xué)生在自己舉例中研究如何由原命題構(gòu)成否命題及判斷它們的真假,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性.

  教師活動(dòng):

  【提問(wèn)】命題“同位角相等,兩條直線平行”除了能構(gòu)成它的逆命題和否命題外,還可以不可以構(gòu)成別的命題?

  學(xué)生活動(dòng):

  討論后回答

  【總結(jié)】可以將這個(gè)命題的條件和結(jié)論互換后再分別將新的條件和結(jié)論分別否定構(gòu)成命題“兩條直線不平行,則同位角不相等”,這個(gè)命題叫原命題的逆否命題.

  教師活動(dòng):

  【提問(wèn)】原命題“正方形的四條邊相等”的逆否命題是什么?

  學(xué)生活動(dòng):

  口答:若一個(gè)四邊形的四條邊不相等,則不是正方形.

  教師活動(dòng):

  【講述】一個(gè)命題的條件和結(jié)論分別是另一個(gè)命題的結(jié)論的否定和條件的否定,這樣的兩個(gè)命題叫做互為逆否命題.把其中一個(gè)命題叫做原命題,另一個(gè)命題就叫做原命題的逆否命題.

  原命題是“若 p則 q ”,則逆否命題為“若┐q 則┐p .

  【提問(wèn)】“兩條直線不平行,則同位角不相等”是否真?“若一個(gè)四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?

  學(xué)生活動(dòng):

  討論后回答

  這兩個(gè)逆否命題都真.

  原命題真,逆否命題也真.

  教師活動(dòng):

  【提問(wèn)】原命題的真假與其他三種命題的真

  假有什么關(guān)系?舉例加以說(shuō)明?

  【總結(jié)】1.原命題為真,它的逆命題不一定為真.

  2.原命題為真,它的否命題不一定為真.

  3.原命題為真,它的逆否命題一定為真.

  設(shè)計(jì)意圖:

  通過(guò)設(shè)問(wèn)和討論,讓學(xué)生在自己舉例中研究如何由原命題構(gòu)成逆否命題及判斷它們的真假,調(diào)動(dòng)學(xué)生學(xué)的積極性.

  教師活動(dòng):

  三、課堂練習(xí)

  1.若原命題是“若p則q”,其它三種命題的形式怎樣表示?請(qǐng)寫在方框內(nèi)?

  學(xué)生活動(dòng):筆答

  教師活動(dòng):

  2.根據(jù)上圖所給出的箭頭,寫出箭頭兩頭命題之間的關(guān)系?舉例加以說(shuō)明?

  學(xué)生活動(dòng):討論后回答

  設(shè)計(jì)意圖:

  通過(guò)學(xué)生自己填圖,使學(xué)生掌握四種命題的形式和它們之間的關(guān)系.

  教師活動(dòng):

高中數(shù)學(xué)教學(xué)設(shè)計(jì)4

  函數(shù)的奇偶性

  函數(shù)的奇偶性是函數(shù)的重要性質(zhì),是對(duì)函數(shù)概念的深化.它把自變量取相反數(shù)時(shí)函數(shù)值間的關(guān)系定量地聯(lián)系在一起,反映在圖像上為:偶函數(shù)的圖像關(guān)于y軸對(duì)稱,奇函數(shù)的圖像關(guān)于坐標(biāo)原點(diǎn)成中心對(duì)稱.這樣,就從數(shù)、形兩個(gè)角度對(duì)函數(shù)的奇偶性進(jìn)行了定量和定性的分析.教材首先通過(guò)對(duì)具體函數(shù)的圖像及函數(shù)值對(duì)應(yīng)表歸納和抽象,概括出了函數(shù)奇偶性的準(zhǔn)確定義.然后,為深化對(duì)概念的理解,舉出了奇函數(shù)、偶函數(shù)、既是奇函數(shù)又是偶函數(shù)的函數(shù)和非奇非偶函數(shù)的實(shí)例.最后,為加強(qiáng)前后聯(lián)系,從各個(gè)角度研究函數(shù)的性質(zhì),講清了奇偶性和單調(diào)性的聯(lián)系.這節(jié)課的重點(diǎn)是函數(shù)奇偶性的定義,難點(diǎn)是根據(jù)定義判斷函數(shù)的奇偶性.

  教學(xué)目標(biāo):

  1.通過(guò)具體函數(shù),讓學(xué)生經(jīng)歷奇函數(shù)、偶函數(shù)定義的討論,體驗(yàn)數(shù)學(xué)概念的建立過(guò)程,培養(yǎng)其抽象的概括能力.

  2.理解、掌握函數(shù)奇偶性的定義,奇函數(shù)和偶函數(shù)圖像的特征,并能初步應(yīng)用定義判斷一些簡(jiǎn)單函數(shù)的奇偶性.

  3.在經(jīng)歷概念形成的.過(guò)程中,培養(yǎng)學(xué)生歸納、抽象概括能力,體驗(yàn)數(shù)學(xué)既是抽象的又是具體的任務(wù)分析

  這節(jié)內(nèi)容學(xué)生在初中雖沒(méi)學(xué)過(guò),但已經(jīng)學(xué)習(xí)過(guò)具有奇偶性的具體的函數(shù):正比例函數(shù)y=kx,反比例函數(shù),(k≠0),二次函數(shù)y=ax,(a≠0),故可在此基礎(chǔ)上,引入奇、偶函數(shù)的概念,以便于學(xué)生理解.在引入概念時(shí)始終結(jié)合具體函數(shù)的圖像,以增加直觀性,這樣更符合學(xué)生的認(rèn)知規(guī)律,同時(shí)為闡述奇、偶函數(shù)的幾何特征埋下了伏筆.對(duì)于概念可從代數(shù)特征與幾何特征兩個(gè)角度去分析,讓學(xué)生理解:奇函數(shù)、偶函數(shù)的定義域是關(guān)于原點(diǎn)對(duì)稱的非空數(shù)集;對(duì)于在有定義的奇函數(shù)y=f(x),一定有f(0)=0;既是奇函數(shù),又是偶函數(shù)的函數(shù)有f(x)=0,x∈R.在此基礎(chǔ)上,讓學(xué)生了解:奇函數(shù)、偶函數(shù)的矛盾概念———非奇非偶函數(shù).關(guān)于單調(diào)性與奇偶性關(guān)系,引導(dǎo)學(xué)生拓展延伸,可以取得理想效果.

  一、問(wèn)題情景

  1.觀察如下兩圖,思考并討論以下問(wèn)題:

  (1)這兩個(gè)函數(shù)圖像有什么共同特征?

  (2)相應(yīng)的兩個(gè)函數(shù)值對(duì)應(yīng)表是如何體現(xiàn)這些特征的?可以看到兩個(gè)函數(shù)的圖像都關(guān)于y軸對(duì)稱.從函數(shù)值對(duì)應(yīng)表可以看到,當(dāng)自變量x取一對(duì)相反數(shù)時(shí),相應(yīng)的兩個(gè)函數(shù)值相同.

  對(duì)于函數(shù)f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事實(shí)上,對(duì)于R內(nèi)任意的一個(gè)x,都有f(-x)=(-x)2=x2=f(x).此時(shí),稱函數(shù)y=x2為偶函數(shù).

  2.觀察函數(shù)f(x)=x和f(x)=的圖像,并完成下面的兩個(gè)函數(shù)值對(duì)應(yīng)表,然后說(shuō)出這兩個(gè)函數(shù)有什么共同特征.

  22可以看到兩個(gè)函數(shù)的圖像都關(guān)于原點(diǎn)對(duì)稱.函數(shù)圖像的這個(gè)特征,反映在解析式上就是:當(dāng)自變量x取一對(duì)相反數(shù)時(shí),相應(yīng)的函數(shù)值f(x)也是一對(duì)相反數(shù),即對(duì)任一x∈R都有f(-x)=-f(x).此時(shí),稱函數(shù)y=f(x)為奇函數(shù).

  二、建立模型

  由上面的分析討論引導(dǎo)學(xué)生建立奇函數(shù)、偶函數(shù)的定義

  1.奇、偶函數(shù)的定義

  如果對(duì)于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫作奇函數(shù).如果對(duì)于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)就叫作偶函數(shù).

  2.提出問(wèn)題,組織學(xué)生討論

  (1)如果定義在R上的函數(shù)f(x)滿足f(-2)=f(2),那么f(x)是偶函數(shù)嗎? (f(x)不一定是偶函數(shù))

  (2)奇、偶函數(shù)的圖像有什么特征?

  (奇、偶函數(shù)的圖像分別關(guān)于原點(diǎn)、y軸對(duì)稱) (3)奇、偶函數(shù)的定義域有什么特征? (奇、偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱)

  三、解釋應(yīng)用[例題]

  1.判斷下列函數(shù)的奇偶性.

  注:①規(guī)范解題格式;②對(duì)于(5)要注意定義域x∈(-1,1].

  2.已知:定義在R上的函數(shù)f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=x(1+x),求f(x)的表達(dá)式.

  解:(1)任取x<0,則-x>0,∴f(-x)=-x(1-x),

  而f(x)是奇函數(shù),∴f(-x)=-f(x).∴f(x)=x(1-x).

  (2)當(dāng)x=0時(shí),f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.

  3.已知:函數(shù)f(x)是偶函數(shù),且在(-∞,0)上是減函數(shù),判斷f(x)在(0,+∞)上是增函數(shù),還是減函數(shù),并證明你的結(jié)論.

  解:先結(jié)合圖像特征:偶函數(shù)的圖像關(guān)于y軸對(duì)稱,猜想f(x)在(0,+∞)上是增函數(shù),證明如下:

  任取x1>x2>0,則-x1<-x2<0.

  ∵f(x)在(-∞,0)上是減函數(shù),∴f(-x1)>f(-x2).又f(x)是偶函數(shù),∴f(x1)>f(x2).

  ∴f(x)在(0,+∞)上是增函數(shù).

  思考:奇函數(shù)或偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的兩個(gè)區(qū)間上的單調(diào)性有何關(guān)系?

  [練習(xí)]

  1.已知:函數(shù)f(x)是奇函數(shù),在[a,b]上是增函數(shù)(b>a>0),問(wèn)f(x)在[-b,-a]上的單調(diào)性如何.

  2. f(x)=-x3|x|的大致圖像可能是()

  3.函數(shù)f(x)=ax2+bx+c,(a,b,c∈R),當(dāng)a,b,c滿足什么條件時(shí),(1)函數(shù)f(x)是偶函數(shù).(2)函數(shù)f(x)是奇函數(shù). 4.設(shè)f(x),g(x)分別是R上的奇函數(shù)和偶函數(shù),并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.

  四、拓展延伸

  1.有既是奇函數(shù),又是偶函數(shù)的函數(shù)嗎?若有,有多少個(gè)? 2.設(shè)f(x),g(x)分別是R上的奇函數(shù),偶函數(shù),試研究:(1)F(x)=f(x)·g(x)的奇偶性. (2)G(x)=|f(x)|+g(x)的奇偶性.

  3.已知a∈R,f(x)=a-,試確定a的值,使f(x)是奇函數(shù).

  4.一個(gè)定義在R上的函數(shù),是否都可以表示為一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的和的形式?

高中數(shù)學(xué)教學(xué)設(shè)計(jì)5

  教學(xué)目標(biāo):

  1.掌握基本事件的概念;

  2.正確理解古典概型的兩大特點(diǎn):有限性、等可能性;

  3.掌握古典概型的概率計(jì)算公式,并能計(jì)算有關(guān)隨機(jī)事件的概率.

  教學(xué)重點(diǎn):

  掌握古典概型這一模型.

  教學(xué)難點(diǎn):

  如何判斷一個(gè)實(shí)驗(yàn)是否為古典概型,如何將實(shí)際問(wèn)題轉(zhuǎn)化為古典概型問(wèn)題.

  教學(xué)方法:

  問(wèn)題教學(xué)、合作學(xué)習(xí)、講解法、多媒體輔助教學(xué).

  教學(xué)過(guò)程:

  一、問(wèn)題情境

  1.有紅心1,2,3和黑桃4,5這5張撲克牌,將其牌點(diǎn)向下置于桌上,現(xiàn)從中任意抽取一張,則抽到的牌為紅心的概率有多大?

  二、學(xué)生活動(dòng)

  1.進(jìn)行大量重復(fù)試驗(yàn),用“抽到紅心”這一事件的頻率估計(jì)概率,發(fā)現(xiàn)工作量較大且不夠準(zhǔn)確;

  2.(1)共有“抽到紅心1” “抽到紅心2” “抽到紅心3” “抽到黑桃4” “抽到黑桃5”5種情況,由于是任意抽取的,可以認(rèn)為出現(xiàn)這5種情況的可能性都相等;

  (2)6個(gè);即“1點(diǎn)”、“2點(diǎn)”、“3點(diǎn)”、“4點(diǎn)”、“5點(diǎn)”和“6點(diǎn)”,

  這6種情況的可能性都相等;

  三、建構(gòu)數(shù)學(xué)

  1.介紹基本事件的概念,等可能基本事件的.概念;

  2.讓學(xué)生自己總結(jié)歸納古典概型的兩個(gè)特點(diǎn)(有限性)、(等可能性);

  3.得出隨機(jī)事件發(fā)生的概率公式:

  四、數(shù)學(xué)運(yùn)用

  1.例題.

  例1

  有紅心1,2,3和黑桃4,5這5張撲克牌,將其牌點(diǎn)向下置于桌上,現(xiàn)從中任意抽取2張共有多少個(gè)基本事件?(用枚舉法,列舉時(shí)要有序,要注意“不重不漏”)

  探究(1):一只口袋內(nèi)裝有大小相同的5只球,其中3只白球,2只黑球,從中一次摸出2只球,共有多少個(gè)基本事件?該實(shí)驗(yàn)為古典概型嗎?(為什么對(duì)球進(jìn)行編號(hào)?)

  探究(2):拋擲一枚硬幣2次有(正,反)、(正,正)、(反,反)3個(gè)基本事件,對(duì)嗎?

  學(xué)生活動(dòng):探究(1)如果不對(duì)球進(jìn)行編號(hào),一次摸出2只球可能有兩白、一黑一白、兩黑三種情況,“摸到兩黑”與“摸到兩白”的可能性相同;而事實(shí)上“摸到兩白”的機(jī)會(huì)要比“摸到兩黑”的機(jī)會(huì)大.記白球?yàn)?,2,3號(hào),黑球?yàn)?,5號(hào),通過(guò)枚舉法發(fā)現(xiàn)有10個(gè)基本事件,而且每個(gè)基本事件發(fā)生的可能性相同.

  探究(2):拋擲一枚硬幣2次,有(正,正)、(正,反)、(反,正)、(反,反)四個(gè)基本事件.

  (設(shè)計(jì)意圖:加深對(duì)古典概型的特點(diǎn)之一等可能基本事件概念的理解.)

  例2

  一只口袋內(nèi)裝有大小相同的5只球,其中3只白球,2只黑球,從中

  一次摸出2只球,則摸到的兩只球都是白球的概率是多少?

  問(wèn)題:在運(yùn)用古典概型計(jì)算事件的概率時(shí)應(yīng)當(dāng)注意什么?

  ①判斷概率模型是否為古典概型

 、谡页鲭S機(jī)事件A中包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù).

  教師示范并總結(jié)用古典概型計(jì)算隨機(jī)事件的概率的步驟

  例3

  同時(shí)拋兩顆骰子,觀察向上的點(diǎn)數(shù),問(wèn):

 。1)共有多少個(gè)不同的可能結(jié)果?

  (2)點(diǎn)數(shù)之和是6的可能結(jié)果有多少種?

 。3)點(diǎn)數(shù)之和是6的概率是多少?

  問(wèn)題:如何準(zhǔn)確的寫出“同時(shí)拋兩顆骰子”所有基本事件的個(gè)數(shù)?

  學(xué)生活動(dòng):用課本第102頁(yè)圖3-2-2,可直觀的列出事件A中包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù).

  問(wèn)題:點(diǎn)數(shù)之和是3的倍數(shù)的可能結(jié)果有多少種?

  (介紹圖表法)

  例4

  甲、乙兩人作出拳游戲(錘子、剪刀、布),求:

 。1)平局的概率;(2)甲贏的概率;(3)乙贏的概率.

  設(shè)計(jì)意圖:進(jìn)一步提高學(xué)生對(duì)將實(shí)際問(wèn)題轉(zhuǎn)化為古典概型問(wèn)題的能力.

  2.練習(xí).

  (1)一枚硬幣連擲3次,只有一次出現(xiàn)正面的概率為_________.

 。2)在20瓶飲料中,有3瓶已過(guò)了保質(zhì)期,從中任取1瓶,取到已過(guò)保質(zhì)期的飲料的概率為_________..

 。3)第103頁(yè)練習(xí)1,2.

 。4)從1,2,3,…,9這9個(gè)數(shù)字中任取2個(gè)數(shù)字,

 、2個(gè)數(shù)字都是奇數(shù)的概率為_________;

 、2個(gè)數(shù)字之和為偶數(shù)的概率為_________.

  五、要點(diǎn)歸納與方法小結(jié)

  本節(jié)課學(xué)習(xí)了以下內(nèi)容:

  1.基本事件,古典概型的概念和特點(diǎn);

  2.古典概型概率計(jì)算公式以及注意事項(xiàng);

  3.求基本事件總數(shù)常用的方法:列舉法、圖表法.

高中數(shù)學(xué)教學(xué)設(shè)計(jì)6

  前言

  為了更好地貫徹落實(shí)和科課程標(biāo)準(zhǔn)有關(guān)要求,促進(jìn)廣大教師學(xué)習(xí)現(xiàn)代教學(xué)理論,進(jìn)一步激發(fā)廣大教師課堂教學(xué)的創(chuàng)新意識(shí),切實(shí)轉(zhuǎn)變教學(xué)觀念,積極探索新課程理念下的教與學(xué),有效解決教學(xué)實(shí)踐中存在的問(wèn)題,促進(jìn)課堂教學(xué)質(zhì)量的全面提高,在20xx年由福建省普通教育教學(xué)研究室組織,舉辦了一次教學(xué)設(shè)計(jì)大賽活動(dòng)。這次活動(dòng)數(shù)學(xué)學(xué)科高中組共收到有49篇教學(xué)設(shè)計(jì)文章。獲獎(jiǎng)文章推薦評(píng)審專家組本著公平、公正的原則,經(jīng)過(guò)認(rèn)真的評(píng)審,全部作品均評(píng)出了相應(yīng)的獎(jiǎng)項(xiàng);專家組還為獲得一、二等獎(jiǎng)的作品撰寫了點(diǎn)評(píng)。本稿收錄的作品全部是參加此次福建省教學(xué)設(shè)計(jì)競(jìng)賽獲獎(jiǎng)作者的文章。按照征文的規(guī)則,我們對(duì)入選作品的格式作了一些修飾,并經(jīng)過(guò)適當(dāng)?shù)恼,以饗讀者。

  在此還需要說(shuō)明的是,為了方便閱讀,獲獎(jiǎng)文章的排序原則,并非按照獲獎(jiǎng)名次的前后順序,而是按照高中數(shù)學(xué)新課程必修1—5的內(nèi)容順序,進(jìn)行編排的。部分體現(xiàn)大綱教材內(nèi)容的文章則排在后面。

  不管你獲得的是哪個(gè)級(jí)別的獎(jiǎng)項(xiàng),你們都可以有成就感,因?yàn)槟鞘悄銈冇眯、用汗(jié)补喑龅墓麑?shí),它記錄了你們奉獻(xiàn)于數(shù)學(xué)教育事業(yè)的心路歷程.書中每一篇的.教學(xué)設(shè)計(jì)都耐人尋味,都能帶給我們?cè)S多遐想和啟迪.你們是優(yōu)秀的,在你們未來(lái)悠遠(yuǎn)的職業(yè)里程中,只要努力,將有更多的輝煌在等待著大家。謝謝你們!

  1、集合與函數(shù)概念實(shí)習(xí)作業(yè)

  一、教學(xué)內(nèi)容分析

  《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(1)》(人教A版)第44頁(yè)。-----《實(shí)習(xí)作業(yè)》。本節(jié)課程體現(xiàn)數(shù)學(xué)文化的特色,學(xué)生通過(guò)了解函數(shù)的發(fā)展歷史進(jìn)一步感受數(shù)學(xué)的魅力。學(xué)生在自己動(dòng)手收集、整理資料信息的過(guò)程中,對(duì)函數(shù)的概念有更深刻的理解;感受新的學(xué)習(xí)方式帶給他們的學(xué)習(xí)數(shù)學(xué)的樂(lè)趣。

  二、學(xué)生學(xué)習(xí)情況分析

  該內(nèi)容在《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(1)》(人教A版)第44頁(yè)。學(xué)生第一次完成《實(shí)習(xí)作業(yè)》,積極性高,有熱情和新鮮感,但缺乏經(jīng)驗(yàn),所以需要教師精心設(shè)計(jì),做好準(zhǔn)備工作,充分體現(xiàn)教師的“導(dǎo)演”角色。特別在分組時(shí)注意學(xué)生的合理搭配(成績(jī)的好壞、家庭有無(wú)電腦、男女生比例、口頭表達(dá)能力等),選題時(shí),各組之間盡量不要重復(fù),盡量多地選不同的題目,可以讓所有的學(xué)生在學(xué)習(xí)共享的過(guò)程中受到更多的數(shù)學(xué)文化的熏陶。

  三、設(shè)計(jì)思想

  《標(biāo)準(zhǔn)》強(qiáng)調(diào)數(shù)學(xué)文化的重要作用,體現(xiàn)數(shù)學(xué)的文化的價(jià)值。數(shù)學(xué)教育不僅應(yīng)該幫助學(xué)生學(xué)習(xí)和掌握數(shù)學(xué)知識(shí)和技能,還應(yīng)該有助于學(xué)生了解數(shù)學(xué)的價(jià)值。讓學(xué)生逐步了解數(shù)學(xué)的思想方法、理性精神,體會(huì)數(shù)學(xué)家的創(chuàng)新精神,以及數(shù)學(xué)文明的深刻內(nèi)涵。

  四、教學(xué)目標(biāo)

  1.了解函數(shù)概念的形成、發(fā)展的歷史以及在這個(gè)過(guò)程中起重大作用的歷史事件和人物;

  2.體驗(yàn)合作學(xué)習(xí)的方式,通過(guò)合作學(xué)習(xí)品嘗分享獲得知識(shí)的快樂(lè);

  3.在合作形式的小組學(xué)習(xí)活動(dòng)中培養(yǎng)學(xué)生的領(lǐng)導(dǎo)意識(shí)、社會(huì)實(shí)踐技能和民主價(jià)值觀。

  五、教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):了解函數(shù)在數(shù)學(xué)中的核心地位,以及在生活里的廣泛應(yīng)用;

  難點(diǎn):培養(yǎng)學(xué)生合作交流的能力以及收集和處理信息的能力。

  六、教學(xué)過(guò)程設(shè)計(jì)

  【課堂準(zhǔn)備】

  1.分組:4~6人為一個(gè)實(shí)習(xí)小組,確定一人為組長(zhǎng)。教師需要做好協(xié)調(diào)工作,確保每位學(xué)生都參加。

  2.選題:根據(jù)個(gè)人興趣初步確定實(shí)習(xí)作業(yè)的題目。教師應(yīng)該到各組中去了解選題情況,盡量多地選擇不同的題目。

高中數(shù)學(xué)教學(xué)設(shè)計(jì)7

  一、單元教學(xué)內(nèi)容

 。ǎ保┧惴ǖ幕靖拍

 。ǎ玻┧惴ǖ幕窘Y(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)

 。ǎ常┧惴ǖ幕菊Z(yǔ)句:輸入、輸出、賦值、條件、循環(huán)語(yǔ)句

  二、單元教學(xué)內(nèi)容分析

  算法是數(shù)學(xué)及其應(yīng)用的重要組成部分,是計(jì)算科學(xué)的重要基礎(chǔ)。隨著現(xiàn)代信息技術(shù)飛速發(fā)展,算法在科學(xué)技術(shù)、社會(huì)發(fā)展中發(fā)揮著越來(lái)越大的作用,并日益融入社會(huì)生活的許多方面,算法思想已經(jīng)成為現(xiàn)代人應(yīng)具備的一種數(shù)學(xué)素養(yǎng)。需要特別指出的是,中國(guó)古代數(shù)學(xué)中蘊(yùn)涵了豐富的算法思想。在本模塊中,學(xué)生將在中學(xué)教育階段初步感受算法思想的基礎(chǔ)上,結(jié)合對(duì)具體數(shù)學(xué)實(shí)例的分析,體驗(yàn)程序框圖在解決問(wèn)題中的作用;通過(guò)模仿、操作、探索,學(xué)習(xí)設(shè)計(jì)程序框圖表達(dá)解決問(wèn)題的過(guò)程;體會(huì)算法的基本思想以及算法的重要性和有效性,發(fā)展有條理的思考與表達(dá)的能力,提高邏輯思維能力

  三、單元教學(xué)課時(shí)安排:

  1、算法的基本概念 3課時(shí)

 。、程序框圖與算法的基本結(jié)構(gòu) 5課時(shí)

 。、算法的基本語(yǔ)句 2課時(shí)

  四、單元教學(xué)目標(biāo)分析

  1、通過(guò)對(duì)解決具體問(wèn)題過(guò)程與步驟的分析體會(huì)算法的思想,了解算法的含義

 。、通過(guò)模仿、操作、探索,經(jīng)歷通過(guò)設(shè)計(jì)程序框圖表達(dá)解決問(wèn)題的過(guò)程。在具體問(wèn)題的解決過(guò)程中理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)。

 。、經(jīng)歷將具體問(wèn)題的程序框圖轉(zhuǎn)化為程序語(yǔ)句的過(guò)程,理解幾種基本算法語(yǔ)句:輸入、輸出、斌值、條件、循環(huán)語(yǔ)句,進(jìn)一步體會(huì)算法的基本思想。

 。、通過(guò)閱讀中國(guó)古代數(shù)學(xué)中的算法案例,體會(huì)中國(guó)古代數(shù)學(xué)對(duì)世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。

  五、單元教學(xué)重點(diǎn)與難點(diǎn)分析

 。、重點(diǎn)

  (1)理解算法的含義 (2)掌握算法的基本結(jié)構(gòu) (3)會(huì)用算法語(yǔ)句解決簡(jiǎn)單的實(shí)際問(wèn)題

 。、難點(diǎn)

  (1)程序框圖 (2)變量與賦值 (3)循環(huán)結(jié)構(gòu) (4)算法設(shè)計(jì)

  六、單元總體教學(xué)方法

  本章教學(xué)采用啟發(fā)式教學(xué),輔以觀察法、發(fā)現(xiàn)法、練習(xí)法、講解法。采用這些方法的原因是學(xué)生的邏輯能力不是很強(qiáng),只能通過(guò)對(duì)實(shí)例的.認(rèn)真領(lǐng)會(huì)及一定的練習(xí)才能掌握本節(jié)知識(shí)。

  七、單元展開方式與特點(diǎn)

 。、展開方式

  自然語(yǔ)言→程序框圖→算法語(yǔ)句

  2、特點(diǎn)

 。ǎ保┞菪仙 分層遞進(jìn) (2)整合滲透 前呼后應(yīng) (3)三線合

  一 橫向貫通 (4)彈性處理 多樣選擇

  八、單元教學(xué)過(guò)程分析

  1. 算法基本概念教學(xué)過(guò)程分析

  對(duì)生活中的實(shí)際問(wèn)題通過(guò)對(duì)解決具體問(wèn)題過(guò)程與步驟的分析(喝茶,如二元一次方程組求解問(wèn)題),體會(huì)算法的思想,了解算法的含義,能用自然語(yǔ)言描述算法。

  2.算法的流程圖教學(xué)過(guò)程分析

  對(duì)生活中的實(shí)際問(wèn)題通過(guò)模仿、操作、探索,經(jīng)歷通過(guò)設(shè)計(jì)流程圖表達(dá)解決問(wèn)題的過(guò)程,了解算法和程序語(yǔ)言的區(qū)別;在具體問(wèn)題的解決過(guò)程中,理解流程圖的三種基本邏輯結(jié)構(gòu):順序、條件分支、循環(huán),會(huì)用流程圖表示算法。

  3. 基本算法語(yǔ)句教學(xué)過(guò)程分析

  經(jīng)歷將具體生活中問(wèn)題的流程圖轉(zhuǎn)化為程序語(yǔ)言的過(guò)程,理解表示的幾種基本算法語(yǔ)句:賦值語(yǔ)句、輸入語(yǔ)句、輸出語(yǔ)句、條件語(yǔ)句、循環(huán)語(yǔ)句,進(jìn)一步體會(huì)算法的基本思想。能用自然語(yǔ)言、流程圖和基本算法語(yǔ)句表達(dá)算法,

  4. 通過(guò)閱讀中國(guó)古代數(shù)學(xué)中的算法案例,體會(huì)中國(guó)古代數(shù)學(xué)對(duì)世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。

  九、單元評(píng)價(jià)設(shè)想

  1.重視對(duì)學(xué)生數(shù)學(xué)學(xué)習(xí)過(guò)程的評(píng)價(jià)

  關(guān)注學(xué)生在數(shù)學(xué)語(yǔ)言的學(xué)習(xí)過(guò)程中,是否對(duì)用集合語(yǔ)言描述數(shù)學(xué)和現(xiàn)實(shí)生活中的問(wèn)題充滿興趣;在學(xué)習(xí)過(guò)程中,能否體會(huì)集合語(yǔ)言準(zhǔn)確、簡(jiǎn)潔的特征;是否能積極、主動(dòng)地發(fā)展自己運(yùn)用數(shù)學(xué)語(yǔ)言進(jìn)行交流的能力。

  2.正確評(píng)價(jià)學(xué)生的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能

  關(guān)注學(xué)生在本章(節(jié))及今后學(xué)習(xí)中,讓學(xué)生集中學(xué)習(xí)算法的初步知識(shí),主要包括算法的基本結(jié)構(gòu)、基本語(yǔ)句、基本思想等。算法思想將貫穿高中數(shù)學(xué)課程的相關(guān)部分,在其他相關(guān)部分還將進(jìn)一步學(xué)習(xí)算法

高中數(shù)學(xué)教學(xué)設(shè)計(jì)8

  一、課程說(shuō)明

 。ㄒ唬┙滩姆治觯

  此次一對(duì)一家教所使用教材為北師大版高中數(shù)學(xué)必修5。輔導(dǎo)內(nèi)容為第一章第二節(jié)等差數(shù)列。前一節(jié)的內(nèi)容為數(shù)列,學(xué)生已初步了解到數(shù)列的概念,知道什么是首項(xiàng),什么是通項(xiàng)等等。以及了解到什么是遞增數(shù)列,什么是遞減數(shù)列。通過(guò)第一節(jié)的學(xué)習(xí)的鋪墊,可以讓學(xué)生更自主的探究,學(xué)習(xí)等差數(shù)列。而我也是在這些基礎(chǔ)上為她講解第二節(jié)等差數(shù)列。

  (二) 學(xué)生分析:

  此次所帶學(xué)生是一名高二的學(xué)生。聰明但是不踏實(shí),做題浮躁;A(chǔ)知識(shí)掌握不夠牢靠,知識(shí)的運(yùn)用能力較差,分析能力較弱,解題思路不清。每次她遇到會(huì)的題,就快快的草率做完,總會(huì)有因馬虎而犯的錯(cuò)誤。遇到稍不會(huì)的,總是很浮躁,不能冷靜下來(lái)慢慢思考。就由略不會(huì)變成不會(huì)。但她也是個(gè)虛心聽教的孩子,給她講課,她也會(huì)很認(rèn)真地聽講。

  (三) 教學(xué)目標(biāo):

  1、通過(guò)教與學(xué)的.配合,讓她能夠懂得什么是等差數(shù)列,以及等差數(shù)列的通項(xiàng)公式。

  2、通過(guò)對(duì)公式的推導(dǎo),讓她加深對(duì)內(nèi)容的理解,以及學(xué)會(huì)自己對(duì)公式的推導(dǎo)。并且能夠靈活運(yùn)用。

  3、在教學(xué)中讓她通過(guò)對(duì)公式的推導(dǎo)來(lái)明白推理的藝術(shù),并且培養(yǎng)她學(xué)習(xí),做題條理清晰,思路縝密的好習(xí)慣。

  4、讓她在學(xué)習(xí),做題中一步步抽絲剝繭,尋找解決問(wèn)題的方法,培養(yǎng)她敢于面對(duì)數(shù)學(xué)學(xué)習(xí)中的困難,并培養(yǎng)她對(duì)克服困難和運(yùn)用知識(shí)。耐心地解決問(wèn)題。

  5、讓她在學(xué)習(xí)中發(fā)現(xiàn)數(shù)學(xué)的獨(dú)特的美,能夠愛上數(shù)學(xué)這門課。并且認(rèn)真對(duì)待,自主學(xué)習(xí)。

 。ㄋ模┙虒W(xué)重點(diǎn)

  1讓學(xué)生正確掌握等差數(shù)列及其通項(xiàng)公式,以及其性質(zhì)。并能獨(dú)立的推導(dǎo)。

  2、能夠靈活運(yùn)用公式并且能把相應(yīng)公式與題相結(jié)合。

 。ㄎ澹 教學(xué)難點(diǎn):

  1、讓學(xué)生掌握公式的推導(dǎo)及其意義。

  2如何把所學(xué)知識(shí)運(yùn)用到相應(yīng)的題中。

  二、課前準(zhǔn)備

 。ㄒ唬 教學(xué)器材

  對(duì)于一對(duì)一教教采用傳統(tǒng)講課。一張掛歷。

 。ǘ 教學(xué)方法

  通過(guò)對(duì)生活中的有規(guī)律數(shù)據(jù)的觀察來(lái)提出問(wèn)題,讓學(xué)生結(jié)合前一節(jié)所學(xué),思考有什么規(guī)律。從生活中著手有利于激發(fā)學(xué)生的興趣愛好,并能更積極地學(xué)習(xí)。讓學(xué)生先獨(dú)立的思考,不僅能讓她對(duì)所學(xué)知識(shí)映像更為深刻,并且培養(yǎng)她的縝密思維。讓她回答后,我再幫助她糾正,并且讓她提出心中所慮。經(jīng)過(guò)我給她講完課后,讓她回答自己先前的疑慮。并且讓她自己總結(jié),得出結(jié)論。最后讓她勤加練習(xí)。以一種“提出問(wèn)題—探究問(wèn)題—學(xué)習(xí)知識(shí)—解答問(wèn)題—得出結(jié)論—強(qiáng)加訓(xùn)練”的模式方法展開教學(xué)。

 。ㄈ 課時(shí)安排

  課時(shí)大致分為五部分:

  1、聯(lián)系實(shí)際提出相關(guān)問(wèn)題,進(jìn)行思考。

  2以我教她學(xué)的模式講授相關(guān)章節(jié)知識(shí)。

  3、讓學(xué)生練習(xí)相關(guān)習(xí)題,從所學(xué)知識(shí)中找其相應(yīng)解題方案。

  4學(xué)生對(duì)知識(shí)總結(jié)概括,我再對(duì)其進(jìn)行補(bǔ)充說(shuō)明。 5布置作業(yè),讓她課后多做練習(xí)。

  三、課程設(shè)計(jì)

 。ㄒ唬┨岢鰡(wèn)題

  【引入】

  根據(jù)我們的掛歷上,一個(gè)月的日期數(shù)。通過(guò)觀察每一行日期和每一列日期它們有什么規(guī)律?

  思考 1 2 3 13579......246810......66666......

  這些每一行有什么規(guī)律?

 。ǘ 分析問(wèn)題并講解

  1、通過(guò)觀察每一個(gè)數(shù)與前一個(gè)數(shù)相差為同一個(gè)常數(shù)。再結(jié)合前一節(jié)所學(xué)數(shù)列的定義總結(jié)出“每一項(xiàng)與前一項(xiàng)的差為同一個(gè)常數(shù),我們稱這樣的數(shù)列為等差數(shù)列。”并且得出“這個(gè)常數(shù)為等差數(shù)列的公差。”

  2、設(shè)首項(xiàng)為 a1 ,公差為d。由思考題 1 2 3可觀察出什么?由學(xué)生通過(guò)她的發(fā)現(xiàn)來(lái)推導(dǎo)總結(jié)出

  ana1n1dnda1d

  3、通過(guò)分析通項(xiàng)公式的特點(diǎn),做下題(學(xué)生自己分析,思考來(lái)做。) 例:已知在等差數(shù)列{an}中,a520a20xx,試求出數(shù)列的通項(xiàng)公式?

  通過(guò)學(xué)生做題再分析總結(jié),用詳細(xì)的語(yǔ)言講解總結(jié)等差數(shù)列的性質(zhì)

  4、由以上公式,性質(zhì),讓學(xué)生總結(jié)。

講解等差數(shù)列的定義。并且掌握數(shù)列的遞增,遞減與公差d的關(guān)系。

5總結(jié),串講當(dāng)日所學(xué)

  給出題目:12349899100 讓她求其和Sn,并思考如何快速計(jì)算?

 。ㄈ 布置作業(yè)

  1、總結(jié)當(dāng)日所學(xué)。 2做練習(xí)冊(cè)上章節(jié)習(xí)題。

  3、根據(jù)當(dāng)日所學(xué)以及課上所講求 的思考題,找出快速運(yùn)算方法,并引導(dǎo)預(yù)習(xí)等差數(shù)列前n項(xiàng)和。

  四、設(shè)計(jì)理念

  以一種最簡(jiǎn)便,易懂的方式讓學(xué)生來(lái)學(xué)習(xí),一切以讓學(xué)生正確掌握知識(shí),并能正確運(yùn)用為理念。并能充分調(diào)動(dòng)學(xué)生和家教老師的積極性為理念來(lái)設(shè)計(jì)。

  五、教學(xué)設(shè)計(jì)反思

  本節(jié)課教程內(nèi)容較難,是下一節(jié)等差數(shù)列前n項(xiàng)和的鋪墊。此節(jié)課學(xué)習(xí)通過(guò)聯(lián)系實(shí)際,把數(shù)學(xué)融入到生活中,從生活中探究學(xué)習(xí)數(shù)學(xué)。并提出問(wèn)題,分析問(wèn)題。把主動(dòng)權(quán)交給學(xué)生,由她先獨(dú)立思考總結(jié),再由我給她正確講解總結(jié),然后再讓她做相應(yīng)練習(xí)題,課后再認(rèn)真總結(jié)。這樣可以加強(qiáng)她學(xué)習(xí)的主動(dòng)性,更有利于她對(duì)知識(shí)的消化,吸收。這種方法同時(shí)可以培養(yǎng)學(xué)生的思維能力,讓她從自主學(xué)習(xí)中探索適合自己的學(xué)習(xí)方法,培養(yǎng)她獨(dú)立思考的能力。讓她更深刻的了解知識(shí)內(nèi)涵,鞏固所學(xué)。使她能靈活運(yùn)用所學(xué)。

高中數(shù)學(xué)教學(xué)設(shè)計(jì)9

  教學(xué)目標(biāo)

  1.掌握等比數(shù)列前項(xiàng)和公式,并能運(yùn)用公式解決簡(jiǎn)單的問(wèn)題.

 。1)理解公式的推導(dǎo)過(guò)程,體會(huì)轉(zhuǎn)化的思想;

  (2)用方程的思想認(rèn)識(shí)等比數(shù)列前項(xiàng)和公式,利用公式知三求一;與通項(xiàng)公式結(jié)合知三求二;

  2.通過(guò)公式的靈活運(yùn)用,進(jìn)一步滲透方程的思想、分類討論的思想、等價(jià)轉(zhuǎn)化的思想.

  3.通過(guò)公式推導(dǎo)的教學(xué),對(duì)學(xué)生進(jìn)行思維的嚴(yán)謹(jǐn)性的訓(xùn)練,培養(yǎng)他們實(shí)事求是的科學(xué)態(tài)度.

  教學(xué)建議

  教材分析

 。1)知識(shí)結(jié)構(gòu)

  先用錯(cuò)位相減法推出等比數(shù)列前項(xiàng)和公式,而后運(yùn)用公式解決一些問(wèn)題,并將通項(xiàng)公式與前項(xiàng)和公式結(jié)合解決問(wèn)題,還要用錯(cuò)位相減法求一些數(shù)列的前項(xiàng)和.

 。2)重點(diǎn)、難點(diǎn)分析

  教學(xué)重點(diǎn)、難點(diǎn)是等比數(shù)列前項(xiàng)和公式的推導(dǎo)與應(yīng)用.公式的推導(dǎo)中蘊(yùn)含了豐富的數(shù)學(xué)思想、方法(如分類討論思想,錯(cuò)位相減法等),這些思想方法在其他數(shù)列求和問(wèn)題中多有涉及,所以對(duì)等比數(shù)列前項(xiàng)和公式的要求,不單是要記住公式,更重要的是掌握推導(dǎo)公式的方法.等比數(shù)列前項(xiàng)和公式是分情況討論的,在運(yùn)用中要特別注意和兩種情況.

  教學(xué)建議

 。1)本節(jié)內(nèi)容分為兩課時(shí),一節(jié)為等比數(shù)列前項(xiàng)和公式的推導(dǎo)與應(yīng)用,一節(jié)為通項(xiàng)公式與前項(xiàng)和公式的綜合運(yùn)用,另外應(yīng)補(bǔ)充一節(jié)數(shù)列求和問(wèn)題.

 。2)等比數(shù)列前項(xiàng)和公式的推導(dǎo)是重點(diǎn)內(nèi)容,引導(dǎo)學(xué)生觀察實(shí)例,發(fā)現(xiàn)規(guī)律,歸納總結(jié),證明結(jié)論.

 。3)等比數(shù)列前項(xiàng)和公式的推導(dǎo)的其他方法可以給出,提高學(xué)生學(xué)習(xí)的興趣.

 。4)編擬例題時(shí)要全面,不要忽略的情況.

 。5)通項(xiàng)公式與前項(xiàng)和公式的綜合運(yùn)用涉及五個(gè)量,已知其中三個(gè)量可求另兩個(gè)量,但解指數(shù)方程難度大.

  (6)補(bǔ)充可以化為等差數(shù)列、等比數(shù)列的數(shù)列求和問(wèn)題.

  教學(xué)設(shè)計(jì)示例

  課題:等比數(shù)列前項(xiàng)和的公式

  教學(xué)目標(biāo)

 。1)通過(guò)教學(xué)使學(xué)生掌握等比數(shù)列前項(xiàng)和公式的推導(dǎo)過(guò)程,并能初步運(yùn)用這一方法求一些數(shù)列的前項(xiàng)和.

 。2)通過(guò)公式的推導(dǎo)過(guò)程,培養(yǎng)學(xué)生猜想、分析、綜合能力,提高學(xué)生的數(shù)學(xué)素質(zhì).

 。3)通過(guò)教學(xué)進(jìn)一步滲透從特殊到一般,再?gòu)囊话愕教厥獾霓q證觀點(diǎn),培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度.

  教學(xué)重點(diǎn),難點(diǎn)

  教學(xué)重點(diǎn)是公式的推導(dǎo)及運(yùn)用,難點(diǎn)是公式推導(dǎo)的思路.

  教學(xué)用具

  幻燈片,課件,電腦.

  教學(xué)方法

  引導(dǎo)發(fā)現(xiàn)法.

  教學(xué)過(guò)程

  一、新課引入:

 。▎(wèn)題見教材第129頁(yè))提出問(wèn)題:(幻燈片)

  二、新課講解:

  記,式中有64項(xiàng),后項(xiàng)與前項(xiàng)的比為公比2,當(dāng)每一項(xiàng)都乘以2后,中間有62項(xiàng)是對(duì)應(yīng)相等的,作差可以相互抵消.

  (板書)即,①

  ,②

 、冢俚眉.

  由此對(duì)于一般的'等比數(shù)列,其前項(xiàng)和,如何化簡(jiǎn)?

 。ò鍟┑缺葦(shù)列前項(xiàng)和公式

  仿照公比為2的等比數(shù)列求和方法,等式兩邊應(yīng)同乘以等比數(shù)列的公比,即

 。ò鍟蹆啥送艘裕

 、,

 、郏艿芒,(提問(wèn)學(xué)生如何處理,適時(shí)提醒學(xué)生注意的取值)

  當(dāng)時(shí),由③可得(不必導(dǎo)出④,但當(dāng)時(shí)設(shè)想不到)

  當(dāng)時(shí),由⑤得.

  于是

  反思推導(dǎo)求和公式的方法——錯(cuò)位相減法,可以求形如的數(shù)列的和,其中為等差數(shù)列,為等比數(shù)列.

  (板書)例題:求和:.

  設(shè),其中為等差數(shù)列,為等比數(shù)列,公比為,利用錯(cuò)位相減法求和.

  解:,

  兩端同乘以,得,

  兩式相減得

  于是.

  說(shuō)明:錯(cuò)位相減法實(shí)際上是把一個(gè)數(shù)列求和問(wèn)題轉(zhuǎn)化為等比數(shù)列求和的問(wèn)題.

  公式其它應(yīng)用問(wèn)題注意對(duì)公比的分類討論即可.

  三、小結(jié):

  1.等比數(shù)列前項(xiàng)和公式推導(dǎo)中蘊(yùn)含的思想方法以及公式的應(yīng)用;

  2.用錯(cuò)位相減法求一些數(shù)列的前項(xiàng)和.

  四、作業(yè):略

高中數(shù)學(xué)教學(xué)設(shè)計(jì)10

  學(xué)習(xí)目標(biāo)

  明確排列與組合的聯(lián)系與區(qū)別,能判斷一個(gè)問(wèn)題是排列問(wèn)題還是組合問(wèn)題;能運(yùn)用所學(xué)的排列組合知識(shí),正確地解決的實(shí)際問(wèn)題.

  學(xué)習(xí)過(guò)程

  一、學(xué)前準(zhǔn)備

  復(fù)習(xí):

  1.(課本P28A13)填空:

  (1)有三張參觀卷,要在5人中確定3人去參觀,不同方法的種數(shù)是 ;

  (2)要從5件不同的禮物中選出3件分送3為同學(xué),不同方法的種數(shù)是 ;

  (3)5名工人要在3天中各自選擇1天休息,不同方法的種數(shù)是 ;

  (4)集合A有個(gè) 元素,集合B有 個(gè)元素,從兩個(gè)集合中各取1個(gè)元素,不同方法的種數(shù)是 ;

  二、新課導(dǎo)學(xué)

  ◆探究新知(復(fù)習(xí)教材P14~P25,找出疑惑之處)

  問(wèn)題1:判斷下列問(wèn)題哪個(gè)是排列問(wèn)題,哪個(gè)是組合問(wèn)題:

  (1)從4個(gè)風(fēng)景點(diǎn)中選出2個(gè)安排游覽,有多少種不同的方法?

  (2)從4個(gè)風(fēng)景點(diǎn)中選出2個(gè),并確定這2個(gè)風(fēng)景點(diǎn)的游覽順序,有多少種不同的方法?

  ◆應(yīng)用示例

  例1.從10個(gè)不同的文藝節(jié)目中選6個(gè)編成一個(gè)節(jié)目單,如果某女演員的獨(dú)唱節(jié)目一定不能排在第二個(gè)節(jié)目的位置上,則共有多少種不同的排法?

  例2.7位同學(xué)站成一排,分別求出符合下列要求的不同排法的種數(shù).

  (1) 甲站在中間;

  (2)甲、乙必須相鄰;

  (3)甲在乙的左邊(但不一定相鄰);

  (4)甲、乙必須相鄰,且丙不能站在排頭和排尾;

  (5)甲、乙、丙相鄰;

  (6)甲、乙不相鄰;

  (7)甲、乙、丙兩兩不相鄰。

  ◆反饋練習(xí)

  1. (課本P40A4)某學(xué)生邀請(qǐng)10位同學(xué)中的6位參加一項(xiàng)活動(dòng),其中兩位同學(xué)要么都請(qǐng),要么都不請(qǐng),共有多少種邀請(qǐng)方法?

  2.5男5女排成一排,按下列要求各有多少種排法:(1)男女相間;(2)女生按指定順序排列

  3.馬路上有12盞燈,為了節(jié)約用電,可以熄滅其中3盞燈,但兩端的燈不能熄滅,也不能熄滅相鄰的兩盞燈,那么熄燈方法共有______種.

  當(dāng)堂檢測(cè)

  1.某班新年聯(lián)歡會(huì)原定的`5個(gè)節(jié)目已排成節(jié)目單,開演前又增加了兩個(gè)新節(jié)目.如果將這兩個(gè)節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為( )

  A.42 B.30 C.20 D.12

  2.(課本P40A7)書架上有4本不同的數(shù)學(xué)書,5本不同的物理書,3本不同的化學(xué)書,全部排在同一層,如果不使同類的書分開,一共有多少種排法?

  課后作業(yè)

  1.(課本P41B2)用數(shù)字0,1,2,3,4,5組成沒(méi)有重復(fù)數(shù)字的數(shù),問(wèn):(1)能夠組成多少個(gè)六位奇數(shù)?(2)能夠組成多少個(gè)大于201345的正整數(shù)?

  2.(課本P41B4)某種產(chǎn)品的加工需要經(jīng)過(guò)5道工序,問(wèn):(1)如果其中某一工序不能放在最后,有多少種排列加工順序的方法?(2)如果其中兩道工序既不能放在最前,也不能放在最后,有多少種排列加工順序的方法?

高中數(shù)學(xué)教學(xué)設(shè)計(jì)11

  一、探究式教學(xué)模式概述

  1、探究式教學(xué)模式的含義。探究式教學(xué)就是學(xué)生在教師引導(dǎo)下,像科學(xué)家發(fā)現(xiàn)真理那樣以類似科學(xué)探究的方式來(lái)展開學(xué)習(xí)活動(dòng),通過(guò)自己大腦的獨(dú)立思考和探究,去弄清事物發(fā)展變化的起因和內(nèi)在聯(lián)系,從中探索出知識(shí)規(guī)律的教學(xué)模式。它的基本特征是教師不把跟教學(xué)內(nèi)容有關(guān)的內(nèi)容和認(rèn)知策略直接告訴學(xué)生,而是創(chuàng)造一種適宜的認(rèn)知和合作環(huán)境,讓學(xué)生通過(guò)探究形成認(rèn)知策略,從而對(duì)教學(xué)目標(biāo)進(jìn)行一種全方位的學(xué)習(xí),實(shí)現(xiàn)學(xué)生從被動(dòng)學(xué)習(xí)到主動(dòng)學(xué)習(xí),培養(yǎng)學(xué)生的科學(xué)探究能力、創(chuàng)新意識(shí)和科學(xué)精神。可見,探究式教學(xué)主張把學(xué)習(xí)知識(shí)的過(guò)程和探究知識(shí)的過(guò)程統(tǒng)一起來(lái),充分發(fā)揮學(xué)生學(xué)習(xí)的自主性和參與性。

  2、堂探究式教學(xué)的實(shí)質(zhì)。課堂探究式教學(xué)的實(shí)質(zhì)是使學(xué)生通過(guò)類似科學(xué)家科學(xué)探究的過(guò)程來(lái)理解科學(xué)探究概念和科學(xué)規(guī)律的本質(zhì),并培養(yǎng)學(xué)生的科學(xué)探究能力。具體地說(shuō),它包括兩個(gè)相互聯(lián)系的方面:一是有一個(gè)以“學(xué)”為中心的探究性學(xué)習(xí)環(huán)境。在這個(gè)環(huán)境中有豐富的教學(xué)資源,而且這些資源是圍繞某個(gè)知識(shí)主題來(lái)展開的。這個(gè)學(xué)習(xí)環(huán)境具有民主和諧的課堂氣氛,它使學(xué)生很少感到有壓力,能自主尋找所需要的信息,提出自己的設(shè)想,并以自己的方式檢驗(yàn)其設(shè)想。二是教師可以給學(xué)生提供必要的幫助和指導(dǎo),使學(xué)生在研究中能明確方向。這說(shuō)明探究式教學(xué)的本質(zhì)特征是不直接把與教學(xué)目標(biāo)有關(guān)的概念和認(rèn)知策略告訴學(xué)生,取而代之的是教師創(chuàng)造出一種智力交流和社會(huì)交往的環(huán)境,讓學(xué)生通過(guò)探究自己發(fā)現(xiàn)規(guī)律。

  3、探究式教學(xué)模式的特征。

  (1)問(wèn)題性。問(wèn)題性是探究式教學(xué)模式的關(guān)鍵。能否提出對(duì)學(xué)生具有挑戰(zhàn)性和吸引力的問(wèn)題,使學(xué)生產(chǎn)生問(wèn)題意識(shí),是探究教學(xué)成功與否的關(guān)鍵所在。恰當(dāng)?shù)膯?wèn)題會(huì)激起學(xué)生強(qiáng)烈的學(xué)習(xí)愿望,并引發(fā)學(xué)生的求異思維和創(chuàng)造思維。現(xiàn)代教育心理學(xué)研究提出:“學(xué)生的學(xué)習(xí)過(guò)程和科學(xué)家的探索過(guò)程在本質(zhì)上是一樣的,都是一個(gè)發(fā)現(xiàn)問(wèn)題、分析問(wèn)題、解決問(wèn)題的過(guò)程!彼耘囵B(yǎng)學(xué)生的問(wèn)題意識(shí)是探究式教學(xué)的重要使命。

 。2)過(guò)程性。過(guò)程性是探究式教學(xué)模式的重點(diǎn)。愛因斯坦說(shuō):“結(jié)論總以完成的形式出現(xiàn),讀者體會(huì)不到探索和發(fā)現(xiàn)的喜悅,感覺(jué)不到思想形成的生動(dòng)過(guò)程,也就很難達(dá)到清楚、全面理解的境界。”探究式教學(xué)模式正是考慮到這些人的認(rèn)知特點(diǎn)來(lái)組織教學(xué)的,它強(qiáng)調(diào)學(xué)生探索知識(shí)的經(jīng)歷和獲得新知識(shí)的親身感悟。

 。3)開放性。開放性是探究式教學(xué)模式的難點(diǎn)。探究式教學(xué)模式總是綜合合作學(xué)習(xí)、發(fā)現(xiàn)學(xué)習(xí)、自主學(xué)習(xí)等學(xué)習(xí)方式的長(zhǎng)處,培養(yǎng)學(xué)生良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)方法,提倡和發(fā)展多樣化的學(xué)習(xí)方式。探究式教學(xué)模式要面對(duì)大量開放性的問(wèn)題,教學(xué)資源和探究的結(jié)論面對(duì)生活、生產(chǎn)和科研是開放的,這一切都為教師的教與學(xué)生的學(xué)帶來(lái)了機(jī)遇與挑戰(zhàn)。

  二、教學(xué)設(shè)計(jì)案例

  1、教學(xué)內(nèi)容:數(shù)字排列中3、9的探究式教學(xué)。

  2、教學(xué)目標(biāo)。

  (1)知識(shí)與技能:掌握數(shù)字排列的知識(shí),能靈活運(yùn)用所學(xué)知識(shí)。

 。2)過(guò)程與方法:在探究過(guò)程中掌握分析問(wèn)題的方法和邏輯推理的方法。

 。3)情感態(tài)度與價(jià)值觀:培養(yǎng)學(xué)生觀察、分析、推理、歸納等綜合能力,讓學(xué)生體會(huì)到認(rèn)識(shí)客觀規(guī)律的一般過(guò)程。

  3、教學(xué)方法:談話探究法,討論探究法。

  4、教學(xué)過(guò)程。

 。1)創(chuàng)設(shè)情境。教師:在高中數(shù)學(xué)第十章的教學(xué)中,有關(guān)數(shù)字排列的問(wèn)題占有重要位置。我們?cè)?jīng)做過(guò)的.有關(guān)數(shù)字排列的題目,如“由若干個(gè)數(shù)字排列成偶數(shù)”、“能被5整除的數(shù)”等問(wèn)題,只要使排列成的數(shù)的個(gè)位數(shù)字為偶數(shù),則這個(gè)數(shù)就是偶數(shù),當(dāng)排列成的數(shù)的個(gè)位數(shù)字為0或5時(shí),則這個(gè)數(shù)就能被5整除。那么能被3整除的數(shù),能被9整除的數(shù)有何特點(diǎn)?

 。2)提出問(wèn)題。

  問(wèn)題1:在用1、2、3、4、5、6六個(gè)數(shù)字組成沒(méi)有重復(fù)數(shù)字的四位數(shù)中,是9的倍數(shù)的共有()

  A、36個(gè)B、18個(gè)C、12個(gè)D、24個(gè)

  問(wèn)題2:在用0、1、2、3、4、5這六個(gè)數(shù)字組成沒(méi)有重復(fù)數(shù)字的自然數(shù)中,有多少個(gè)能被6整除的五位數(shù)?

 。3)探究思考。點(diǎn)評(píng):乍一看問(wèn)題1,對(duì)于由若干個(gè)數(shù)字排列成9的倍數(shù)的問(wèn)題,如:81、72、63、54、45、36、27、18、9這些能夠被9整除的數(shù)的個(gè)位數(shù)字依次是1、2、3、4、5、6、7、8、9。因此,要考察能被9整除的數(shù),不能只考慮個(gè)位數(shù)字了。于是,需另辟蹊徑,探究能被9整除的數(shù)的特點(diǎn),尋求解決問(wèn)題的途徑。

  教師:同學(xué)們觀察81、72、63、54、45、36、27、18、9這些數(shù),甚至再寫出幾個(gè)能被9整除的數(shù),如981、1872等,看看它們有何特點(diǎn)?

  學(xué)生:它們都滿足“各位數(shù)字之和能被9整除”。

  教師:此結(jié)論的正確性如何?

  學(xué)生:老師,我們證明此結(jié)論的正確性,好嗎?

  教師:好。

  學(xué)生:證明:不妨以n是一個(gè)四位數(shù)為例證之。

  設(shè)n=1000a+100b+10c+d(a,b,c,d∈N)依條件,有a+b+c+d=9m(m∈N)

  則n=1000a+100b+10c+d

  =(999a+a)+(99b+b)+(9c+c)+d

  =(999a+99b+9c)+(a+b+c+d)

  =9(111a+11b+c)+9m

  =9(111a+11b+c+m)

  ∵ a,b,c,m∈N

  ∴ 111a+11b+c+m∈N

  所以n能被9整除

  同理可證定理的后半部分。

  教師:看來(lái)上述結(jié)論正確。所以得到如下定理。

  定理:如果一個(gè)自然數(shù)n各個(gè)數(shù)位上的數(shù)字之和能被9整除,那么這個(gè)數(shù)n就能夠被9整除;如果一個(gè)自然數(shù)n各個(gè)數(shù)位上的數(shù)字之和能被3整除,那么這個(gè)數(shù)n就能夠被3整除。

  教師:利用該定理可解決“能被3、9整除”的數(shù)字排列問(wèn)題,請(qǐng)同學(xué)們先解答問(wèn)題1。

  學(xué)生:嘗試1+4+5+6=16,1+3+4+5=13,2+3+4+5=14,2+4+5+6=17,1+2+3+4=10,1+2+5+6=14。

  教師:?jiǎn)l(fā)學(xué)生觀察這些數(shù)字有何特點(diǎn)?提問(wèn)學(xué)生。

  學(xué)生:可以看出只要從1、2、3、4、5、6這六個(gè)數(shù)中,選取的四個(gè)數(shù)字中含1(或2),或者同時(shí)含1、2,選取的四個(gè)數(shù)字之和都不是9的倍數(shù)。

  教師:請(qǐng)學(xué)生們繼續(xù)嘗試選取其他數(shù)字試一試。

  學(xué)生:3+4+5+6=18是9的倍數(shù)。

  教師:因此用1、2、3、4、5、6六個(gè)數(shù)字組成沒(méi)有重復(fù)數(shù)字的四位數(shù)中,是9的倍數(shù)的數(shù),就是由3、4、5、6進(jìn)行全排列所得,共有=24(個(gè))。

  故應(yīng)選D。

  (4)學(xué)以致用。

  問(wèn)題2:在用0、1、2、3、4、5這六個(gè)數(shù)字組成沒(méi)有重復(fù)數(shù)字的自然數(shù)中,有多少個(gè)能被6整除的五位數(shù)?

  教師:從上面的定理知:如果一個(gè)自然數(shù)n各個(gè)數(shù)位上的數(shù)字之和能被3整除,那么這個(gè)數(shù)n就能夠被3整除。同學(xué)們對(duì)問(wèn)題2有何想法?

  學(xué)生討論:

  學(xué)生1:被6整除的五位數(shù)必須既能被2整除,又能被3整除,故能被6整除的五位數(shù),即為各位數(shù)字之和能被3整除的五位偶數(shù)。

  學(xué)生2:由于1+2+3+4+5=15,能被3整除,所以選取的5個(gè)數(shù)字可分兩類:一類是5個(gè)數(shù)字中無(wú)0,另一類是5個(gè)數(shù)字中有0(但不含3)。

  學(xué)生3:第一類:5個(gè)數(shù)字中無(wú)0的五位偶數(shù)有。

  第二類:5個(gè)數(shù)字中含有0不含3的五位偶數(shù)有兩類,第一,0在個(gè)位有個(gè);第二,個(gè)位是2或4有,所以共有+ 。

  學(xué)生4:由分類計(jì)數(shù)原理得:能被6整除的無(wú)重復(fù)數(shù)字的五位數(shù)共有+ + =108(個(gè))。

 。5)概括強(qiáng)化。

  重點(diǎn):了解數(shù)字排列問(wèn)題的特點(diǎn),理解掌握數(shù)字排列中3、9問(wèn)題的規(guī)律。

  難點(diǎn):數(shù)字排列知識(shí)的靈活應(yīng)用。

  關(guān)鍵:證明的思路以及定理的得出。

  新學(xué)知識(shí)與已知知識(shí)之間的區(qū)別和聯(lián)系:已知知識(shí)“由若干個(gè)數(shù)字排列成偶數(shù)”、“能被5整除的數(shù)”等問(wèn)題,只要使排列成的數(shù)的個(gè)位數(shù)字為偶數(shù),則這個(gè)數(shù)就是偶數(shù),當(dāng)排列成的數(shù)的個(gè)位數(shù)字為0或5時(shí),則這個(gè)數(shù)就能被5整除”。新學(xué)知識(shí)“如果一個(gè)自然數(shù)n各個(gè)數(shù)位上的數(shù)字之和能被9整除,那么這個(gè)數(shù)n就能夠被9整除;如果一個(gè)自然數(shù)n各個(gè)數(shù)位上的數(shù)字之和能被3整除,那么這個(gè)數(shù)n就能夠被3整除。都是數(shù)字排列知識(shí),要學(xué)會(huì)靈活應(yīng)用。

 。6)作業(yè)。請(qǐng)同學(xué)們自擬練習(xí)題,以求達(dá)到熟練解決此類問(wèn)題的目的。

  總之,探究式教學(xué)模式是針對(duì)傳統(tǒng)教學(xué)的種種弊端提出來(lái)的,新課程改革強(qiáng)調(diào)改變課程過(guò)于注重知識(shí)的傳授和過(guò)于強(qiáng)調(diào)接受式學(xué)習(xí)的狀況,倡導(dǎo)學(xué)生主動(dòng)參與樂(lè)于探究、勤于動(dòng)手,讓學(xué)生經(jīng)歷科學(xué)探究過(guò)程,學(xué)習(xí)科學(xué)研究方法,并強(qiáng)調(diào)獲得知識(shí)、技能的過(guò)程成為學(xué)會(huì)學(xué)習(xí)和形成價(jià)值觀的過(guò)程,以培養(yǎng)學(xué)生的探究精神、創(chuàng)新意識(shí)和實(shí)踐能力。

高中數(shù)學(xué)教學(xué)設(shè)計(jì)12

  一、教學(xué)內(nèi)容分析

  圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無(wú)數(shù)次實(shí)踐后的高度抽象.恰當(dāng)?shù)乩枚x解題,許多時(shí)候能以簡(jiǎn)馭繁.因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會(huì)利用圓錐曲線定義來(lái)熟練的解題”。

  二、學(xué)生學(xué)習(xí)情況分析

  我所任教班級(jí)的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強(qiáng),思維活躍,但計(jì)算能力較差,推理能力較弱,使用數(shù)學(xué)語(yǔ)言的表達(dá)能力也略顯不足。

  三、設(shè)計(jì)思想

  由于這部分知識(shí)較為抽象,如果離開感性認(rèn)識(shí),容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情.在教學(xué)時(shí),借助多媒體動(dòng)畫,引導(dǎo)學(xué)生主動(dòng)發(fā)現(xiàn)問(wèn)題、解決問(wèn)題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率.

  四、教學(xué)目標(biāo)

  1.深刻理解并熟練掌握?qǐng)A錐曲線的定義,能靈活應(yīng)用定義解決問(wèn)題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識(shí)求解圓錐曲線的方程。

  2.通過(guò)對(duì)練習(xí),強(qiáng)化對(duì)圓錐曲線定義的理解,提高分析、解決問(wèn)題的能力;通過(guò)對(duì)問(wèn)題的不斷引申,精心設(shè)問(wèn),引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。

  3.借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.

  五、教學(xué)重點(diǎn)與難點(diǎn):

  教學(xué)重點(diǎn)

  1.對(duì)圓錐曲線定義的理解

  2.利用圓錐曲線的定義求“最值”

  3.“定義法”求軌跡方程

  教學(xué)難點(diǎn):

  巧用圓錐曲線定義解題

  六、教學(xué)過(guò)程設(shè)計(jì)

  【設(shè)計(jì)思路】

  (一)開門見山,提出問(wèn)題

  一上課,我就直截了當(dāng)?shù)亟o出——

  例題1:(1) 已知A(-2,0), B(2,0)動(dòng)點(diǎn)M滿足|MA|+|MB|=2,則點(diǎn)M的軌跡是( )。

  (A)橢圓 (B)雙曲線 (C)線段 (D)不存在

  (2)已知?jiǎng)狱c(diǎn) M(x,y)滿足(x1)2(y2)2|3x4y|,則點(diǎn)M的軌跡是( )。

  (A)橢圓 (B)雙曲線 (C)拋物線 (D)兩條相交直線

  【設(shè)計(jì)意圖】

  定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個(gè)必備條件,而通過(guò)一個(gè)階段的學(xué)習(xí)之后,學(xué)生們對(duì)圓錐曲線的定義已有了一定的認(rèn)識(shí),他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問(wèn)題。

  為了加深學(xué)生對(duì)圓錐曲線定義理解,我以圓錐曲線的定義的運(yùn)用為主線,精心準(zhǔn)備了兩道練習(xí)題。

  【學(xué)情預(yù)設(shè)】

  估計(jì)多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對(duì)于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說(shuō)出:若想答案是其他選項(xiàng)的話,條件要怎么改?這對(duì)于已學(xué)完圓錐曲線這部分知識(shí)的學(xué)生來(lái)說(shuō),并不是什么難事。但問(wèn)題(2)就可能讓學(xué)生們費(fèi)一番周折—— 如果有學(xué)生提出:可以利用變形來(lái)解決問(wèn)題,那么我就可以循著他的思路,先對(duì)原等式做變形:(x1)2(y2)2

  5這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5

  入手,考慮通過(guò)適當(dāng)?shù)淖冃,轉(zhuǎn)化為學(xué)生們熟知的兩個(gè)距離公式。

  在對(duì)學(xué)生們的解答做出判斷后,我將把問(wèn)題引申為:該雙曲線的中心坐標(biāo)是 ,實(shí)軸長(zhǎng)為 ,焦距為 。以深化對(duì)概念的理解。

  (二)理解定義、解決問(wèn)題

  例2 (1)已知?jiǎng)訄AA過(guò)定圓B:x2y26x70的圓心,且與定圓C:xy6x910 相內(nèi)切,求△ABC面積的最大值。

  (2)在(1)的條件下,給定點(diǎn)P(-2,2), 求|PA|

  【設(shè)計(jì)意圖】

  運(yùn)用圓錐曲線定義中的數(shù)量關(guān)系進(jìn)行轉(zhuǎn)化,使問(wèn)題化歸為幾何中求最大(小)值的模式,是解析幾何問(wèn)題中的一種常見題型,也是學(xué)生們比較容易混淆的一類問(wèn)題。例2的設(shè)置就是為了方便學(xué)生的辨析。

  【學(xué)情預(yù)設(shè)】

  根據(jù)以往的經(jīng)驗(yàn),多數(shù)學(xué)生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實(shí)上,解決本題的關(guān)鍵在于能準(zhǔn)確寫出點(diǎn)A的軌跡,有了練習(xí)題1的鋪墊,這個(gè)問(wèn)題對(duì)學(xué)生們來(lái)講就顯得頗為簡(jiǎn)單,因此面對(duì)例2(1),多數(shù)學(xué)生應(yīng)該能準(zhǔn)確給出解答,但是對(duì)于例2(2)這樣相對(duì)比較陌生的問(wèn)題,學(xué)生就無(wú)從下手。我提醒學(xué)生把3/5和離心率聯(lián)系起來(lái),這樣就容易和第二定義聯(lián)系起來(lái),從而找到解決本題的突破口。

  (三)自主探究、深化認(rèn)識(shí)

  如果時(shí)間允許,練習(xí)題將為學(xué)生們提供一次數(shù)學(xué)猜想、試驗(yàn)的機(jī)會(huì)——

  練習(xí):設(shè)點(diǎn)Q是圓C:(x1)2225|AB|的最小值。 3y225上動(dòng)點(diǎn),點(diǎn)A(1,0)是圓內(nèi)一點(diǎn),AQ的垂直平分線與CQ交于點(diǎn)M,求點(diǎn)M的軌跡方程。

  引申:若將點(diǎn)A移到圓C外,點(diǎn)M的軌跡會(huì)是什么?

  【設(shè)計(jì)意圖】 練習(xí)題設(shè)置的目的是為學(xué)生課外自主探究學(xué)習(xí)提供平臺(tái),當(dāng)然,如果課堂上時(shí)間允許的`話,

  可借助“多媒體課件”,引導(dǎo)學(xué)生對(duì)自己的結(jié)論進(jìn)行驗(yàn)證。

  【知識(shí)鏈接】

  (一)圓錐曲線的定義

  1. 圓錐曲線的第一定義

  2. 圓錐曲線的統(tǒng)一定義

  (二)圓錐曲線定義的應(yīng)用舉例

  1.雙曲線1的兩焦點(diǎn)為F1、F2,P為曲線上一點(diǎn),若P到左焦點(diǎn)F1的距離為12,求P到右準(zhǔn)線的距離。

  2.|PF1||PF2|2.P為等軸雙曲線x2y2a2上一點(diǎn), F1、F2為兩焦點(diǎn),O為雙曲線的中心,求的|PO|取值范圍。

  3.在拋物線y22px上有一點(diǎn)A(4,m),A點(diǎn)到拋物線的焦點(diǎn)F的距離為5,求拋物線的方程和點(diǎn)A的坐標(biāo)。

  4.(1)已知點(diǎn)F是橢圓1的右焦點(diǎn),M是這橢圓上的動(dòng)點(diǎn),A(2,2)是一個(gè)定點(diǎn),求|MA|+|MF|的最小值。

  x2y211(2)已知A(,3)為一定點(diǎn),F(xiàn)為雙曲線1的右焦點(diǎn),M在雙曲線右支上移動(dòng),當(dāng)|AM||MF|最小時(shí),求M點(diǎn)的坐標(biāo)。

  (3)已知點(diǎn)P(-2,3)及焦點(diǎn)為F的拋物線y,在拋物線上求一點(diǎn)M,使|PM|+|FM|最小。

  5.已知A(4,0),B(2,2)是橢圓1內(nèi)的點(diǎn),M是橢圓上的動(dòng)點(diǎn),求|MA|+|MB|的最小值與最大值。

  七、教學(xué)反思

  1.本課將借助于,將使全體學(xué)生參與活動(dòng)成為可能,使原來(lái)令人難以理解的抽象的數(shù)學(xué)理論變得形象,生動(dòng)且通俗易懂,同時(shí),運(yùn)用“多媒體課件”輔助教學(xué),節(jié)省了板演的時(shí)間,從而給學(xué)生留出更多的時(shí)間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機(jī)結(jié)合的教學(xué)優(yōu)勢(shì)。

  2.利用兩個(gè)例題及其引申,通過(guò)一題多變,層層深入的探索,以及對(duì)猜測(cè)結(jié)果的檢測(cè)研究,培養(yǎng)學(xué)生思維能力,使學(xué)生從學(xué)會(huì)一個(gè)問(wèn)題的求解到掌握一類問(wèn)題的解決方法. 循序漸進(jìn)的讓學(xué)生把握這類問(wèn)題的解法;將學(xué)生容易混淆的兩類求“最值問(wèn)題”并為一道題,方便學(xué)生進(jìn)行比較、分析。雖然從表面上看,我這一堂課的教學(xué)容量不大,但事實(shí)上,學(xué)生們的思維運(yùn)動(dòng)量并不會(huì)小。

  總之,如何更好地選擇符合學(xué)生具體情況,滿足教學(xué)目標(biāo)的例題與練習(xí)、靈活把握課堂教學(xué)節(jié)奏仍是我今后工作中的一個(gè)重要研究課題.而要能真正進(jìn)行素質(zhì)教育,培養(yǎng)學(xué)生的創(chuàng)新意識(shí),自己首先必須更新觀念——在教學(xué)中適度使用多媒體技術(shù),讓學(xué)生有參與教學(xué)實(shí)踐的機(jī)會(huì),能夠使學(xué)生在學(xué)習(xí)新知識(shí)的同時(shí),激發(fā)起求知的欲望,在尋求解決問(wèn)題的辦法的過(guò)程中獲得自信和成功的體驗(yàn),于不知不覺(jué)中改善了他們的思維品質(zhì),提高了數(shù)學(xué)思維能力。

高中數(shù)學(xué)教學(xué)設(shè)計(jì)13

  教學(xué)目標(biāo):

 、僬莆諏(duì)數(shù)函數(shù)的性質(zhì)。

 、趹(yīng)用對(duì)數(shù)函數(shù)的性質(zhì)可以解決:對(duì)數(shù)的大小比較,求復(fù)合函數(shù)的定義域、值域及單調(diào)性。

 、圩⒅睾瘮(shù)思想、等價(jià)轉(zhuǎn)化、分類討論等思想的滲透,提高解題能力。

  教學(xué)重點(diǎn)與難點(diǎn):

  對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用。

  教學(xué)過(guò)程設(shè)計(jì):

 、睆(fù)習(xí)提問(wèn):對(duì)數(shù)函數(shù)的概念及性質(zhì)。

 、查_始正課

  1比較數(shù)的大小

  例1比較下列各組數(shù)的大小。

  ⑴loga5.1 ,loga5.9 (a>0,a≠1)

 、苐og0.50.6 ,logЛ0.5 ,lnЛ

  師:請(qǐng)同學(xué)們觀察一下⑴中這兩個(gè)對(duì)數(shù)有何特征?

  生:這兩個(gè)對(duì)數(shù)底相等。

  師:那么對(duì)于兩個(gè)底相等的對(duì)數(shù)如何比大小?

  生:可構(gòu)造一個(gè)以a為底的.對(duì)數(shù)函數(shù),用對(duì)數(shù)函數(shù)的單調(diào)性比大小。

  師:對(duì),請(qǐng)敘述一下這道題的解題過(guò)程。

  生:對(duì)數(shù)函數(shù)的單調(diào)性取決于底的大。寒(dāng)0調(diào)遞減,所以loga5.1>loga5.9 ;當(dāng)a>1時(shí),函數(shù)y=logax單調(diào)遞增,所以loga5.1

  板書:

  解:Ⅰ)當(dāng)0

  ∵5.1<5.9 loga5.1="">loga5.9

  Ⅱ)當(dāng)a>1時(shí),函數(shù)y=logax在(0,+∞)上是增函數(shù)

  ∵5.1<5.9 ∴l(xiāng)oga5.1

  師:請(qǐng)同學(xué)們觀察一下⑵中這三個(gè)對(duì)數(shù)有何特征?

  生:這三個(gè)對(duì)數(shù)底、真數(shù)都不相等。

  師:那么對(duì)于這三個(gè)對(duì)數(shù)如何比大小?

  生:找“中間量”,log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,

  log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

  板書:略。

  師:比較對(duì)數(shù)值的大小常用方法:

 、贅(gòu)造對(duì)數(shù)函數(shù),直接利用對(duì)數(shù)函數(shù)的單調(diào)性比大小;

 、诮栌谩爸虚g量”間接比大小;

 、劾脤(duì)數(shù)函數(shù)圖象的位置關(guān)系來(lái)比大小。

  2函數(shù)的定義域,值域及單調(diào)性。

高中數(shù)學(xué)教學(xué)設(shè)計(jì)14

  一、教材分析

  本小節(jié)選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書-數(shù)學(xué)必修(一)》(人教版)第二章基本初等函數(shù)(1)2.2.2對(duì)數(shù)函數(shù)及其性質(zhì)(第一課時(shí)),主要內(nèi)容是學(xué)習(xí)對(duì)數(shù)函數(shù)的定義、圖象、性質(zhì)及初步應(yīng)用。對(duì)數(shù)函數(shù)是繼指數(shù)函數(shù)之后的又一個(gè)重要初等函數(shù),無(wú)論從知識(shí)或思想方法的角度對(duì)數(shù)函數(shù)與指數(shù)函數(shù)都有許多類似之處。與指數(shù)函數(shù)相比,對(duì)數(shù)函數(shù)所涉及的知識(shí)更豐富、方法更靈活,能力要求也更高。學(xué)習(xí)對(duì)數(shù)函數(shù)是對(duì)指數(shù)函數(shù)知識(shí)和方法的鞏固、深化和提高,也為解決函數(shù)綜合問(wèn)題及其在實(shí)際上的應(yīng)用奠定良好的基礎(chǔ)。雖然這個(gè)內(nèi)容十分熟悉,但新教材做了一定的改動(dòng),如何設(shè)計(jì)能夠符合新課標(biāo)理念,是人們十分關(guān)注的,正因如此,本人選擇這課題立求某些方面有所突破。

  二、學(xué)生學(xué)習(xí)情況分析

  剛從初中升入高一的學(xué)生,仍保留著初中生許多學(xué)習(xí)特點(diǎn),能力發(fā)展正處于形象思維向抽象思維轉(zhuǎn)折階段,但更注重形象思維。由于函數(shù)概念十分抽象,又以對(duì)數(shù)運(yùn)算為基礎(chǔ),同時(shí),初中函數(shù)教學(xué)要求降低,初中生運(yùn)算能力有所下降,這雙重問(wèn)題增加了對(duì)數(shù)函數(shù)教學(xué)的難度。教師必須認(rèn)識(shí)到這一點(diǎn),教學(xué)中要控制要求的拔高,關(guān)注學(xué)習(xí)過(guò)程。

  三、設(shè)計(jì)理念

  本節(jié)課以建構(gòu)主義基本理論為指導(dǎo),以新課標(biāo)基本理念為依據(jù)進(jìn)行設(shè)計(jì)的,針對(duì)學(xué)生的學(xué)習(xí)背景,對(duì)數(shù)函數(shù)的教學(xué)首先要挖掘其知識(shí)背景貼近學(xué)生實(shí)際,其次,激發(fā)學(xué)生的學(xué)習(xí)熱情,把學(xué)習(xí)的主動(dòng)權(quán)交給學(xué)生,為他們提供自主探究、合作交流的機(jī)會(huì),確實(shí)改變學(xué)生的學(xué)習(xí)方式。

  四、教學(xué)目標(biāo)

  1.通過(guò)具體實(shí)例,直觀了解對(duì)數(shù)函數(shù)模型所刻畫的.數(shù)量關(guān)系,初步理解對(duì)數(shù)函數(shù)的概念,體會(huì)對(duì)數(shù)函數(shù)是一類重要的函數(shù)模型;

  2.能借助計(jì)算器或計(jì)算機(jī)畫出具體對(duì)數(shù)函數(shù)的圖象,探索并了解對(duì)數(shù)函數(shù)的單調(diào)性與特殊點(diǎn);

  3.通過(guò)比較、對(duì)照的方法,引導(dǎo)學(xué)生結(jié)合圖象類比指數(shù)函數(shù),探索研究對(duì)數(shù)函數(shù)的性質(zhì),培養(yǎng)學(xué)生運(yùn)用函數(shù)的觀點(diǎn)解決實(shí)際問(wèn)題。

  五、教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn)是掌握對(duì)數(shù)函數(shù)的圖象和性質(zhì),難點(diǎn)是底數(shù)對(duì)對(duì)數(shù)函數(shù)值變化的影響.

  六、教學(xué)過(guò)程設(shè)計(jì)

  教學(xué)流程:背景材料→引出課題→函數(shù)圖象→函數(shù)性質(zhì)→問(wèn)題解決→歸納小結(jié)

  (一)熟悉背景、引入課題

  1.讓學(xué)生看材料:

  材料1(幻燈):馬王堆女尸千年不腐之謎:一九七二年,馬王堆考古發(fā)現(xiàn)震驚世界,專家發(fā)掘西漢辛追遺尸時(shí),形體完整,全身潤(rùn)澤,皮膚仍有彈性,關(guān)節(jié)還可以活動(dòng),骨質(zhì)比現(xiàn)在六十歲的正常人還好,是世界上發(fā)現(xiàn)的首例歷史悠久的濕尸。大家知道,世界發(fā)現(xiàn)的不腐之尸都是在干燥的環(huán)境風(fēng)干而成,譬如沙漠環(huán)境,這類干尸雖然肌膚未腐,是因?yàn)楦稍锊焕?xì)菌繁殖,但關(guān)節(jié)和一般人死后一樣,是僵硬的,而馬王堆辛追夫人卻是在濕潤(rùn)的環(huán)境中保存二千多年,而且關(guān)節(jié)可以活動(dòng)。人們最關(guān)注有兩個(gè)問(wèn)題,第一:怎么鑒定尸體的年份?第二:是什么環(huán)境使尸體未腐?其中第一個(gè)問(wèn)題與數(shù)學(xué)有關(guān)。

  圖4—1 (如圖4—1在長(zhǎng)沙馬王堆“沉睡”近2200年的古長(zhǎng)沙國(guó)丞相夫人辛追,日前奇跡般地“復(fù)活”了)那么,考古學(xué)家是怎么計(jì)算出古長(zhǎng)沙國(guó)丞相夫人辛追“沉睡”近2200年?上面已經(jīng)知道考古學(xué)家是通過(guò)提取尸體的殘留物碳14的殘留量p,利用t?logp 57302估算尸體出土的年代,不難發(fā)現(xiàn):對(duì)每一個(gè)碳14的含量的取值,通過(guò)這個(gè)對(duì)應(yīng)關(guān)系,生物死亡年數(shù)t都有唯一的值與之對(duì)應(yīng),從而t是p的函數(shù);

  如圖4—2材料2(幻燈):某種細(xì)胞分裂時(shí),由1個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè)??,如果要求這種細(xì)胞經(jīng)過(guò)多少次分裂,大約可以得到細(xì)胞1萬(wàn)個(gè),10萬(wàn)個(gè)??,不難發(fā)現(xiàn):分裂次數(shù)y就是要得到的細(xì)胞個(gè)數(shù)x的函數(shù),即y?log2x;

  圖4—2 1.引導(dǎo)學(xué)生觀察這些函數(shù)的特征:含有對(duì)數(shù)符號(hào),底數(shù)是常數(shù),真數(shù)是變量,從而得出對(duì)數(shù)函數(shù)的定義:函數(shù)y?logax(a?0,且a?1)叫做對(duì)數(shù)函數(shù),其中x是自變量,函數(shù)的定義域是(0,+∞).

  1對(duì)數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別.如:注意:○ x2對(duì)數(shù)函數(shù)對(duì)底數(shù)的限制:(a?0,都不是對(duì)數(shù)函數(shù).○5y?2log2x,y?log5且a?1).

  3.根據(jù)對(duì)數(shù)函數(shù)定義填空;

  例1 (1)函數(shù)y=logax的定義域是___________ (其中a>0,a≠1) (2)函數(shù)y=loga(4-x)的定義域是___________ (其中a>0,a≠1)說(shuō)明:本例主要考察對(duì)數(shù)函數(shù)定義中底數(shù)和定義域的限制,加深對(duì)概念的理

  解,所以把教材中的解答題改為填空題,節(jié)省時(shí)間,點(diǎn)到為止,以避免挖深、拓展、引入復(fù)合函數(shù)的概念。

  [設(shè)計(jì)意圖:新課標(biāo)強(qiáng)調(diào)“考慮到多數(shù)高中生的認(rèn)知特點(diǎn),為了有助于他們對(duì)函數(shù)概念本質(zhì)的理解,不妨從學(xué)生自己的生活經(jīng)歷和實(shí)際問(wèn)題入手”。因此,新課引入不是按舊教材從反函數(shù)出發(fā),而是選擇從兩個(gè)材料引出對(duì)數(shù)函數(shù)的概念,讓學(xué)生熟悉它的知識(shí)背景,初步感受對(duì)數(shù)函數(shù)是刻畫現(xiàn)實(shí)世界的又一重要數(shù)學(xué)模型。這樣處理,對(duì)數(shù)函數(shù)顯得不抽象,學(xué)生容易接受,降低了新課教學(xué)的起點(diǎn)] 2

  (二)嘗試畫圖、形成感知1.確定探究問(wèn)題

  教師:當(dāng)我們知道對(duì)數(shù)函數(shù)的定義之后,緊接著需要探討什么問(wèn)題?學(xué)生1:對(duì)數(shù)函數(shù)的圖象和性質(zhì)

  教師:你能類比前面研究指數(shù)函數(shù)的思路,提出研究對(duì)數(shù)函數(shù)圖象和性質(zhì)的方

  法嗎?

  學(xué)生2:先畫圖象,再根據(jù)圖象得出性質(zhì)

  教師:畫對(duì)數(shù)函數(shù)的圖象是否象指數(shù)函數(shù)那樣也需要分類?學(xué)生3:按a?1和0?a?1分類討論

  教師:觀察圖象主要看哪幾個(gè)特征?

  學(xué)生4:從圖象的形狀、位置、升降、定點(diǎn)等角度去識(shí)圖

  教師:在明確了探究方向后,下面,按以下步驟共同探究對(duì)數(shù)函數(shù)的圖象:步驟一:(1)用描點(diǎn)法在同一坐標(biāo)系中畫出下列對(duì)數(shù)函數(shù)的圖象y?log2xy?log1x 2 (2)用描點(diǎn)法在同一坐標(biāo)系中畫出下列對(duì)數(shù)函數(shù)的圖象y?log3xy?log1x 3步驟二:觀察對(duì)數(shù)函數(shù)y?log2x、y?log3x與y?log1x、y?log1x的圖象特23征,看看它們有那些異同點(diǎn)。

  步驟三:利用計(jì)算器或計(jì)算機(jī),選取底數(shù)a(a?0,且a?1)的若干個(gè)不同的值,

  在同一平面直角坐標(biāo)系中作出相應(yīng)對(duì)數(shù)函數(shù)的圖象。觀察圖象,它們有哪些共同特征?

  步驟四:規(guī)納出能體現(xiàn)對(duì)數(shù)函數(shù)的代表性圖象

  步驟五:作指數(shù)函數(shù)與對(duì)數(shù)函數(shù)圖象的比較2.學(xué)生探究成果

  (1)如圖4—3、4—4較為熟練地用描點(diǎn)法畫出下列對(duì)數(shù)函數(shù)y?log2x、 y?log1x、 y?log3x、y?log1x的圖象23圖4—3圖4—4 (2)如圖4—5學(xué)生選取底數(shù)a=1/4、1/5、1/6、1/10、4、5、6、10,并推薦幾位代表上臺(tái)演示‘幾何畫板’,得到相應(yīng)對(duì)數(shù)函數(shù)的圖象。由于學(xué)生自己動(dòng)手,加上‘幾何畫板’的強(qiáng)大作圖功能,學(xué)生非常清楚地看到了底數(shù)a是如何影響函數(shù)y?logax(a?0,且a?1)圖象的變化。

  圖4—5 (3)有了這種畫圖感知的過(guò)程以及學(xué)習(xí)指數(shù)函數(shù)的經(jīng)驗(yàn),學(xué)生很明確y = loga x (a>1)、y = loga x (0(中部)

高中數(shù)學(xué)教學(xué)設(shè)計(jì)15

  一、教材分析

  數(shù)學(xué)歸納法是一種重要的數(shù)學(xué)證明方法,在高中數(shù)學(xué)內(nèi)容中占有重要的地位,其中體現(xiàn)的數(shù)學(xué)思想方法對(duì)學(xué)生進(jìn)一步學(xué)習(xí)數(shù)學(xué)、領(lǐng)悟數(shù)學(xué)思想至關(guān)重要。本課是數(shù)學(xué)歸納法的第一節(jié)課,前面學(xué)生對(duì)等差數(shù)列、數(shù)列求和、二項(xiàng)式定理等知識(shí)有較全面的把握和較深入的理解,初步掌握了由有限多個(gè)特殊事例得出一般結(jié)論的推理方法,即不完全歸納法,這是研究數(shù)學(xué)問(wèn)題,猜想或發(fā)現(xiàn)數(shù)學(xué)規(guī)律的重要手段。但是,由有限多個(gè)特殊事例得出的結(jié)論不一定正確,這種推理方法不能作為一種論證方法。因此,在不完全歸納法的基礎(chǔ)上,必須進(jìn)一步學(xué)習(xí)嚴(yán)謹(jǐn)?shù)目茖W(xué)的論證方法——數(shù)學(xué)歸納法,這是促進(jìn)學(xué)生從有限思維發(fā)展到無(wú)限思維的一個(gè)重要環(huán)節(jié),同時(shí)本節(jié)內(nèi)容又是培養(yǎng)學(xué)生嚴(yán)密的推理能力、訓(xùn)練學(xué)生的抽象思維能力、體驗(yàn)數(shù)學(xué)內(nèi)在美的好素材。

  二、教學(xué)目標(biāo)

  學(xué)生通過(guò)數(shù)列等相關(guān)知識(shí)的學(xué)習(xí),已經(jīng)基本掌握了不完全歸納法,已經(jīng)由一定的觀察、歸納、猜想能力。

  根據(jù)教學(xué)內(nèi)容特點(diǎn)和教學(xué)大綱,結(jié)合學(xué)生實(shí)際而制定以下教學(xué)目標(biāo):

  1.知識(shí)目標(biāo)

 。1)了解由有限多個(gè)特殊事例得出的一般結(jié)論不一定正確。

 。2)初步理解數(shù)學(xué)歸納法原理。

 。3)能以遞推思想為指導(dǎo),理解數(shù)學(xué)歸納法證明數(shù)學(xué)命題的兩個(gè)步驟一個(gè)結(jié)論。

 。4)會(huì)用數(shù)學(xué)歸納法證明與正整數(shù)相關(guān)的簡(jiǎn)單的恒等式。

  2.能力目標(biāo)

 。1)通過(guò)對(duì)數(shù)學(xué)歸納法的學(xué)習(xí),使學(xué)生初步掌握觀察、歸納、猜想、分析能力和嚴(yán)密的邏輯推理能力。

 。2)在學(xué)習(xí)中培養(yǎng)學(xué)生大膽猜想,小心求證的辨證思維素質(zhì)以及發(fā)現(xiàn)問(wèn)題、提出問(wèn)題的意識(shí)和數(shù)學(xué)交流的能力。

  3.情感目標(biāo)

 。1)通過(guò)對(duì)數(shù)學(xué)歸納法原理的探究,親歷知識(shí)的構(gòu)建過(guò)程,領(lǐng)悟其中所蘊(yùn)含的數(shù)學(xué)思想和辨正唯物主義觀點(diǎn)。

 。2)體驗(yàn)探索中挫折的艱辛和成功的快樂(lè),感悟數(shù)學(xué)的'內(nèi)在美,激發(fā)學(xué)生學(xué)習(xí)熱情,使學(xué)生喜歡數(shù)學(xué)。

 。3)學(xué)生通過(guò)置疑與探究,初步形成正確的數(shù)學(xué)觀,創(chuàng)新意識(shí)和嚴(yán)謹(jǐn)?shù)目茖W(xué)精神。

  三、教學(xué)重點(diǎn)與難點(diǎn)

  1.教學(xué)重點(diǎn)

  借助具體實(shí)例了解數(shù)學(xué)歸納法的基本思想,掌握它的基本步驟,運(yùn)用它證明一些與正整數(shù)有關(guān)的簡(jiǎn)單恒等式,特別要注意遞推步驟中歸納假設(shè)的運(yùn)用和恒等變換的運(yùn)用。

  2.教學(xué)難點(diǎn)

 。1)如何理解數(shù)學(xué)歸納法證題的嚴(yán)密性和有效性。

  (2)遞推步驟中如何利用歸納假設(shè),即如何利用假設(shè)證明當(dāng)時(shí)結(jié)論正確。

  四、教學(xué)方法

  本節(jié)課采用交往性教學(xué)方法,以學(xué)生及其發(fā)展為本,一切從學(xué)生出發(fā)。在教師組織啟發(fā)下,通過(guò)創(chuàng)設(shè)問(wèn)題情境,激發(fā)學(xué)習(xí)欲望。師生之間、學(xué)生之間共同探究多米諾骨牌倒下的原理,并類比多米諾骨牌倒下的原理,探究數(shù)學(xué)歸納法的原理、步驟;培養(yǎng)學(xué)生歸納、類比推理的能力,進(jìn)而應(yīng)用數(shù)學(xué)歸納法,證明一些與正整數(shù)n有關(guān)的簡(jiǎn)單數(shù)學(xué)命題;提高學(xué)生的應(yīng)用能力,分析問(wèn)題、解決問(wèn)題的能力。既重視教師的組織引導(dǎo),又強(qiáng)調(diào)學(xué)生的主體性、主動(dòng)性、交流性和合作性。

  五、教學(xué)過(guò)程

 。ㄒ唬﹦(chuàng)設(shè)情境,提出問(wèn)題

  情境一:根據(jù)觀察某學(xué)校第一個(gè)到校的女同學(xué),第二個(gè)到校的也是女同學(xué),第三個(gè)到校的還是女同學(xué),于是得出:這所學(xué)校的學(xué)生全部是女同學(xué)。

  情境二:平面內(nèi)三角形內(nèi)角和是,四邊形內(nèi)角和是,五邊形內(nèi)角和是,于是得出:凸邊形內(nèi)角和是。

  情境三:數(shù)列的通項(xiàng)公式為,可以求得,,,,于是猜想出數(shù)列的通項(xiàng)公式為。

  結(jié)論:運(yùn)用有限多個(gè)特殊事例得出的一般性結(jié)論,即不完全歸納法不一定正確。因此它不

  能作為一種論證的方法。

  提出問(wèn)題:如何尋找一個(gè)科學(xué)有效的方法證明結(jié)論的正確性呢?我們本節(jié)課所要學(xué)習(xí)的數(shù)

  學(xué)歸納法就是解決這一問(wèn)題的方法之一。

 。ǘ⿲(shí)驗(yàn)演示,探索解決問(wèn)題的方法

  1.幾何畫板演示動(dòng)畫多米諾骨牌游戲,師生共同探討:要讓這些骨牌全部倒下,必

  須具備那些條件呢?(學(xué)生可以討論,加以教師點(diǎn)撥)

 、俚谝粔K骨牌必須倒下。

 、趦蓧K連續(xù)的骨牌,當(dāng)前一塊倒下,后面一塊必須倒下。

 。▎l(fā)學(xué)生轉(zhuǎn)換成數(shù)學(xué)符號(hào)語(yǔ)言:當(dāng)?shù)趬K倒下,則第塊必須倒下)

  教師總結(jié):數(shù)學(xué)歸納法的原理就如同多米諾骨牌一樣。

  2.學(xué)生類比多米諾骨牌原理,探究出證明有關(guān)正整數(shù)命題的方法,從而導(dǎo)出本課的重心:數(shù)學(xué)歸納法的原理及其證明的兩個(gè)步驟。(給學(xué)生思考的時(shí)間,教師提問(wèn),學(xué)生回答,教師補(bǔ)充完善,對(duì)學(xué)生的回答給予肯定和鼓勵(lì))

  數(shù)學(xué)歸納法公理:(板書)

 。1)(遞推基礎(chǔ))當(dāng)取第一個(gè)值(例如等)結(jié)論正確;

 。2)(遞推歸納)假設(shè)當(dāng)時(shí)結(jié)論正確;(歸納假設(shè))

  證明當(dāng)時(shí)結(jié)論也正確。(歸納證明)

  那么,命題對(duì)于從開始的所有正整數(shù)都成立。

  教師總結(jié):步驟(1)是數(shù)學(xué)歸納法的基礎(chǔ),步驟(2)建立了遞推過(guò)程,兩者缺一不

  可,這就是數(shù)學(xué)歸納法。

 。ㄈ┻w移應(yīng)用,理解升華

  例1:用數(shù)學(xué)歸納法證明:等差數(shù)列中,為首項(xiàng),為公差,則通項(xiàng)公式為.①

  選題意圖:讓學(xué)生注意:①數(shù)學(xué)歸納法是一種完全歸納的證明方法,它適用于與正整數(shù)有關(guān)的問(wèn)題;

 、趦蓚(gè)步驟,一個(gè)結(jié)論缺一不可,否則結(jié)論不成立;

 、墼谧C明遞推步驟時(shí),必須使用歸納假設(shè),必須進(jìn)行恒等變換。

  此時(shí)學(xué)生心中已有一個(gè)初步的證明模式,教師應(yīng)該規(guī)范板書,給學(xué)生提供一個(gè)示范。

  證明:(1)當(dāng)時(shí),等式左邊,等式右邊,等式①成立.

 。2)假設(shè)當(dāng)時(shí)等式①成立,即有

  那么,當(dāng)時(shí),有所以當(dāng)時(shí)等式①也成立。

  根據(jù)(1)和(2),可知對(duì)任何,等式①都成立。

  例2:用數(shù)學(xué)歸納法證明:當(dāng)時(shí)

  選題意圖:通過(guò)師生共同活動(dòng),使學(xué)生進(jìn)一步熟悉數(shù)學(xué)歸納法證題的兩個(gè)步驟和一個(gè)結(jié)論。

  例3:用數(shù)學(xué)歸納法證明:當(dāng)時(shí)

  選題意圖:①進(jìn)一步讓學(xué)生理解數(shù)學(xué)歸納法的嚴(yán)密性和合理性,從而從感性認(rèn)識(shí)上升為理性認(rèn)識(shí);

 、谡莆諒牡綍r(shí)等式左邊的變化情況,合理的進(jìn)行添項(xiàng)、拆項(xiàng)、合并項(xiàng)等。

 。ㄋ模┓答伨毩(xí),鞏固提高

  課堂練習(xí):用數(shù)學(xué)歸納法證明:當(dāng)時(shí)

 。ň毩(xí)讓學(xué)生獨(dú)立完成,上黑板板演,要求書寫工整,步驟完整,表述清楚,如果發(fā)現(xiàn)學(xué)

  生證明過(guò)程中的錯(cuò)誤,教師及時(shí)糾正、剖析,同時(shí)對(duì)學(xué)生板演好的方面予以肯定和鼓勵(lì)。)

  教師總結(jié):利用數(shù)學(xué)歸納法證明和正整數(shù)相關(guān)的命題時(shí),要注意以下三句話:遞推基礎(chǔ)不

  可少,歸納假設(shè)要用到,結(jié)論寫明莫忘掉。

 。ㄎ澹┓此伎偨Y(jié)

  學(xué)生思考后,教師提問(wèn),讓同學(xué)相互補(bǔ)充完善,教師最后總結(jié),這一環(huán)節(jié)可以培養(yǎng)學(xué)

  生抽象、歸納、概括、總結(jié)的能力,同時(shí)教師也可以及時(shí)了解學(xué)生的掌握情況,以便彌補(bǔ)和及時(shí)調(diào)整下節(jié)課的教學(xué)方向。

  小結(jié):(1)歸納法是一種由特殊到一般的推理方法,分完全歸納法和不完全歸納法兩種,

  而不完全歸納法得出的結(jié)論不具有可靠性,必須用數(shù)學(xué)歸納法進(jìn)行嚴(yán)格證明;

 。2)數(shù)學(xué)歸納法作為一種證明方法,用于證明一些與正整數(shù)n有關(guān)數(shù)學(xué)命題,它的基本思想是遞推思想,它的證明過(guò)程必須是兩步,最后還有結(jié)論,缺一不可;

 。3)遞推歸納時(shí)從到,必須用到歸納假設(shè),并進(jìn)行適當(dāng)?shù)暮愕茸儞Q。

  (六)作業(yè)布置

  選修2-2習(xí)題2.3第1題第2題

【高中數(shù)學(xué)教學(xué)設(shè)計(jì)】相關(guān)文章:

高中數(shù)學(xué)教學(xué)設(shè)計(jì)02-20

高中數(shù)學(xué)教學(xué)設(shè)計(jì)(精選10篇)04-26

高中數(shù)學(xué)的教學(xué)設(shè)計(jì)(精選5篇)04-22

高中數(shù)學(xué)教學(xué)設(shè)計(jì)精選15篇04-10

高中數(shù)學(xué)教學(xué)設(shè)計(jì)15篇03-15

高中數(shù)學(xué)《集合與函數(shù)概念》教學(xué)設(shè)計(jì)03-28

高中數(shù)學(xué)教學(xué)設(shè)計(jì)概率基本性質(zhì)04-01

高中數(shù)學(xué)教學(xué)總結(jié)05-09

高中數(shù)學(xué)教學(xué)反思12-23