高中數(shù)學教學設計范文
作為一名教師,就有可能用到教學設計,借助教學設計可以促進我們快速成長,使教學工作更加科學化。那么你有了解過教學設計嗎?以下是小編為大家收集的高中數(shù)學教學設計范文,歡迎大家分享。
高中數(shù)學教學設計范文1
一、課題:
人教版全日制普通高級中學教科書數(shù)學第一冊(上)《2.7對數(shù)》
二、指導思想與理論依據(jù):
《數(shù)學課程標準》指出:高中數(shù)學課程應講清一些基本內容的實際背景和應用價值,開展“數(shù)學建!钡膶W習活動,把數(shù)學的應用自然地融合在平常的教學中。任何一個數(shù)學概念的引入,總有它的現(xiàn)實或數(shù)學理論發(fā)展的需要。都應強調它的現(xiàn)實背景、數(shù)學理論發(fā)展背景或數(shù)學發(fā)展歷史上的背景,這樣才能使教學內容顯得自然和親切,讓學生感到知識的發(fā)展水到渠成而不是強加于人,從而有利于學生認識數(shù)學內容的實際背景和應用的價值。在教學設計時,既要關注學生在數(shù)學情感態(tài)度和科學價值觀方面的發(fā)展,也要幫助學生理解和掌握數(shù)學基礎知識和基本技能,發(fā)展能力。在課程實施中,應結合教學內容介紹一些對數(shù)學發(fā)展起重大作用的歷史事件和人物,用以反映數(shù)學在人類社會進步、人類文化建設中的作用,同時反映社會發(fā)展對數(shù)學發(fā)展的促進作用。
三、教材分析:
本節(jié)內容主要學習對數(shù)的概念及其對數(shù)式與指數(shù)式的互化。它屬于函數(shù)領域的知識。而對數(shù)的概念是對數(shù)函數(shù)部分教學中的核心概念之一,而函數(shù)的思想方法貫穿在高中數(shù)學教學的始終。通過對數(shù)的學習,可以解決數(shù)學中知道底數(shù)和冪值求指數(shù)的問題,以及對數(shù)函數(shù)的`相關問題。
四、學情分析:
在ab=N(a>0,a≠1)中,知道底數(shù)和指數(shù)可以求冪值,那么知道底數(shù)和冪值如何求求指數(shù),從學生認知的角度自然就產生了這樣的需要。因此,在前面學習指數(shù)的基礎上學習對數(shù)的概念是水到渠成的事。
五、教學目標:
(一)教學知識點:
1.對數(shù)的概念。
2.對數(shù)式與指數(shù)式的互化。
(二)能力目標:
1.理解對數(shù)的概念。
2.能夠進行對數(shù)式與指數(shù)式的互化。
(三)德育滲透目標:
1.認識事物之間的相互聯(lián)系與相互轉化,2.用聯(lián)系的觀點看問題。
六、教學重點與難點:
重點是對數(shù)定義,難點是對數(shù)概念的理解。
七、教學方法:
講練結合法八、教學流程:
問題情景(復習引入)——實例分析、形成概念(導入新課)——深刻認識概念(對數(shù)式與指數(shù)式的互化)——變式分析、深化認識(對數(shù)的性質、對數(shù)恒等式,介紹自然對數(shù)及常用對數(shù))——練習小結、形成反思(例題,小結)
八、教學反思:
對本節(jié)內容在進行教學設計之前,本人反復閱讀了課程標準和教材,教材內容的處理收到了一定的預期效果,尤其是練習的處理,充分發(fā)揮了學生的主體作用,也提高了學生主體的合作意識,達到了設計中所預想的目標。然而還有一些缺憾:對本節(jié)內容,難度不高,本人認為,教師的干預(講解)還是太多。在以后的教學中,對于一些較簡單的內容,應放手讓學生多一些探究與合作。隨著教育改革的深化,教學理念、教學模式、教學內容等教學因素,都在不斷更新,作為數(shù)學教師要更新教學觀念,從學生的全面發(fā)展來設計課堂教學,關注學生個性和潛能的發(fā)展,使教學過程更加切合《課程標準》的要求。
對于本教學設計,時間倉促,不足之處在所難免,期待與各位同仁交流。
高中數(shù)學教學設計范文2
一、概述
教材內容:等比數(shù)列的概念和通項公式的推導及簡單應用教材難點:靈活應用等比數(shù)列及通項公式解決一般問題教材重點:等比數(shù)列的概念和通項公式
二、教學目標分析
1.知識目標
1)
2)掌握等比數(shù)列的定義理解等比數(shù)列的通項公式及其推導
2.能力目標
1)學會通過實例歸納概念
2)通過學習等比數(shù)列的通項公式及其推導學會歸納假設
3)提高數(shù)學建模的能力
3、情感目標:
1)充分感受數(shù)列是反映現(xiàn)實生活的`模型
2)體會數(shù)學是來源于現(xiàn)實生活并應用于現(xiàn)實生活
3)數(shù)學是豐富多彩的而不是枯燥無味的
三、教學對象及學習需要分析
1、教學對象分析:
1)高中生已經(jīng)有一定的學習能力,對各方面的知識有一定的基礎,理解能力較強。并掌握了函數(shù)及個別特殊函數(shù)的性質及圖像,如指數(shù)函數(shù)。之前也剛學習了等差數(shù)列,在學習這一章節(jié)時可聯(lián)系以前所學的進行引導教學。
2)對歸納假設較弱,應加強這方面教學
2、學習需要分析:
四.教學策略選擇與設計
1.課前復習
1)復習等差數(shù)列的概念及通向公式
2)復習指數(shù)函數(shù)及其圖像和性質
2.情景導入
高中數(shù)學教學設計范文3
一、目標
1.知識與技能
(1)理解流程圖的順序結構和選擇結構。
(2)能用字語言表示算法,并能將算法用順序結構和選擇結構表示簡單的流程圖
2.過程與方法
學生通過模仿、操作、探索、經(jīng)歷設計流程圖表達解決問題的過程,理解流程圖的結構。
3.情感、態(tài)度與價值觀
學生通過動手作圖,用自然語言表示算法,用圖表示算法。進一步體會算法的基本思想——程序化思想,在歸納概括中培養(yǎng)學生的邏輯思維能力。
二、重點、難點
重點:算法的順序結構與選擇結構。
難點:用含有選擇結構的流程圖表示算法。
三、學法與教學用具
學法:學生通過動手作圖,用自然語言表示算法,用圖表示算法,體會到用流程圖表示算法,簡潔、清晰、直觀、便于檢查,經(jīng)歷設計流程圖表達解決問題的過程。進而學習順序結構和選擇結構表示簡單的流程圖。
教學用具:尺規(guī)作圖工具,多媒體。
四、教學思路
(一)、問題引入揭示題
例1尺規(guī)作圖,確定線段的一個5等分點。
要求:同桌一人作圖,一人寫算法,并請學生說出答案。
提問:用字語言寫出算法有何感受?
引導學生體驗到:顯得冗長,不方便、不簡潔。
教師說明:為了使算法的表述簡潔、清晰、直觀、便于檢查,我們今天學習用一些通用圖型符號構成一張圖即流程圖表示算法。
本節(jié)要學習的是順序結構與選擇結構。
右圖即是同流程圖表示的算法。
(二)、觀察類比理解題
1、投影介紹流程圖的符號、名稱及功能說明。
符號符號名稱功能說明
終端框算法開始與結束
處理框算法的各種處理操作
判斷框算法的各種轉移
輸入輸出框輸入輸出操作
指向線指向另一操作
2、講授順序結構及選擇結構的概念及流程圖
(1)順序結構
依照步驟依次執(zhí)行的.一個算法
流程圖:
(2)選擇結構
對條進行判斷決定后面的步驟的結構
流程圖:
3.用自然語言表示算法與用流程圖表示算法的比較
(1)半徑為r的圓的面積公式當r=10時寫出計算圓的面積的算法,并畫出流程圖。
解:
算法(自然語言)
、侔10賦與r
、谟霉角髎
、圯敵鰏
流程圖
(2)已知函數(shù)對于每輸入一個X值都得到相應的函數(shù)值,寫出算法并畫流程圖。
算法:(語言表示)
、佥斎隭值
、谂袛郮的范圍,若,用函數(shù)Y=x+1求函數(shù)值;否則用Y=2-x求函數(shù)值
③輸出Y的值
流程圖
小結:含有數(shù)學中需要分類討論的或與分段函數(shù)有關的問題,均要用到選擇結構。
學生觀察、類比、說出流程圖與自然語言對比有何特點?(直觀、清楚、便于檢查和交流)
(三)模仿操作經(jīng)歷題
1.用流程圖表示確定線段A.B的一個16等分點
2.分析講解例2;
分析:
思考:有多少個選擇結構?相應的流程圖應如何表示?
流程圖:
(四)歸納小結鞏固題
1.順序結構和選擇結構的模式是怎樣的?
2.怎樣用流程圖表示算法。
(五)練習P99 2
(六)作業(yè)P99 1
高中數(shù)學教學設計范文4
提出問題:
新課程認為知識不是單方面通過教師傳授得到的,而是學生在一定的情境中,運用已有的學習經(jīng)驗,并通過與他人(教師指導和同學的幫助)協(xié)作,主動建構而獲得的。它強調以學生為中心,視學生為認知的主體,教師只對學生的意義建構起幫助和促進作用。通過多年教學實踐和對新課程的認識,我認為若遵循這個原則進行數(shù)學課堂教學,學生的學習將是一種高效的活動。
教材中的地位:
本節(jié)內容是在指數(shù)范圍擴充到實數(shù)的基礎上引入指數(shù)函數(shù)的,而指數(shù)函數(shù)是高中研究的第一種具體函數(shù)。是在初中已經(jīng)初步探討了正比例函數(shù),反比例函數(shù),一次函數(shù),二次函數(shù)的圖像和性質的基礎上,在進一步學習了函數(shù)的概念及有關性質的前提下,去研究學習的。重點是指數(shù)函數(shù)的圖像及性質,難點在于弄清楚底數(shù)a對于函數(shù)變化的影響。這節(jié)課主要是學生利用描點法畫出函數(shù)的圖像,并描述出函數(shù)的圖像特征,從而指出函數(shù)的性質。使學生從形到數(shù)的熟悉,體驗研究函數(shù)的過程與思路,實現(xiàn)意識的深化。
設計背景:
在新教材的教學中,我慢慢體會到新教材滲透的、螺旋式上升的基本理念,知識點的形成過程經(jīng)歷從具體的實例引入,形成概念,再次運用于實際問題或具體數(shù)學問題的過程,它的應用性,實用性更明顯的體現(xiàn)出來。學數(shù)學重在培養(yǎng)學生的思維品質,經(jīng)過多年的數(shù)學學習,學生還是害怕學數(shù)學,尤其高中的數(shù)學,它對于學生來說顯得很抽象。所以如果再讓讓學生感到數(shù)學離我們的生活太遠,那么將很難激發(fā)他們的學習愛好。所以在教學中我盡力抓住知識的本質,以實際問題引入新知識。另外,就本章來說,指數(shù)函數(shù)是學習函數(shù)概念及基本性質之后研究的第一個重要的函數(shù),讓學生學會研究一個新的具體函數(shù)的方法比學會本身的知識更重要。在這個過程中,所有的知識都是生疏的,在大腦中沒有形成基本的框架結構,需要老師的引導,使他們逐漸建立。數(shù)學中任何知識的形成都體現(xiàn)出它的思想與方法,因而授課中注重讓學生領悟其中的思想,運用其中的方法去學習新的知識,是非常重要的。
教學目標:
一、知識:
理解指數(shù)函數(shù)的定義,能初步把握指數(shù)函數(shù)的圖像,性質及其簡單應用。
二、過程與方法:
由實例引入指數(shù)函數(shù)的概念,利用描點作圖的方法做出指數(shù)函數(shù)的圖像,(有條件的話借助計算機演示驗證指數(shù)函數(shù)圖像)由圖像研究指數(shù)函數(shù)的性質。利用性質解決實際問題。
三、能力:
1.通過指數(shù)函數(shù)的圖像和性質的研究,培養(yǎng)學生觀察,分析和歸納的能力,進一步體會數(shù)形結合的思想方法。
2.通過對指數(shù)函數(shù)的研究,使學生能把握函數(shù)研究的基本方法。
教學過程:
由實際問題引入:
問題1:某種細胞分裂時,由1個分裂成2個,2個分裂成4個,?1個這樣的細胞分裂x次后,得到的細胞的個數(shù)y與x之間的關系是什么?
分裂次數(shù)與細胞個數(shù)
1,2;2,2×2=22;3,2×2×2=23;x,2×2×……×2=2x
歸納:y=2x
問題2:某種放射性物質不斷變化為其它物質,每經(jīng)過1年剩留的這種物質是原來的84%,那么經(jīng)過x年后剩留量y與x的關系是什么?
經(jīng)過1年,剩留量y=1×84%=;經(jīng)過2年,剩留量y=×=?經(jīng)過x年,剩留量y=
尋找異同:
你能從以上的兩個例子中得到的關系式里找到什么異同點嗎?
共同點:變量x與y構成函數(shù)關系式,是指數(shù)的形式,自變量在指數(shù)位置,底數(shù)是常數(shù);不同點:底數(shù)的取值不同。
那么,今天我們來學習新的一個基本函數(shù):指數(shù)函數(shù)
得到指數(shù)函數(shù)的定義:定義:形如y=ax(a>0且a≠1)的函數(shù)叫做指數(shù)函數(shù)。
在以前我們學過的函數(shù)中,一次函數(shù)用形如y=kx+b(k≠0)的形式表示,反比例函數(shù)用形如y=k/x(k≠0)表示,二次函數(shù)y=ax2+bx+c(a≠0)表示。對于其一
般形式上的系數(shù)都有相應的限制。問:為什么指數(shù)函數(shù)對底數(shù)有這樣的要求呢?若a=0,當x>0時,恒等于0,沒有研究價值;當x≤0時,無意義。
若a
若a=1,則=1,是一個常量,也沒有研究的必要。
所以有規(guī)定且a>0且a≠1。
由定義,我們可以對指數(shù)函數(shù)有一初步熟悉。
進一步理解函數(shù)的定義:
指數(shù)函數(shù)的定義域:在我們學過的指數(shù)運算中,指數(shù)可以是有理數(shù),當指數(shù)是無理數(shù)時,也是一個確定的實數(shù),對于無理數(shù),學過的有理指數(shù)冪的性質和運算法則都適用,所以指數(shù)函數(shù)的定義域為R。
研究函數(shù)的途徑:由函數(shù)的圖像的性質,從形與數(shù)兩方面研究。
學習函數(shù)的一個很重要的目標就是應用,那么首先要對函數(shù)作一研究,研究函數(shù)的圖像及性質,然后利用其圖像性質去解決數(shù)學問題和實際問題。根據(jù)以往的經(jīng)驗,你會從那幾個角度考慮?(圖像的分布范圍,圖像的變化趨勢)圖像的分布情況與函數(shù)的定義域,值域有關,函數(shù)的變化趨勢體現(xiàn)函數(shù)的單調性。引導學生從定義域,值域,單調性,奇偶性,與坐標軸的交點情況著手開始。
首先我們做出指數(shù)函數(shù)的圖像,我們研究一般性的事物,常用的方法是:由特殊到一般。
我們以具體函數(shù)入手,讓學生以小組形式取不同底數(shù)的指數(shù)函數(shù)畫它們的圖像,將學生畫的函數(shù)圖像展示,(畫函數(shù)的圖像的步驟是:列表,描點,連線。)。最后,老師在黑板(電腦)上演示列表,描點,連線的過程,并且,畫出取不同的`值時,函數(shù)的圖像。
要求學生描述出指數(shù)函數(shù)圖像的特征,并試著描述出性質。
數(shù)學發(fā)展的歷史表明,每一個重要的數(shù)學概念的形成和發(fā)展,其中都有豐富的經(jīng)歷,新課程較好的體現(xiàn)了這點。對新課程背景下的學生而言,數(shù)學的知識應該是一個數(shù)學化的過程,即通過對常識材料進行細致的觀察、思考,借助于分析、比較、綜合、抽象、概括等思維活動,對常識材料進行去粗取精、去偽存真的精加工。該案例正是從數(shù)學研究和數(shù)學實驗的過程中進行設計。雖然學生的思維不一定真實的重演了人類對數(shù)學知識探索的全過程,但確確實實通過實驗、觀察、比較、分析、歸納、抽象、概括等思維活動,在探索中將數(shù)學數(shù)學化,從而才使學生對數(shù)學學習產生了樂趣,對數(shù)學的研究方法有了一定的了解。
雖然學生要學的數(shù)學是歷史上前人已建構好了的,但對他們而言,仍是全新的、未知的,需要用他們自己的學習活動來再現(xiàn)類似的過程。該案例正是從創(chuàng)設問題情景作為教學設計的重要的內容之一。教師應該把教學設計成學生動手操作、觀察猜想、揭示規(guī)律等一系列過程,側重于學生的探索、分析與思考,側重于過程的探究及在此過程中所形成的一般數(shù)學能力。
教師的地位應由主導者轉變?yōu)橐龑д,使教學活動真正成為學生的活動。在教學過程中,把學習的主動權交給學生,在時間和空間上保證學生在教師的指導下,學生能自己獨立自主的探究學習。使教學活動始終處于學生的“最近發(fā)展區(qū)”,使每一個學生通過自己的努力,在自己原有的基礎上都有所獲,都有提高?傊,通過案例研究,不斷研究新教材、新理念,不斷調整教學策略優(yōu)化課堂教學,培養(yǎng)學生探究學習與創(chuàng)新學習能力將是我們在數(shù)學教學中要繼續(xù)探究的課題。
【高中數(shù)學教學設計】相關文章:
高中數(shù)學教學設計(精選10篇)04-26
高中數(shù)學的教學設計(精選5篇)10-06
高中數(shù)學《集合與函數(shù)概念》教學設計10-07
高中數(shù)學教學設計概率基本性質10-06
高中數(shù)學教學總結05-09
高中數(shù)學教學總結10-07
高中數(shù)學教學的反思10-06
高中數(shù)學教學心得11-23
高中數(shù)學教學反思12-23
高中數(shù)學教學計劃03-07