- 相關(guān)推薦
《有理數(shù)的加減法》教學(xué)設(shè)計(jì)范文
作為一名辛苦耕耘的教育工作者,有必要進(jìn)行細(xì)致的教學(xué)設(shè)計(jì)準(zhǔn)備工作,借助教學(xué)設(shè)計(jì)可使學(xué)生在單位時(shí)間內(nèi)能夠?qū)W到更多的知識。我們該怎么去寫教學(xué)設(shè)計(jì)呢?以下是小編精心整理的《有理數(shù)的加減法》教學(xué)設(shè)計(jì)范文,僅供參考,大家一起來看看吧。
《有理數(shù)的加減法》教學(xué)設(shè)計(jì)1
教學(xué)目標(biāo)
1、理解有理數(shù)加法的意義,掌握有理數(shù)加法法則中的符號法則和絕對值運(yùn)算法則;
2、能根據(jù)有理數(shù)加法法則熟練地進(jìn)行有理數(shù)加法運(yùn)算,弄清有理數(shù)加法與非負(fù)數(shù)加法的區(qū)別;
3、三個(gè)或三個(gè)以上有理數(shù)相加時(shí),能正確應(yīng)用加法交換律和結(jié)合律簡化運(yùn)算過程;
4、通過有理數(shù)加法法則及運(yùn)算律在加法運(yùn)算中的運(yùn)用,培養(yǎng)學(xué)生的運(yùn)算能力;
5、本節(jié)課通過行程問題說明有理數(shù)的加法法則的合理性,然后又通過實(shí)例說明如何運(yùn)用法則和運(yùn)算律,讓學(xué)生感知到數(shù)學(xué)知識來源于生活,并應(yīng)用于生活。
教學(xué)建議
(一)重點(diǎn)、難點(diǎn)分析
本節(jié)教學(xué)的重點(diǎn)是依據(jù)有理數(shù)的加法法則熟練進(jìn)行有理數(shù)的加法運(yùn)算。難點(diǎn)是有理數(shù)的加法法則的理解。
。1)加法法則本身是一種規(guī)定,教材通過行程問題讓學(xué)生了解法則的合理性。
。2)具體運(yùn)算時(shí),應(yīng)先判別題目屬于運(yùn)算法則中的哪個(gè)類型,是同號相加、異號相加、還是與0相加。
(3)如果是同號相加,取相同的符號,并把絕對值相加。如果是異號兩數(shù)相加,應(yīng)先判別絕對值的大小關(guān)系,如果絕對值相等,則和為0;如果絕對值不相等,則和的符號取絕對值較大的加數(shù)的符號,和的絕對值就是較大的絕對值與較小的絕對值的差。一個(gè)數(shù)與0相加,仍得這個(gè)數(shù)。
(二)知識結(jié)構(gòu)
(三)教法建議
1、對于基礎(chǔ)比較差的同學(xué),在學(xué)習(xí)新課以前可以適當(dāng)復(fù)習(xí)小學(xué)中算術(shù)運(yùn)算以及正負(fù)數(shù)、相反數(shù)、絕對值等知識。
2、有理數(shù)的加法法則是規(guī)定的,而教材開始部分的行程問題是為了說明加法法則的合理性。
3、應(yīng)強(qiáng)調(diào)加法交換律“a+b=b+a”中字母a、b的'任意性。
4、計(jì)算三個(gè)或三個(gè)以上的加法算式,應(yīng)建議學(xué)生養(yǎng)成良好的運(yùn)算習(xí)慣。不要盲目動(dòng)手,應(yīng)該先仔細(xì)觀察式子的特點(diǎn),深刻認(rèn)識加數(shù)間的相互關(guān)系,找到合理的運(yùn)算步驟,再適當(dāng)運(yùn)用加法交換律和結(jié)合律可以使加法運(yùn)算更為簡化。
5、可以給出一些類似“兩數(shù)之和必大于任何一個(gè)加數(shù)”的判斷題,以明確由于負(fù)數(shù)參與加法運(yùn)算,一些算術(shù)加法中的正確結(jié)論在有理數(shù)加法運(yùn)算中未必也成立。
6、在探討導(dǎo)出有理數(shù)的加法法則的行程問題時(shí),可以嘗試發(fā)揮多媒體教學(xué)的作用。用動(dòng)畫演示人或物體在同一直線上兩次運(yùn)動(dòng)的過程,讓學(xué)生更好的理解有理數(shù)運(yùn)算法則。
教學(xué)設(shè)計(jì)示例
有理數(shù)的加法(第一課時(shí))
教學(xué)目的
1、使學(xué)生理解有理數(shù)加法的意義,初步掌握有理數(shù)加法法則,并能準(zhǔn)確地進(jìn)行有理數(shù)的加法運(yùn)算。
2、通過有理數(shù)的加法運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力。
教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):熟練應(yīng)用有理數(shù)的加法法則進(jìn)行加法運(yùn)算。
難點(diǎn):有理數(shù)的加法法則的理解。
教學(xué)過程
(一)復(fù)習(xí)提問
1、有理數(shù)是怎么分類的?
2、有理數(shù)的絕對值是怎么定義的?一個(gè)有理數(shù)的絕對值的幾何意義是什么?
3、有理數(shù)大小比較是怎么規(guī)定的?下列各組數(shù)中,哪一個(gè)較大?利用數(shù)軸說明?
—3與—2;|3|與|—3|;|—3|與0;
—2與|+1|;—|+4|與|—3|。
(二)引入新課
在小學(xué)算術(shù)中學(xué)過了加、減、乘、除四則運(yùn)算,這些運(yùn)算是在正有理數(shù)和零的范圍內(nèi)的運(yùn)算、引入負(fù)數(shù)之后,這些運(yùn)算法則將是怎樣的呢?我們先來學(xué)有理數(shù)的加法運(yùn)算、
(三)進(jìn)行新課有理數(shù)的加法(板書課題)
例1如圖所示,某人從原點(diǎn)0出發(fā),如果第一次走了5米,第二次接著又走了3米,求兩次行走后某人在什么地方?
兩次行走后距原點(diǎn)0為8米,應(yīng)該用加法。
為區(qū)別向東還是向西走,這里規(guī)定向東走為正,向西走為負(fù)、這兩數(shù)相加有以下三種情況:
1、同號兩數(shù)相加
。1)某人向東走5米,再向東走3米,兩次一共走了多少米?
這是求兩次行走的路程的和5+3=8
用數(shù)軸表示如圖
從數(shù)軸上表明,兩次行走后在原點(diǎn)0的東邊、離開原點(diǎn)的距離是8米、因此兩次一共向東走了8米。
可見,正數(shù)加正數(shù),其和仍是正數(shù),和的絕對值等于這兩個(gè)加數(shù)的絕對值的和。
。2)某人向西走5米,再向西走3米,兩次一共向東走了多少米?
顯然,兩次一共向西走了8米
。ā5)+(—3)=—8
用數(shù)軸表示如圖
從數(shù)軸上表明,兩次行走后在原點(diǎn)0的西邊,離開原點(diǎn)的距離是8米、因此兩次一共向東走了—8米。
可見,負(fù)數(shù)加負(fù)數(shù),其和仍是負(fù)數(shù),和的絕對值也是等于兩個(gè)加數(shù)的絕對值的和。
總之,同號兩數(shù)相加,取相同的符號,并把絕對值相加。
例如,(—4)+(—5)……同號兩數(shù)相加
(—4)+(—5)=—()…取相同的符號
4+5=9……把絕對值相加
∴(—4)+(—5)=—9
口答練習(xí):
。1)舉例說明算式7+9的實(shí)際意義?
。2)(—20)+(—13)=?
2、異號兩數(shù)相加
(1)某人向東走5米,再向西走5米,兩次一共向東走了多少米?
由數(shù)軸上表明,兩次行走后,又回到了原點(diǎn),兩次一共向東走了0米
5+(—5)=0
可知,互為相反數(shù)的兩個(gè)數(shù)相加,和為零
。2)某人向東走5米,再向西走3米,兩次一共向東走了多少米?
由數(shù)軸上表明,兩次行走后在原點(diǎn)o的東邊,離開原點(diǎn)的距離是2米、因此,兩次一共向東走了2米
就是5+(—3)=2
。3)某人向東走3米,再向西走5米,兩次一共向東走了多少米?
由數(shù)軸上表明,兩次行走后在原點(diǎn)o的西邊,離開原點(diǎn)的距離是2米、因此,兩次一共向東走了—2米
就是3+(—5)=—2
請同學(xué)們想一想,異號兩數(shù)相加的法則是怎么規(guī)定的?強(qiáng)調(diào)和的符號是如何確定的?和的絕對值如何確定?
最后歸納
絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個(gè)數(shù)相加得0。
例如(—8)+5……絕對值不相等的異號兩數(shù)相加
8>5
。ā8)+5=—()……取絕對值較大的加數(shù)符號
8—5=3……用較大的絕對值減去較小的絕對值
∴(—8)+5=—3
口答練習(xí)
用算式表示:溫度由—4℃上升7℃,達(dá)到什么溫度
。ā4)+7=3(℃)
3、一個(gè)數(shù)和零相加
。1)某人向東走5米,再向東走0米,兩次一共向東走了多少米?
顯然,5+0=5、結(jié)果向東走了5米
。2)某人向西走5米,再向東走0米,兩次一共向東走了多少米?
容易得出:(—5)+0=—5,結(jié)果向東走了—5米,即向西走了5米
請同學(xué)們把(1)、(2)畫出圖來
由(1),(2)得出:一個(gè)數(shù)同0相加,仍得這個(gè)數(shù),總結(jié)有理數(shù)加法的三個(gè)法則、學(xué)生看書,引導(dǎo)他們看有理數(shù)加法運(yùn)算的三種情況。有理數(shù)加法運(yùn)算的三種情況:
特例:兩個(gè)互為相反數(shù)相加;
。3)一個(gè)數(shù)和零相加、每種運(yùn)算的法則強(qiáng)調(diào):
1)確定和的符號;
2)確定和的絕對值的方法。
(四)例題分析
例1計(jì)算(—3)+(—9)
分析:這是兩個(gè)負(fù)數(shù)相加,屬于同號兩數(shù)相加,和的符號與加數(shù)相同(應(yīng)為負(fù)),和的絕對值就是把絕對值相加(應(yīng)為3+9=12)(強(qiáng)調(diào)相同、相加的特征)
解:(—3)+(—9)=—12
例2分析:這是異號兩數(shù)相加,和的符號與絕對值較大的加數(shù)的符號相同(應(yīng)為負(fù)),和的絕對值等于較大絕對值減去較小絕對值,(強(qiáng)調(diào)“兩個(gè)較大”“一個(gè)較小”)。
解:解題時(shí),先確定和的符號,后計(jì)算和的絕對值、
(五)鞏固練習(xí)
1、計(jì)算(口答)
。1)4+9;(2)4+(—9);(3)—4+9;(4)(—4)+(—9);
。5)4+(—4);(6)9+(—2);(7)(—9)+2;(8)—9+0;
2、計(jì)算
。1)5+(—22);(2)(—1、3)+(—8)
。3)(—0、9)+1、5;(4)2、7+(—3、5)
《有理數(shù)的加減法》教學(xué)設(shè)計(jì)2
一、學(xué)生起點(diǎn)分析
學(xué)生的知識技能基礎(chǔ):學(xué)生在小學(xué)已經(jīng)學(xué)習(xí)過算術(shù)四則運(yùn)算,而初中的有理數(shù)運(yùn)算是以小學(xué)算術(shù)四則運(yùn)算為基礎(chǔ)的,不同的是有理數(shù)運(yùn)算多了一個(gè)符號問題。符號法則是有理數(shù)運(yùn)算法則的重要組成部分,也是學(xué)生學(xué)習(xí)本章知識和今后學(xué)習(xí)其他與計(jì)算有關(guān)的內(nèi)容時(shí)容易出錯(cuò)的知識點(diǎn)之一。
學(xué)生活動(dòng)經(jīng)驗(yàn)基礎(chǔ):在前面相關(guān)知識的學(xué)習(xí)過程中,學(xué)生已經(jīng)經(jīng)歷了一些數(shù)學(xué)活動(dòng),感受到了數(shù)的范圍的擴(kuò)大,能借助生活經(jīng)驗(yàn)對一些簡單的實(shí)際問題進(jìn)行有理數(shù)的運(yùn)算,如計(jì)算比賽的得分,計(jì)算溫差等等。同時(shí)在以前的數(shù)學(xué)學(xué)習(xí)中學(xué)生已經(jīng)經(jīng)歷了很多合作學(xué)習(xí)的過程,具有了一定的合作學(xué)習(xí)的經(jīng)驗(yàn),具備了一定數(shù)學(xué)交流的能力。
學(xué)生學(xué)習(xí)中的困難預(yù)設(shè):學(xué)生學(xué)習(xí)數(shù)學(xué)是一種認(rèn)識過程,要遵循一般的認(rèn)識規(guī)律,而七年級的學(xué)生,對異號兩數(shù)相加從未接觸過,與小學(xué)加法比較,思維強(qiáng)度增大,需要通過絕對值大小的比較來確定和的符號和加法轉(zhuǎn)化為減法兩個(gè)過程,要求學(xué)生在課堂上短時(shí)間內(nèi)完成這個(gè)認(rèn)識過程確有一定的難度,在教學(xué)時(shí)應(yīng)從實(shí)例出發(fā),充分利用教材中的正負(fù)抵消的思想,用數(shù)形結(jié)合的觀點(diǎn)加以解釋,讓學(xué)生感知法則的由來,以突破這一難點(diǎn)。
二、教學(xué)任務(wù)分析
對于有理數(shù)的運(yùn)算,首先在于運(yùn)算的意義的理解,即首先要回答為什么要進(jìn)行運(yùn)算。為此,必須讓學(xué)生通過具體的問題情境,認(rèn)識到運(yùn)算的作用,加深學(xué)生對運(yùn)算本身意義的理解,同時(shí)也讓學(xué)生體會(huì)到運(yùn)算的應(yīng)用,從而培養(yǎng)學(xué)生一定的應(yīng)用意識和能力。教科書基于學(xué)生學(xué)習(xí)了相反數(shù)和絕對值基礎(chǔ)之上,提出了本課時(shí)的具體學(xué)習(xí)任務(wù):探索有理數(shù)的加法運(yùn)算法則,進(jìn)行有理數(shù)的加法運(yùn)算。本課時(shí)的教學(xué)重點(diǎn)是有理數(shù)加法法則的探索過程,利用有理數(shù)的加法法則進(jìn)行計(jì)算,教學(xué)難點(diǎn)是異號兩數(shù)相加的法則。教學(xué)方法是“引導(dǎo)——分類——?dú)w納”。本課時(shí)的教學(xué)目標(biāo)如下:
1、經(jīng)歷探索有理數(shù)加法法則的過程,理解有理數(shù)的加法法則;
2、能熟練進(jìn)行整數(shù)加法運(yùn)算;
3、培養(yǎng)學(xué)生的數(shù)學(xué)交流和歸納猜想的能力;
4、滲透分類、探索、歸納等思想方法,使學(xué)生了解研究數(shù)學(xué)的一些基本方法。
三、教學(xué)過程設(shè)計(jì)
本課時(shí)設(shè)計(jì)了六個(gè)教學(xué)環(huán)節(jié):
第一環(huán)節(jié):復(fù)習(xí)引入,提出問題;
第二環(huán)節(jié):活動(dòng)探究,猜想結(jié)論;
第三環(huán)節(jié):驗(yàn)證明確結(jié)論;
第四環(huán)節(jié):運(yùn)用鞏固;
第五環(huán)節(jié):課堂小結(jié);
第六環(huán)節(jié):布置作業(yè)。
(一)復(fù)習(xí)引入,提出問題
活動(dòng)內(nèi)容:
1、復(fù)習(xí)提問:
。1)下列各組數(shù)中,哪一個(gè)較大?
。2)一位同學(xué)在一條東西方向的跑道上,先向東走了20米,又向西走了30米,能否確定他現(xiàn)在的位置位于出發(fā)點(diǎn)的哪個(gè)方向,與原來出發(fā)的位置相距多少米?若向東記為正,向西記為負(fù),該問題用算式表示為。
活動(dòng)目的:我們已經(jīng)熟悉正數(shù)的運(yùn)算,然而實(shí)際問題中做加法運(yùn)算的數(shù)有可能超出正數(shù)范圍。這里先讓學(xué)生回顧在具體問題中感受正數(shù)和負(fù)數(shù)的加法運(yùn)算。
2、提出問題:
某班舉行知識競賽,評分標(biāo)準(zhǔn)是:答對一題加1分,答錯(cuò)一題扣1分,不回答得0分。
如果我們用1個(gè)表示+1,用1個(gè),那么就表示0,同樣也表示0。
。1)計(jì)算(—2)+(—3)
在方框中放進(jìn)2個(gè)和3個(gè):
因此,(—2)+(—3)=—5
用類似的方法計(jì)算(2)(—3)+2
(3)3+(—2)
。4)4+(—4)
思考:兩個(gè)有理數(shù)相加,還有哪些不同的情形?舉例說明。
引導(dǎo)學(xué)生列舉兩個(gè)正數(shù)相加,如3+2,一個(gè)數(shù)和零相加,如0+(—4),4+0。
活動(dòng)目的:通過實(shí)際問題情境類比列出兩個(gè)有理數(shù)相加的7種不同情形,兩個(gè)正數(shù)相加、兩個(gè)負(fù)數(shù)相加,異號兩數(shù)相加(根據(jù)絕對值又可分為三類)、一個(gè)加數(shù)為0。進(jìn)而討論如何進(jìn)行一般的有理數(shù)加法的運(yùn)算。
活動(dòng)的實(shí)際效果:實(shí)際問題情境為學(xué)生營造了良好的學(xué)習(xí)氛圍,利于他們積極探究。
(二)活動(dòng)探究,猜想結(jié)論:
上面我們列出了兩個(gè)有理數(shù)相加的7種不同情形,并根據(jù)它們的具體意義得出了它們相加的和、但是,要計(jì)算兩個(gè)有理數(shù)相加所得的和,我們總不能一直用這種方法、現(xiàn)在請同學(xué)們仔細(xì)觀察比較這7個(gè)算式,你能從中發(fā)現(xiàn)有理數(shù)加法的運(yùn)算法則嗎?也就是結(jié)果的符號怎么定?絕對值怎么算?
學(xué)生分組進(jìn)行活動(dòng),教師關(guān)注學(xué)生在活動(dòng)中的表現(xiàn),可以根據(jù)學(xué)生的實(shí)際情況給予適當(dāng)點(diǎn)撥和引導(dǎo),鼓勵(lì)學(xué)生大膽發(fā)表自己的意見,最后形成統(tǒng)一的認(rèn)識。
對“一起探究”,教師可引導(dǎo)學(xué)生按以下步驟思考:
1、觀察列出的.具體算式,根據(jù)兩個(gè)加數(shù)的符號分類:兩個(gè)正數(shù)相加、兩個(gè)負(fù)數(shù)相加,異號兩數(shù)相加(根據(jù)絕對值又可分為三類)、一個(gè)加數(shù)為0。
2、同號兩數(shù)相加時(shí),和的符號與兩個(gè)加數(shù)的符號有怎樣的關(guān)系?和的絕對值和加數(shù)的絕對值有怎樣的關(guān)系?異號兩數(shù)相加時(shí)和的符號與兩個(gè)加數(shù)的符號有怎樣的關(guān)系?和的絕對值和加數(shù)的絕對值有怎么樣的關(guān)系?有一個(gè)加數(shù)為0時(shí),和是什么?
3、從中歸納概括出規(guī)律
在學(xué)生探究的基礎(chǔ)上,教師引出規(guī)定的加法法則。
在活動(dòng)中,盡可能讓學(xué)生獨(dú)立完成,必要時(shí)可以交流,教師只在適當(dāng)?shù)臅r(shí)候給予幫助。
同號兩數(shù)相加,取相同的符號,并把絕對值相加。
異號兩數(shù)相加,絕對值值相等時(shí)和為0;絕對值不相等時(shí),取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。
一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。
活動(dòng)目的:利用分組討論、分類歸納幫助學(xué)生理解加法運(yùn)算過程,同時(shí)有利于加法運(yùn)算法則的歸納。
活動(dòng)的實(shí)際效果:由于采用了圖示的教學(xué)手段,在教師的引導(dǎo)下讓學(xué)生分類觀察,發(fā)現(xiàn)規(guī)律,用自己的語言表達(dá)規(guī)律,最后由學(xué)生對規(guī)律進(jìn)行歸納總結(jié)補(bǔ)充,從而得出有理數(shù)的加法法則、通過實(shí)際問題情境,讓學(xué)生親身參加了探索發(fā)現(xiàn),獲取知識和技能的全過程。理解有理數(shù)加法法則規(guī)定的合理性,培養(yǎng)了學(xué)生的分類和歸納概括的能力。
(三)驗(yàn)證明確結(jié)論:
例1計(jì)算下列算式的結(jié)果,并說明理由:
。1)180+(—10)
。2)(—10)+(—1);
。3)5+(—5);
。4)0+(—2)
活動(dòng)目的:給學(xué)生提供示范,進(jìn)行有理數(shù)加法,可以按照“一觀察,二確定,三求和”的步驟進(jìn)行,一觀察是指觀察兩個(gè)加數(shù)是同號還是異號,二確定是指確定“和”的符號,三求和是指計(jì)算“和”的絕對值。
活動(dòng)的實(shí)際效果:通過習(xí)題,加深了學(xué)生對有理數(shù)加法法則的理解。
(四)運(yùn)用鞏固:
活動(dòng)內(nèi)容:
1、口答下列算式的結(jié)果
。1)(+4)+(+3);(2)(—4)+(—3);
(3)(+4)+(—3);(4)(+3)+(—4);
(5)(+4)+(—4);(6)(—3)+0;
(7)0+(+2);(8)0+0。
活動(dòng)目的:通過這組練習(xí),讓學(xué)生進(jìn)一步鞏固有理數(shù)加法的法則,達(dá)到熟練程度。
2、請同學(xué)們完成書上的隨堂練習(xí):
。1)(—25)+(—7);(2)(—13)+5;
。3)(—23)+0;(4)45+(—45)
全班學(xué)生書面練習(xí),四位學(xué)生板演,教師對學(xué)生板演進(jìn)行講評。
活動(dòng)目的:習(xí)題的配備上,注意到學(xué)生的思維是一個(gè)循序漸進(jìn)的過程,所以由易到難,使學(xué)生在練習(xí)的過程中能夠逐步地提高能力,得到發(fā)展。
活動(dòng)的實(shí)際效果:通過練習(xí)進(jìn)一步熟悉有理數(shù)的加法法則。通過口答、演排糾錯(cuò),活躍課堂氣氛,充分調(diào)動(dòng)學(xué)生的積極性,學(xué)生在一種比較活躍的氛圍中,解決各種問題。
(五)課堂小結(jié):
活動(dòng)內(nèi)容:師生共同總結(jié)。
1、兩個(gè)有理數(shù)相加,“一觀察,二確定,三求和”,即首先判斷加法類型,再確定和的符號,最后確定和的絕對值
2、有理數(shù)加法法則及其應(yīng)用。
3、注意異號的情況。
活動(dòng)目的:課堂小結(jié)并不只是課堂知識點(diǎn)的回顧,要盡量讓學(xué)生暢談自己的切身感受,教師對于發(fā)言進(jìn)行鼓勵(lì),進(jìn)一步梳理本節(jié)所學(xué),更要有所思考,達(dá)到對所學(xué)知識鞏固的目的。
活動(dòng)的實(shí)際效果:學(xué)生對“一觀察,二確定,三求和”的步驟印象較深,達(dá)到了本節(jié)課的教學(xué)目標(biāo)。
【《有理數(shù)的加減法》教學(xué)設(shè)計(jì)】相關(guān)文章:
有理數(shù)教學(xué)設(shè)計(jì)03-18
有理數(shù)的乘法教學(xué)設(shè)計(jì)02-26
《有理數(shù)的乘法》教學(xué)設(shè)計(jì)06-08
分?jǐn)?shù)的加減法教學(xué)設(shè)計(jì)02-27
《0的加減法》教學(xué)設(shè)計(jì)11-17
《10的加減法》教學(xué)設(shè)計(jì)12-12
小數(shù)加減法教學(xué)設(shè)計(jì)04-16