- 開學(xué)第一課初二數(shù)學(xué)教案 推薦度:
- 相關(guān)推薦
初二數(shù)學(xué)教案
作為一名老師,通常需要準(zhǔn)備好一份教案,教案是保證教學(xué)取得成功、提高教學(xué)質(zhì)量的基本條件。如何把教案做到重點突出呢?下面是小編幫大家整理的初二數(shù)學(xué)教案 ,歡迎閱讀與收藏。
初二數(shù)學(xué)教案 1
初二上冊數(shù)學(xué)知識點總結(jié):等腰三角形
一、等腰三角形的性質(zhì):
1、等腰三角形兩腰相等.
2、等腰三角形兩底角相等(等邊對等角)。
3、等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合.
4、等腰三角形是軸對稱圖形,對稱軸是三線合一(1條)。
5、等邊三角形的'性質(zhì):
①等邊三角形三邊都相等.
、诘冗吶切稳齻內(nèi)角都相等,都等于60°
③等邊三角形每條邊上都存在三線合一.
、艿冗吶切问禽S對稱圖形,對稱軸是三線合一(3條).
6.基本判定:
、诺妊切蔚呐卸ǎ
、儆袃蓷l邊相等的三角形是等腰三角形.
、谌绻粋三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊).
、频冗吶切蔚呐卸ǎ
、偃龡l邊都相等的三角形是等邊三角形.
②三個角都相等的三角形是等邊三角形.
、塾幸粋角是60°的等腰三角形是等邊三角形.
初二數(shù)學(xué)教案 2
教學(xué)目標(biāo):
1、經(jīng)歷用數(shù)格子的辦法探索勾股定理的過程,進一步發(fā)展學(xué)生的合情推力意識,主動探究的習(xí)慣,進一步體會數(shù)學(xué)與現(xiàn)實生活的緊密聯(lián)系。
2、探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,進一步發(fā)展學(xué)生的說理和簡單的推理的意識及能力。
重點難點:
重點:了解勾股定理的由來,并能用它來解決一些簡單的問題。
難點:勾股定理的發(fā)現(xiàn)
教學(xué)過程
一、創(chuàng)設(shè)問題的情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,導(dǎo)入課題
出示投影1(章前的圖文p1)教師道白:介紹我國古代在勾股定理研究方面的貢獻,并結(jié)合課本p5談一談,講述我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的.數(shù)學(xué)家)在勾股定理方面的貢獻。
出示投影2(書中的P2圖1—2)并回答:
1、觀察圖1-2,正方形A中有_______個小方格,即A的面積為______個單位。
正方形B中有_______個小方格,即A的面積為______個單位。
正方形C中有_______個小方格,即A的面積為______個單位。
2、你是怎樣得出上面的結(jié)果的?在學(xué)生交流回答的基礎(chǔ)上教師直接發(fā)問:
3、圖1—2中,A,B,C之間的面積之間有什么關(guān)系?
學(xué)生交流后形成共識,教師板書,A+B=C,接著提出圖1—1中的A.B,C的關(guān)系呢?
二、做一做
出示投影3(書中P3圖1—4)提問:
1、圖1—3中,A,B,C之間有什么關(guān)系?
2、圖1—4中,A,B,C之間有什么關(guān)系?
3、從圖1—1,1—2,1—3,1|—4中你發(fā)現(xiàn)什么?
學(xué)生討論、交流形成共識后,教師總結(jié):
以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。
三、議一議
1、圖1—1、1—2、1—3、1—4中,你能用三角形的邊長表示正方形的面積嗎?
2、你能發(fā)現(xiàn)直角三角形三邊長度之間的關(guān)系嗎?
在同學(xué)的交流基礎(chǔ)上,老師板書:
直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”
也就是說:如果直角三角形的兩直角邊為a,b,斜邊為c
那么
我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。
3、分別以5厘米和12厘米為直角邊做出一個直角三角形,并測量斜邊的長度(學(xué)生測量后回答斜邊長為13)請大家想一想(2)中的規(guī)律,對這個三角形仍然成立嗎?(回答是肯定的:成立)
四、想一想
這里的29英寸(74厘米)的電視機,指的是屏幕的長嗎?只的是屏幕的款嗎?那他指什么呢?
五、鞏固練習(xí)
1、錯例辨析:
△ABC的兩邊為3和4,求第三邊
解:由于三角形的兩邊為3、4
所以它的第三邊的c應(yīng)滿足=25
即:c=5
辨析:(1)要用勾股定理解題,首先應(yīng)具備直角三角形這個必不可少的條件,可本題
△ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據(jù)。
(2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并為交待C是斜邊
綜上所述這個題目條件不足,第三邊無法求得。
2、練習(xí)P7§1.11
六、作業(yè)
課本P7§1.12、3、4
初二數(shù)學(xué)教案 3
教學(xué)目標(biāo)
1、初步掌握頻率分布直方圖的概念,能繪制有關(guān)連續(xù)型統(tǒng)計量的直方圖;
2、讓學(xué)生進一步經(jīng)歷數(shù)據(jù)的整理和表示的過程,掌握繪制頻率分布直方圖的方法;
教學(xué)重點
掌握頻率分布直方圖概念及其應(yīng)用;
教學(xué)難點
繪制連續(xù)統(tǒng)計量的直方圖
教學(xué)過程
、瘢岢鰡栴},創(chuàng)設(shè)情境,引入新課:
問題:我們班準(zhǔn)備從63名同學(xué)中挑選出身高相差不多的40名同學(xué)參加比賽,那么這個想法可以實現(xiàn)嗎?應(yīng)該選擇身高在哪個范圍的學(xué)生參加?
63名學(xué)生的身高數(shù)據(jù)如下:
158158160168159159151158159
168158154158154169158158158
159167170153160160159159160
149163163162172161153156162
162163157162162161157157164
155156165166156154166164165
156157153165159157155164156
解:(確定組距)最大值為172,最小值為149,他們的差為23
(身高x的變化范圍在23厘米,)
。ǚ纸M劃記)頻數(shù)分布表:
身高(x)劃記頻數(shù)(學(xué)生人數(shù))
149≤x<1522
152≤x<1556
155≤x<15812
158≤x<16119
161≤<16410
164≤x<1678
167≤x<1704
170≤x<1732
從表中看,身高在155≤x<158,158≤x<161,161≤<164三組人最多,共41人,所以可以從身高在155~164cm(不含164cm)之間的學(xué)生中選隊員
。ɡL制頻數(shù)分布直方圖如課本P72圖12.2-3)
探究:上面對數(shù)據(jù)分組時,組距取3,把數(shù)據(jù)分成8個組,如果組距取2或4,那么數(shù)據(jù)應(yīng)分成幾個組,這樣做能否選出身高比較整齊的隊員?
分析:如果組距取2,那么分成12組;如果組距取4,那么分成6組。都可以選出身高比較整齊的隊員。
歸納:組距和組數(shù)的確定沒有固定的標(biāo)準(zhǔn),要憑借經(jīng)驗和研究的具體問題來決定,通常數(shù)據(jù)越多,分成的組數(shù)也越多,當(dāng)數(shù)據(jù)在100個以內(nèi)時,根據(jù)數(shù)據(jù)的多少通常分為5~12個組。
我們還可以用頻數(shù)折線圖來描述頻數(shù)分布的情況。頻數(shù)折線圖可以在頻數(shù)分布直方圖的基礎(chǔ)上畫出來。
首先取直方圖中每一個長方形上邊的中草藥點,然后在橫軸上取兩個頻數(shù)為0的'點,在上方圖的左邊取(147、5,0),在直方圖的右邊取點(174、5,0),將這些點用線段依次連接起來,就得到頻數(shù)折線圖。
頻數(shù)折線圖也可以不通過直方圖直接畫出。
根據(jù)表12.2-2,求了各個小組兩個端點的平均數(shù),而這些平均數(shù)稱為組中值,用橫軸表示身高(組中值),用縱軸表示頻數(shù),以各小組的組中值為橫坐標(biāo),各小組對應(yīng)的頻數(shù)為縱坐標(biāo)描點,另外再在橫軸上取兩個點,依次連接這些點,就得到頻數(shù)分布折線圖如課本P73圖。
II課堂小結(jié):
。1)怎樣制作頻數(shù)分布直方圖和頻數(shù)分布折線圖
。2)組距和組數(shù)沒有確定標(biāo)準(zhǔn),當(dāng)數(shù)據(jù)在1000個以內(nèi)時,通常分成5~12組
。3)如果取個長方形上邊的中點,可以得到頻數(shù)折線圖
。4)求各小組兩個斷點的平均數(shù),這些平均數(shù)叫組中值。
初二數(shù)學(xué)教案 4
教學(xué)目標(biāo)
1.知道梯形、等腰梯形、直角梯形的有關(guān)概念;能說出并證明等腰梯形的兩個性質(zhì);等腰梯形同一底上的兩個角相等;兩條對角線相等。
2.會運用梯形的有關(guān)概念和性質(zhì)進行有關(guān)問題的論證和計算。
3.通過添加輔助線,把梯形的問題轉(zhuǎn)化成平行四邊形或三角形問題,使學(xué)生體會圖形變換的方法和轉(zhuǎn)化的思想。
教學(xué)模式問題解決教學(xué)
教學(xué)過程
想一想:
什么樣的四邊形是平行四邊形?平行四邊形有哪些性質(zhì)?學(xué)生回答后,教師板書以下關(guān)系圖中的有關(guān)部分:
畫一畫:
畫一個梯形,并指出梯形的上、下底,畫出梯形的高。
問題教學(xué)
問題1:根據(jù)剛才的畫圖,請給梯形下一個定義,并說說梯形與平行四邊形的區(qū)別和聯(lián)系。(說明與建議:(l)讓學(xué)生自己給梯形下定義,有助于訓(xùn)練學(xué)生觀察、概括和語言表述的能力。如果學(xué)生定義時,遺漏了"另一組對邊不平行"教師可舉及例(2)對梯形的定義,還可以讓學(xué)生討論以下問題:一組對邊平行且這組對邊不相等的四邊形是梯形嗎?為什么?教師可用反證法的思想說理。然后,板書完成"想一想"中的關(guān)系圖,并結(jié)合圖表指出:梯形和平行四邊形的區(qū)別和聯(lián)系。(3)梯形的高是指夾在兩底間的公垂線段,在計算面積時高即為上下兩底(平行線)間的距離,也就是夾在兩底間的`公垂線段的長度。畫高時可以從上底任一點向下底作垂線段,一般常從上底的兩端向下底作垂線段可方便地構(gòu)造直角三角形,便于計算。)
問題2:如圖4.9-1,在(1)中:四邊形ABCD的AD∥BC,ABCD,且CD⊥BC;在(2)中,四邊形ABCD的AD∥BC,ABCD,且AB=CD。請你給這兩種四邊形命名。(說明與建議:學(xué)生說出圖(l)的四邊形是直角梯形,圖(2)是等腰梯形,通常不會有困難;教師應(yīng)進一步引導(dǎo)學(xué)生討論,在圖(1)中CD⊥BC,那么CD⊥AD嗎?(CD⊥AD,且指出:CD就是直角梯形的高)當(dāng)CD⊥BC時,另一腰AB可以垂直BC嗎?為什么?(若AB⊥BC,那么四邊形ABCD就成為矩形了,不再是梯形。)在圖(2)中,上底AD與下底BC能相等嗎?(不能,否則四邊形ABCD成為平行四邊形,不再是梯形。)
練一練:課本例1后練習(xí)第l、2題。
問題3:觀察圖4.9-2中的等腰梯形ABCD,猜想它還可能具有哪些特殊性質(zhì)。并能證明你的猜想嗎?
說明與建議:(l)教師要用微笑、點頭、贊嘆、激勵的表情和話語來鼓勵學(xué)生大膽猜想。(2)學(xué)生可能提出以下猜想:∠B=∠C,∠A=∠D,∠A+∠B=,∠C+∠D=,是軸對稱圖形等等。教師要引導(dǎo)學(xué)生關(guān)注等腰梯形特有的性質(zhì)---等腰梯形的底角相等。(3)如何證明這個猜想,可讓學(xué)生自己思考、探索、交流,教師給以引導(dǎo),鼓勵證明多樣化,如課本第174頁的證法。教師可提醒學(xué)生證明過程中用到了"夾在平行線間的平行線段相等"這一性質(zhì)。并指出:這種證法的實質(zhì)是把一腰平移,從而構(gòu)造出等腰三角形;對于如圖4.9-2(作AE⊥BC,DF⊥BC)所示的證法,教師可指出:通過作梯形的兩條高,可以構(gòu)造出兩個全等的直三角形等。
問題4:如何證明等腰梯形是軸對稱圖形呢?(說明與建議:可讓學(xué)生用折紙的方法,確認(rèn)等腰梯形是軸對稱圖形;教學(xué)中,還可引導(dǎo)學(xué)生借助等腰三角形的軸對稱性加以證明,如圖4.9-3,延長等腰梯形兩腰BA、CD相交于點E,易證△AED和△EBC都是等腰三角形。EF⊥BC,則EF⊥AD,EF所在的直線是兩個等腰三角形EAD、EBC的對稱軸。由軸對稱圖形可知,也是等腰梯形ABCD的對稱軸。因此,等腰梯形是軸對稱圖形,有一條對稱軸,是過兩底中點的直線。)
例題解析(課本例1)說明:本例的結(jié)論,為學(xué)生在討論"問題3"時已提及,則可由學(xué)生自已完成證明,并概括成為一個文字命題。如學(xué)生討論問題3時未提及,則可由教師引導(dǎo)學(xué)生猜想,然后再完成證明。
課堂練習(xí)1.課本例1后練習(xí)第3題。2.如圖4.9-4,已知等腰梯形ABCD的腰長為5cm,上、下底長分別是6cm和12cm,求梯形的面積。(方法一,過點C作CE∥AD,再作等腰三角形BCE的高CF,可知CF=4cm。然后用梯形面積公式求解;方法二,過點C和D分別作高CF、DG,可知,從而在Rt△AGD中求出高DG=4cm。)
初二數(shù)學(xué)教案 5
重難點分析
本節(jié)的重點是矩形的性質(zhì)和判定定理。矩形是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是有一個角是直角,因而就增加了一些特殊的性質(zhì)和不同于平行四邊形的判定方法。矩形的這些性質(zhì)和判定定理即是平行四邊形性質(zhì)與判定的延續(xù),又是以后要學(xué)習(xí)的正方形的基礎(chǔ)。
本節(jié)的難點是矩形性質(zhì)的靈活應(yīng)用。由于矩形是特殊的平行四邊形,所以它不但具有平行四邊形的性質(zhì),同時還具有自己獨特的性質(zhì)。如果得到一個平行四邊形是矩形,就可以得到許多關(guān)于邊、角、對角線的條件,在實際解題中,應(yīng)該應(yīng)用哪些條件,怎樣應(yīng)用這些條件,常常讓許多學(xué)生手足無措,教師在教學(xué)過程中應(yīng)給予足夠重視。
教法建議
根據(jù)本節(jié)內(nèi)容的特點和與平行四邊形的關(guān)系,建議教師在教學(xué)過程中注意以下問題:
1.矩形的知識,學(xué)生在小學(xué)時接觸過一些,可由小學(xué)學(xué)過的知識作為引入。
2.矩形在現(xiàn)實中的實例較多,在講解矩形的性質(zhì)和判定時,教師可自行準(zhǔn)備或由學(xué)生準(zhǔn)備一些生活實例來進行判別應(yīng)用了哪些性質(zhì)和判定,既增加了學(xué)生的參與感又鞏固了所學(xué)的知識.
3. 如果條件允許,教師在講授這節(jié)內(nèi)容前,可指導(dǎo)學(xué)生按照教材145頁圖4-30所示,制作一個平行四邊形作為教學(xué)過程中的道具,既增強了學(xué)生的動手能力和參與感,有在教學(xué)中有切實的體例,使學(xué)生對知識的掌握更輕松些.
4. 在對性質(zhì)的講解中,教師可將學(xué)生分成若干組,每個學(xué)生分別對事先準(zhǔn)備后的圖形進行邊、角、對角線的測量,然后在組內(nèi)進行整理、歸納.
5. 由于矩形的性質(zhì)定理證明比較簡單,教師可引導(dǎo)學(xué)生分析思路,由學(xué)生來進行具體的證明.
6.在矩形性質(zhì)應(yīng)用講解中,為便于理解掌握,教師要注意題目的層次安排。
矩形教學(xué)設(shè)計
教學(xué)目標(biāo)
1.知道矩形的定義和矩形與平行四邊形之間的聯(lián)系;能說出矩形的四個角都是直角和矩形的的對角線相等的性質(zhì);能推出直角三角形斜邊上的中線等于斜邊的一半的性質(zhì)。
2.能運用以上性質(zhì)進行簡單的證明和計算。
此外,從矩形與平行四邊形的區(qū)別與聯(lián)系中,體會特殊與一般的關(guān)系,滲透集合的思想,培養(yǎng)學(xué)生辨證唯物主義觀點。
引導(dǎo)性材料
想一想:一般四邊形與平行四邊形之間的相互關(guān)系?在圖4.5-l的圓圈中填上四邊形和平行四邊形的字樣來說明這種關(guān)系:即平行四邊形是特殊的四邊形,又具有一般四邊形的一切性質(zhì);具有一些特殊的性質(zhì)。
小學(xué)里已學(xué)過長方形,即矩形。顯然,矩形是平行四邊形,而且矩形還具有四個角都是直角(小學(xué)里已學(xué)過)等特殊性質(zhì),那么,如果在圖4.5-1中再畫一個圈表示矩形,這個圈應(yīng)畫在哪里?
(讓學(xué)生初步感知矩形與平行四邊形的從屬關(guān)系。)
演示:用四根木條制作一個平行四邊形教具。利用平行四邊形的不穩(wěn)定性,演示如圖4.5-2,當(dāng)平行四邊形的一個內(nèi)角由銳角變?yōu)殁g角的過程中,會發(fā)生怎樣的特殊情況,這時的圖形是什么圖形(矩形)。
問題1:從上面的演示過程,可以發(fā)現(xiàn):平行四邊形具備什么條件時,就成了矩形?
說明與建議:教師的演示應(yīng)充分展現(xiàn)變化過程,從而讓學(xué)生深切地感受到短形是無數(shù)個平行四邊形中的一個特例,同時,又使學(xué)生能正確地給出矩形的定義。
問題2:矩形是特殊的平行四邊形,它除了有一個角是直角以外,還可能具有哪些平行四邊形所沒有的特殊性質(zhì)呢?
說明與建議:讓學(xué)生分組探索,有必要時,教師可引導(dǎo)學(xué)生,根據(jù)研究平行四邊形獲得的經(jīng)驗,分別從邊、角、對角線三個方面探索矩形的特性,還可提醒學(xué)生,這種探索的基礎(chǔ)是矩形有一個角是直角矩形的四個角都相等(矩形性質(zhì)定理1),要學(xué)生給以證明(即課本例1后練習(xí)第1題)。
學(xué)生能探索得出矩形的鄰邊互相垂直的特性,教師可作說明:這與矩形的四個角是直角本質(zhì)上是一致的,所以不必另列為一個性質(zhì)。
學(xué)生探索矩形的四條對角線的大小關(guān)系時,如有困難,可引導(dǎo)學(xué)生測量并比較矩形兩條對角線的長度,然后加以證明,得出性質(zhì)定理2。
問題3:矩形的一條對角線把矩形分成兩個直角三角形,矩形的'對角線既互相平分又相等,由此,我們可以得到直角三角形的什么重要性質(zhì)?
說明與建議:(1)讓學(xué)生先觀察圖4.5-3,并議論猜想,如學(xué)生有困難,教師可引導(dǎo)學(xué)生觀察圖中的一個直角三角形(如Rt△ABC),讓學(xué)生自己發(fā)現(xiàn)斜邊上的中線BO與斜線AC的大小關(guān)系,然后讓學(xué)生自己給出如下證明:
證明:在矩形ABCD中,對角線AC、BD相交于點O,AC=BD(矩形的對角線相等)。
,AO=CO
在Rt△ABC中,BO是斜邊AC上的中線,且 。
直角三角形斜邊上的中線等于斜邊的一半。
例題解析
例1:(即課本例1)
說明:本題難度不大,又有助于學(xué)生加深對性質(zhì)定理的理解,教學(xué)中應(yīng)引導(dǎo)學(xué)生探索解法:
如圖4.5-4,欲求對角線BD的長,由于BAD=90,AB=4cm,則只要再找出Rt△ABD中一條直角邊的長,或一個銳角的度數(shù),再從已知條件AOD=120出發(fā),應(yīng)用矩形的性質(zhì)可知,ADB=30,另外,還可以引導(dǎo)學(xué)生探究△AOB是什么特殊的三角形(等邊三角形),課本用了第一種解法,并給出了解幾何計算題書寫格式的示范;第二種解法如下:
∵四邊形ABCD是矩形,
AC=BD(矩形的對角線相等)。
又 。
OA=BO,△AOB是等腰三角形,
∵AOD=120,AOB=180- 120= 60
AOB是等邊三角形。
BO=AB=4cm,
BD=2BO=244cm=8cm。
例2:(補充例題)
已知:如圖4.5-5四邊形ABCD中,ABC=ADC=90, E是AC的中點,EF平分BED交BD于點F。
(l)猜想:EF與BD具有怎樣的關(guān)系?
(2)試證明你的猜想。
解:(l)EF垂直平分BD。
(2)證明:∵ABC=90,點E是AC的中點。
(直角三角形的斜邊上的中線等于斜邊的一半)。
同理: 。
BE=DE。
又∵EF平分BED。
EFBD,BF=DF。
說明:本例是一道不給出結(jié)論,需要學(xué)生自己觀察---猜想---討論的幾何命題,有助于發(fā)展學(xué)生的推理(包括合情推理和邏輯推理)能力。如果學(xué)生不適應(yīng),或有困難,教師可根據(jù)實際情況加以引導(dǎo),這種訓(xùn)練,重要的不是猜對了沒有?證明了沒有?而是讓學(xué)生經(jīng)歷這樣一種自己研究圖形性質(zhì)的過程,順便指出:求解本題的重要基礎(chǔ)是識圖技能----能從復(fù)雜圖形中分解出如圖4.5-6所示的三個基本圖形。
課堂練習(xí)
1.課本例1后練習(xí)題第2題。
2.課本例1后練習(xí)題第4題。
小結(jié)
1.矩形的定義:
2.歸納總結(jié)矩形的性質(zhì):
對邊平行且相等
四個角都是直角
對角線平行且相等
3.直角三角形斜邊上的中線等于斜邊的一半。
4.矩形的一條對角線把矩形分成兩個全等的直角三角形;矩形的兩條對角線把矩形分成四個全等的等腰三角形。因此,有關(guān)矩形的問題往往可化為直角三角形或等腰三角形的問題來解決。
作業(yè)
l.課本習(xí)題4.3A組第2題。
2.課本復(fù)習(xí)題四A組第6、7題。
初二數(shù)學(xué)教案 6
教學(xué)目標(biāo)
教學(xué)知識點:能運用勾股定理及直角三角形的判別條件(即勾股定理的逆定理)解決簡單的實際問題.
能力訓(xùn)練要求:1.學(xué)會觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念.
2.在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想.
情感與價值觀要求:1.通過有趣的問題提高學(xué)習(xí)數(shù)學(xué)的興趣.
2.在解決實際問題的過程中,體驗數(shù)學(xué)學(xué)習(xí)的實用性,體現(xiàn)人人都學(xué)有用的數(shù)學(xué).
教學(xué)重點難點:
重點:探索、發(fā)現(xiàn)給定事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題.
難點:利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實際問題.
教學(xué)過程
1、創(chuàng)設(shè)問題情境,引入新課:
前幾節(jié)課我們學(xué)習(xí)了勾股定理,你還記得它有什么作用嗎?
例如:欲登12米高的建筑物,為安全需要,需使梯子底端離建筑物5米,至少需多長的梯子?
根據(jù)題意,(如圖)AC是建筑物,則AC=12米,BC=5米,AB是梯子的長度.所以在Rt△ABC中,AB2=AC2+BC2=122+52=132;AB=13米.
所以至少需13米長的梯子.
2、講授新課:①、螞蟻怎么走最近
出示問題:有一個圓柱,它的高等于12厘米,底面半徑等于3厘米.在圓行柱的底面A點有一只螞蟻,它想吃到上底面上與A點相對的B點處的食物,需要爬行的的最短路程是多少?(π的值取3).
(1)同學(xué)們可自己做一個圓柱,嘗試從A點到B點沿圓柱的側(cè)面畫出幾條路線,你覺得哪條路線最短呢?(小組討論)
(2)如圖,將圓柱側(cè)面剪開展開成一個長方形,從A點到B點的最短路線是什么?你畫對了嗎?
(3)螞蟻從A點出發(fā),想吃到B點上的食物,它沿圓柱側(cè)面爬行的最短路程是多少?(學(xué)生分組討論,公布結(jié)果)
我們知道,圓柱的側(cè)面展開圖是一長方形.好了,現(xiàn)在咱們就用剪刀沿母線AA′將圓柱的側(cè)面展開(如下圖).
我們不難發(fā)現(xiàn),剛才幾位同學(xué)的走法:
(1)A→A′→B;(2)A→B′→B;
(3)A→D→B;(4)A—→B.
哪條路線是最短呢?你畫對了嗎?
第(4)條路線最短.因為“兩點之間的連線中線段最短”.
②、做一做:教材14頁。李叔叔隨身只帶卷尺檢測AD,BC是否與底邊AB垂直,也就是要檢測∠DAB=90°,∠CBA=90°.連結(jié)BD或AC,也就是要檢測△DAB和△CBA是否為直角三角形.很顯然,這是一個需用勾股定理的逆定理來解決的實際問題.
、邸㈦S堂練習(xí)
出示投影片
1.甲、乙兩位探險者,到沙漠進行探險.某日早晨8∶00甲先出發(fā),他以6千米/時的速度向東行走.1時后乙出發(fā),他以5千米/時的速度向北行進.上午10∶00,甲、乙兩人相距多遠(yuǎn)?
2.如圖,有一個高1.5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分是0.5米,問這根鐵棒應(yīng)有多長?
1.分析:首先我們需要根據(jù)題意將實際問題轉(zhuǎn)化成數(shù)學(xué)模型.
解:(如圖)根據(jù)題意,可知A是甲、乙的`出發(fā)點,10∶00時甲到達B點,則AB=2×6=12(千米);乙到達C點,則AC=1×5=5(千米).
在Rt△ABC中,BC2=AC2+AB2=52+122=169=132,所以BC=13千米.即甲、乙兩人相距13千米.
2.分析:從題意可知,沒有告訴鐵棒是如何插入油桶中,因而鐵棒的長是一個取值范圍而不是固定的長度,所以鐵棒最長時,是插入至底部的A點處,鐵棒最短時是垂直于底面時.
解:設(shè)伸入油桶中的長度為x米,則應(yīng)求最長時和最短時的值.
(1)x2=1.52+22,x2=6.25,x=2.5
所以最長是2.5+0.5=3(米).
(2)x=1.5,最短是1.5+0.5=2(米).
答:這根鐵棒的長應(yīng)在2~3米之間(包含2米、3米).
3.試一試(課本P15)
在我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的問題,這個問題的意思是:有一個水池,水面是一個邊長為10尺的正方形.在水池正中央有一根新生的蘆葦,它高出水面1尺.如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達岸邊的水面.請問這個水池的深度和這根蘆葦?shù)拈L度各為多少?
我們可以將這個實際問題轉(zhuǎn)化成數(shù)學(xué)模型.
解:如圖,設(shè)水深為x尺,則蘆葦長為(x+1)尺,由勾股定理可求得
(x+1)2=x2+52,x2+2x+1=x2+25
解得x=12
則水池的深度為12尺,蘆葦長13尺.
、、課時小結(jié)
這節(jié)課我們利用勾股定理和它的逆定理解決了生活中的幾個實際問題.我們從中可以發(fā)現(xiàn)用數(shù)學(xué)知識解決這些實際問題,更為重要的是將它們轉(zhuǎn)化成數(shù)學(xué)模型.
、荨⒄n后作業(yè)
課本P25、習(xí)題1.52
初二數(shù)學(xué)教案 7
知識與技能
1.了解分式的基本性質(zhì),掌握分式的約分和通分法則。掌握分式的四則運算。
2.會用待定系數(shù)法求反比例函數(shù)的解析式,能利用函數(shù)性質(zhì)分析和解決一些簡單的實際問題。
3.體驗勾股定理的探索過程,會運用勾股定理解決簡單問題。會運用勾股定理的逆定理判定直角三角形。
4.探索并掌握平行四邊形、矩形、菱形、正方形、等腰梯形的有關(guān)性質(zhì)和常用判定方法,并運用這些知識進行有關(guān)的證明和計算。
5.進一步理解平均數(shù)、中位數(shù)和眾數(shù)等統(tǒng)計量的統(tǒng)計意義,會計算極差和方差,理解它們的統(tǒng)計意義,會用它們表示數(shù)據(jù)的波動情況。
過程與方法
進一步培養(yǎng)學(xué)生的合情推理能力和發(fā)展學(xué)生邏輯思維能力和推理論證的表達能力;解決一些實際問題,體會化歸思想和函數(shù)的變化與對應(yīng)的思想;養(yǎng)成用數(shù)據(jù)說話的習(xí)慣和實事求是的.科學(xué)態(tài)度;培養(yǎng)學(xué)生的探究能力、數(shù)學(xué)歸納能力,在活動中培養(yǎng)學(xué)生的合作交流能力;逐步形成獨立思考,主動探索的習(xí)慣。
情感、態(tài)度與價值觀
豐富學(xué)生從事數(shù)學(xué)活動的經(jīng)驗和體驗,通過對問題的共同探討,培養(yǎng)學(xué)生的協(xié)作精神,通過對知識方法的總結(jié),培養(yǎng)反思的習(xí)慣,和理性思維。培養(yǎng)學(xué)生面對教學(xué)活動中的困難,能通過合作交流解決遇到的困難。
初二數(shù)學(xué)教案 8
新課指南
1.知識與技能:(1)在具體情境中了解代數(shù)式及代數(shù)式的值的含義;(2)掌握整式、同類項及合并同類項法則和去括號法則;(3)培養(yǎng)學(xué)生用字母表示數(shù)和探索數(shù)學(xué)規(guī)律的能力.
2.過程與方法:經(jīng)歷探索規(guī)律并用代數(shù)式表示規(guī)律的過程,學(xué)會列簡單的代數(shù)式.在具體情境中體會同類項的意義及合并同類項、去括號法則的必要性,總結(jié)合并同類項及去括號的法則,并利用它們進行整式的加減運算和解決簡單的實際問題.
3.情感態(tài)度與價值觀:通過對整式加減的學(xué)習(xí),深入體會代數(shù)式在實際生活中的應(yīng)用,它為后面學(xué)習(xí)方程(組)、不等式及函數(shù)等知識打下良好的基礎(chǔ),同時,也使我們體會到數(shù)學(xué)知識的產(chǎn)生來源于實際生產(chǎn)和生活的需求,反之,它又服務(wù)于實際生活的方方面面.
4.重點與難點:重點是用含有字母的'式子表式規(guī)律,理解整式的意義,合并同類項的法則和去括號的法則.難點是探索規(guī)律的過程及用代數(shù)式表示規(guī)律的方法,以及準(zhǔn)確識別整式的項、系數(shù)等知識.
教材解讀精華要義
數(shù)學(xué)與生活
如圖15-1所示,用同樣規(guī)格的黑、白兩色的正方形瓷磚鋪長方形地面,在第n個圖形中,每一行有塊瓷磚,每一列有塊瓷磚,共有塊瓷磚,其中黑色瓷磚共塊,白色瓷磚共塊.
思考討論由圖15-1可以看到,當(dāng)n=1時,一橫行有4塊瓷磚,一豎列有3塊瓷磚;當(dāng)n=2時,一橫行有5塊瓷磚,一豎列有4塊瓷磚;當(dāng)n=3時,一橫行有6塊瓷磚,一豎列有5塊瓷磚.綜上可以發(fā)現(xiàn):4-1=5-2=6-3=3,3-1=4-2=5-3=2.即:一橫行的瓷磚數(shù)等于n加上3,一豎列的瓷磚數(shù)等于n加上2.所以,在第n個圖形中,每一橫行共有(n+3)塊瓷磚,每一豎列共有(n+2)塊瓷磚,共有(n+3)(n+2)塊瓷磚,其中白色瓷磚共(n+3-2)(n+2-2)=n(n+1)塊,黑色瓷磚共有[(n+3)(n+2)-n(n+1)]塊.這就是用字母來表示數(shù),即代數(shù)式,你還能舉出這樣用字母表示數(shù)的例子嗎?
知識詳解
知識點1代數(shù)式
用基本的運算符號(運算包括加、減、乘、除、乘方與開方)把數(shù)和表示數(shù).的字母連接起來的式子叫做代數(shù)式.單獨的一個數(shù)或一個字母也是代數(shù)式.
例如:5,a,(a+b),ab,a2-2ab+b2等等.
知識點2列代數(shù)式時應(yīng)該注意的問題
(1)數(shù)與字母、字母與字母相乘時常省略“×”號或用“·”.
如:-2×a=-2a,3×a×b=3·ab,-2×x2=-2x2.
(2)數(shù)字通常寫在字母前面.
如:mn×(-5)=-5mn,3×(a+b)=3(a+b).
(3)帶分?jǐn)?shù)與字母相乘時要化成假分?jǐn)?shù).
如:2×ab=ab,切勿錯誤寫成“2ab”.
(4)除法常寫成分?jǐn)?shù)的形式.
如:S÷x=.
初二數(shù)學(xué)教案 9
教學(xué)目的
通過分析儲蓄中的數(shù)量關(guān)系、商品利潤等有關(guān)知識,經(jīng)歷運用方程解決實際問題的過程,進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學(xué)模型。
重點、難點
1.重點:探索這些實際問題中的等量關(guān)系,由此等量關(guān)系列出方程。
2.難點:找出能表示整個題意的等量關(guān)系。
教學(xué)過程
一、復(fù)習(xí)
1.儲蓄中的利息、本金、利率、本利和等含義,關(guān)系:利息=本金×年利率×年數(shù)
本利和=本金×利息×年數(shù)+本金
2.商品利潤等有關(guān)知識。
利潤=售價—成本; =商品利潤率
二、新授
問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?
利息—利息稅=48。6
可設(shè)小明爸爸前年存了x元,那么二年后共得利息為
2.43%×X×2,利息稅為2.43%X×2×20%
根據(jù)等量關(guān)系,得2.43%x·2—2.43%x×2×20%=48.6
問,扣除利息的20%,那么實際得到的利息是多少?扣除利息的20%,實際得到利息的80%,因此可得
2.43%x·2.80%=48.6
解方程,得x=1250
例1.一家商店將某種服裝按成本價提高40%后標(biāo)價,又以8折(即按標(biāo)價的80%)優(yōu)惠賣出,結(jié)果每件仍獲利15元,那么這種服裝每件的成本是多少元?
大家想一想這15元的利潤是怎么來的?
標(biāo)價的80%(即售價)-成本=15
若設(shè)這種服裝每件的成本是x元,那么
每件服裝的`標(biāo)價為:(1+40%)x
每件服裝的實際售價為:(1+40%)x·80%
每件服裝的利潤為:(1+40%)x·80%—x
由等量關(guān)系,列出方程:
。1+40%)x·80%—x=15
解方程,得x=125
答:每件服裝的成本是125元。
三、鞏固練習(xí)
教科書第15頁,練習(xí)1、2。
四、小結(jié)
當(dāng)運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數(shù)學(xué)問題,然后分析數(shù)學(xué)問題中的等量關(guān)系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應(yīng)用一元一次方程解決實際問題的關(guān)鍵是:根據(jù)題意首先尋找“等量關(guān)系”。
五、作業(yè)
教科書第16頁,習(xí)題6.3.1,第4、5題。
初二數(shù)學(xué)教案 10
教學(xué)建議
知識結(jié)構(gòu):
重點難點分析:
是商的二次根式的性質(zhì)及利用性質(zhì)進行二次根式的化簡與運算,利用分母有理化化簡.商的算術(shù)平方根的性質(zhì)是本節(jié)的主線,學(xué)生掌握性質(zhì)在二次根使得化簡和運算的運用是關(guān)鍵,從化簡與運算由引出初中重要的內(nèi)容之一分母有理化,分母有理化的理解決定了最簡二次根式化簡的掌握.
教學(xué)難點是二次根式的除法與商的算術(shù)平方根的關(guān)系及應(yīng)用.二次根式的除法與乘法既有聯(lián)系又有區(qū)別,強調(diào)根式除法結(jié)果的一般形式,避免分母上含有根號.由于分母有理化難度和復(fù)雜性大,要讓學(xué)生首先理解分母有理化的意義及計算結(jié)果形式.
教法建議:
1. 本節(jié)內(nèi)容是在有積的二次根式性質(zhì)的基礎(chǔ)后學(xué)習(xí),因此可以采取學(xué)生自主探索學(xué)習(xí)的模式,通過前一節(jié)的復(fù)習(xí),讓學(xué)生通過具體實例再結(jié)合積的性質(zhì),對比、歸納得到商的二次根式的性質(zhì).教師在此過程中給與適當(dāng)?shù)闹笇?dǎo),提出問題讓學(xué)生有一定的探索方向.
2. 本節(jié)內(nèi)容可以分為三課時,第一課時討論商的算術(shù)平方根的性質(zhì),并運用這一性質(zhì)化簡較簡單的二次根式(被開方數(shù)的分母可以開得盡方的二次根式);第二課時討論二次根式的除法法則,并運用這一法則進行簡單的二次根式的除法運算以及二次根式的乘除混合運算,這一課時運算結(jié)果不包括根號出現(xiàn)內(nèi)出現(xiàn)分式或分?jǐn)?shù)的情況;第三課時討論分母有理化的概念及方法,并進行二次根式的乘除法運算,把運算結(jié)果分母有理化.這樣安排使內(nèi)容由淺入深,各部分相互聯(lián)系,因此及彼,層層展開.
3. 引導(dǎo)學(xué)生思考想一想中的內(nèi)容,培養(yǎng)學(xué)生思維的深刻性,教師組織學(xué)生思考、討論過程中,鼓勵學(xué)生大膽猜想,積極探索,運用類比、歸納和從特殊到一般的思考方法激發(fā)學(xué)生創(chuàng)造性的思維.
教學(xué)設(shè)計示例
一、教學(xué)目標(biāo)
1.掌握商的算術(shù)平方根的性質(zhì),能利用性質(zhì)進行二次根式的化簡與運算;
2.會進行簡單的二次根式的除法運算;
3.使學(xué)生掌握分母有理化概念,并能利用分母有理化解決二次根式的化簡及近似計算問題;
4. 培養(yǎng)學(xué)生利用二次根式的除法公式進行化簡與計算的能力;
5. 通過二次根式公式的引入過程,滲透從特殊到一般的歸納方法,提高學(xué)生的歸納總結(jié)能力;
6. 通過分母有理化的教學(xué),滲透數(shù)學(xué)的簡潔性.
二、教學(xué)重點和難點
1.重點:會利用商的算術(shù)平方根的性質(zhì)進行二次根式的化簡,會進行簡單的二次根式的除法運算,還要使學(xué)生掌握二次根式的除法采用分母有理化的方法進行.
2.難點:二次根式的除法與商的算術(shù)平方根的關(guān)系及應(yīng)用.
三、教學(xué)方法
從特殊到一般總結(jié)歸納的方法以及類比的方法,在學(xué)習(xí)了二次根式乘法的基礎(chǔ)上本小節(jié)
內(nèi)容可引導(dǎo)學(xué)生自學(xué),進行總結(jié)對比.
四、教學(xué)手段
利用投影儀.
五、教學(xué)過程
(一) 引入新課
學(xué)生回憶及得算數(shù)平方根和性質(zhì): (a0,b0)是用什么樣的'方法引出的?(上述積的算術(shù)平方根的性質(zhì)是由具體例子引出的.)
學(xué)生觀察下面的例子,并計算:
由學(xué)生總結(jié)上面兩個式的關(guān)系得:
類似地,每個同學(xué)再舉一個例子,然后由這些特殊的例子,得出:
(二)新課
商的算術(shù)平方根.
一般地,有 (a0,b0)
商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根.
讓學(xué)生討論這個式子成立的條件是什么?a0,b0,對于為什么b0,要使學(xué)生通過討論明確,因為b=0時分母為0,沒有意義.
引導(dǎo)學(xué)生從運算順序看,等號左邊是將非負(fù)數(shù)a除以正數(shù)b求商,再開方求商的算術(shù)平方根,等號右邊是先分別求被除數(shù)、除數(shù)的算術(shù)平方根,然后再求兩個算術(shù)平方根的商,根據(jù)商的算術(shù)平方根的性質(zhì)可以進行簡單的二次根式的化簡與運算.
例1 化簡:
(1) ; (2) ; (3) ;
解∶(1)
(2)
(3)
說明:如果被開方數(shù)是帶分?jǐn)?shù),在運算時,一般先化成假分?jǐn)?shù);本節(jié)根號下的字母均為正數(shù).
例2 化簡:
(1) ; (2) ;
解:(1)
(2)
讓學(xué)生觀察例題中分母的特點,然后提出, 的問題怎樣解決?
再總結(jié):這一小節(jié)開始講的二次根式的化簡,只限于所得結(jié)果的式子中分母可以完全開的盡方的情況, 的問題,我們將在今后的學(xué)習(xí)中解決.
學(xué)生討論本節(jié)課所學(xué)內(nèi)容,并進行小結(jié).
(三)小結(jié)
1.商的算術(shù)平方根的性質(zhì).(注意公式成立的條件)
2.會利用商的算術(shù)平方根的性質(zhì)進行簡單的二次根式的化簡.
(四)練習(xí)
1.化簡:
(1) ; (2) ; (3) .
2.化簡:
(1) ; (2) ; (3)
六、作業(yè)
教材P.183習(xí)題11.3;A組1.
七、板書設(shè)計
初二數(shù)學(xué)教案 11
一、教學(xué)目標(biāo)
1. 掌握等腰梯形的判定方法.
2. 能夠運用等腰梯形的性質(zhì)和判定進行有關(guān)問題的論證和計算,進一步培養(yǎng)學(xué)生的分析能力和計算能力.
3. 通過添加輔助線,把梯形的問題轉(zhuǎn)化成平行四邊形或三角形問題,使學(xué)生體會圖形變換的方法和轉(zhuǎn)化的思想
二、教法設(shè)計
小組討論,引導(dǎo)發(fā)現(xiàn)、練習(xí)鞏固
三、重點、難點
1.教學(xué)重點:等腰梯形判定.
2.教學(xué)難點:解決梯形問題的基本方法(將梯形轉(zhuǎn)化為平行四邊形和三角形及正確運用輔助線).
四、課時安排
1課時
五、教具學(xué)具準(zhǔn)備
多媒體,小黑板,常用畫圖工具
六、師生互動活動設(shè)計
教師復(fù)習(xí)引入,學(xué)生閱讀課本;學(xué)生在教師引導(dǎo)下探索等腰梯形的判定,歸納小結(jié)梯形轉(zhuǎn)化的常見的輔助線
七、教學(xué)步驟
【復(fù)習(xí)提問】
1.什么樣的四邊形叫梯形,什么樣的梯形是直角梯形、等腰梯形?
2.等腰梯形有哪些性質(zhì)?它的性質(zhì)定理是怎樣證明的?
3.在研究解決梯形問題時的基本思想和方法是什么?常用的輔助線有哪幾種?
我們已經(jīng)掌握了等腰梯形的性質(zhì),那么又如何來判定一個梯形是否是等腰梯形呢?今天我們就共同來研究這個問題.
【引人新課】
等腰梯形判定定理:在同一底上的.兩個角相等的梯形是等腰梯形.
前面我們用等腰三角形的定理證明了等腰梯形的性質(zhì)定理,現(xiàn)在我們也可以用等腰三角形的判定定理來證明等腰梯形的判定定理.
例1已知:如圖,在梯形 中, , ,求證: .
分析:我們學(xué)過“如果一個三角形中有兩個角相等,那么它們所對的邊相等.”因此,我們只要能將等腰梯形同一底上的兩個角轉(zhuǎn)化為等腰三角形的兩個底角,定理就容易證明了.
(引導(dǎo)學(xué)生口述證明方法,然后利用投影儀出示三種證明方法)
(1)如圖,過點 作 、 ,交 于 ,得 ,所以得 .
又由 得 ,因此可得 .
(2)作高 、 ,通過證 推出 .
(3)分別延長 、 交于點 ,則 與 都是等腰三角形,所以可得 .
(證明過程略).
例3 求證:對角線相等的梯形是等腰梯形.
已知:如圖,在梯形 中, , .
求證: .
分析:證明本題的關(guān)鍵是如何利用對角線相等的條件來構(gòu)造等腰三角形.
在 和 中,已有兩邊對應(yīng)相等,別人要能證 ,就可通過證 得到 .
(引導(dǎo)學(xué)生說出證明思路,教師板書證明過程)
證明:過點 作 ,交 延長線于 ,得 ,
∴ .
∵ , ∴
∴
∵ , ∴
又∵ 、 ,∴
∴ .
說明:如果 、 交于點 ,那么由 可得 , ,即等腰梯形對角線相交,可以得到以交點為頂點的兩個等腰三角形,這個結(jié)論雖不能直接引用,但可以為以后解題提供思路.
例4 畫一等腰梯形,使它上、下底長分別5cm,高為4cm,并計算這個等腰梯形的周長和面積.
分析:如圖,先算出 長,可畫等腰三角形 ,然后完成 的畫圖.
畫法:①畫 ,使 .
.
、谘娱L 到 使 .
、鄯謩e過 、 作 , , 、 交于點 .
四邊形 就是所求的等腰梯形.
解:梯形 周長 .
答:梯形周長為26cm,面積為 .
【總結(jié)、擴展】
小結(jié):(由學(xué)生總結(jié))
(l)等腰梯形的判定方法:①先判定它是梯形②再用“兩腰相等”“或同一底上的兩個角相等”來判定它是等腰梯形.
(2)梯形的畫圖:一般先畫出有關(guān)的三角形,在此基礎(chǔ)上再畫出有關(guān)的平行四邊形,最后得到所求圖形.(三角形奠基法)
八、布置作業(yè)
l.已知:如圖,梯形 中, , 、 分別為 、 中點,且 ,求證:梯形 為等腰梯形.
九、板書設(shè)計
十、隨堂練習(xí)
教材P177中l(wèi);P179中B組2
初二數(shù)學(xué)教案 12
一、教學(xué)目標(biāo)
1.掌握矩形的定義,知道矩形與平行四邊形的關(guān)系.
2.掌握矩形的性質(zhì)定理.
3.使學(xué)生能應(yīng)用矩形定義、性質(zhì)等知識,解決簡單的證明題和計算題,進一步培養(yǎng)學(xué)生的分析能力.
4.通過性質(zhì)的學(xué)習(xí),體會矩形的應(yīng)用美.
二、教法設(shè)計
觀察、啟發(fā)、總結(jié)、提高,類比探討,討論分析,啟發(fā)式.
三、重點、難點及解決辦法
1.教學(xué)重點:矩形的性質(zhì)及其推論.
2.教學(xué)難點:矩形的本質(zhì)屬性及性質(zhì)定理的綜合應(yīng)用.
四、課時安排
1課時
五、教具學(xué)具準(zhǔn)備
教具(一個活動的平行四邊形),投影儀及膠片,常用畫圖工具
六、師生互動活動設(shè)計
教具演示、創(chuàng)設(shè)情境,觀察猜想,推理論證
七、教學(xué)步驟
【復(fù)習(xí)提問】
什么叫平行四邊形?它和四邊形有什么區(qū)別?
【引入新課】
我們已經(jīng)知道平行四邊形是特殊的四邊形,因此平行四邊形除具有四邊形的性質(zhì)外,還有它的特殊性質(zhì),同樣對于平行四邊形來說,也有特殊情況即特殊的平行四邊形, 堂課我們就來研究一種特殊的平行四邊形矩形(寫出課題).
【講解新課】
制一個活動的平行四邊形教具,堂上進行演示圖,使學(xué)生注意觀察四邊形角的變化,當(dāng)變到一個角是直角時,指出這時平行四邊形是矩形,使學(xué)生明確矩形是特殊的平行四邊形(特殊之處就在于一個角是直角,深刻理解矩形與平行四邊形的聯(lián)系和區(qū)別).
矩形的性質(zhì):
既然矩形是一種特殊的平行四邊形,就應(yīng)具有平行四邊形性質(zhì),同時矩形又是特殊的平行四邊形,比平行四邊形多了一個角是直角的條件,因而它就增加了一些特殊性質(zhì).
繼續(xù)演示教具,當(dāng)它變成矩形時,學(xué)生容易看到它的四個角都是直角;它的'對角線也相等(寫出這兩個結(jié)論),指出觀察出來的結(jié)論不能做為定理,需要證明.引導(dǎo)學(xué)生利用平行四邊形角的性質(zhì)證明得出.
矩形性質(zhì)定理1:矩形的四個角都是直角.
矩形性質(zhì)定理2:矩形對角線相等.
由矩形性質(zhì)定理2我們可以得到
推論:直角三角形斜邊上的中線等于斜邊的一半.
(這實際上是 △的一個重要性質(zhì),即 △斜邊中點到三頂點的距離相等,它在求線段長或線段部分關(guān)系時經(jīng)常用到)
例1 已知如圖1 矩形 的兩條對角線相交于點, , ,求矩形對角線的長.(按教材的格式)
(強調(diào)這種計算題的解題格式,防止學(xué)生離開幾何元素之間的關(guān)系,而單純進行代數(shù)計算)
【總結(jié)、擴展】
1.小結(jié):(用投影打出)
(1)矩形、平行四邊形、四邊形從屬關(guān)系如圖.
(2)矩形性質(zhì).
1.具有平行四邊形的所有性質(zhì).
2.特有性質(zhì):四個角都是直角,對角線相等.
3.思考題:已知如圖, 是矩形 對角線交點, 平分 , ,求 的度數(shù)
八、布置作業(yè)
教材P158中2、5,P195中7.
九、板書設(shè)計
十、隨堂練習(xí)
教材P146中1、2、3、4
初二數(shù)學(xué)教案 13
一、利用勾股定理進行計算
1.求面積
例1:如圖1,在等腰△ABC中,腰長AB=10cm,底BC=16cm,試求這個三角形面積。
析解:若能求出這個等腰三角形底邊上的高,就可以求出這個三角形面積。而由等腰三角形"三線合一"性質(zhì),可聯(lián)想作底邊上的高AD,此時D也為底邊的中點,這樣在Rt△ABD中,由勾股定理得AD2=AB2-BD2=102-82=36,所以AD=6cm,所以這個三角形面積為×BC×AD=×16×6=48cm2。
2.求邊長
例2:如圖2,在△ABC中,∠C=135?,BC=,AC=2,試求AB的長。
析解:題中沒有直角三角形,不能直接用勾股定理,可考慮過點B作BD⊥AC,交AC的延長線于D點,構(gòu)成Rt△CBD和Rt△ABD。在Rt△CBD中,因為∠ACB=135?,所以∠BCB=45?,所以BD=CD,由BC=,根據(jù)勾股定理得BD2+CD2=BC2,得BD=CD=1,所以AD=AC+CD=3。在Rt△ABD中,由勾股定理得AB2=AD2+BD2=32+12=10,所以AB=。
點評:這兩道題有一個共同的特征,都沒有現(xiàn)成的直角三角形,都是通過添加適當(dāng)?shù)妮o助線,巧妙構(gòu)造直角三角形,借助勾股定理來解決問題的,這種解決問題的方法里蘊含著數(shù)學(xué)中很重要的轉(zhuǎn)化思想,請同學(xué)們要留心。
二、利用勾股定理的逆定理判斷直角三角形
例3:已知a,b,c為△ABC的三邊長,且滿足a2+b2+c2+338=10a+24b+26c。試判斷△ABC的形狀。
析解:由于所給條件是關(guān)于a,b,c的一個等式,要判斷△ABC的形狀,設(shè)法求出式中的a,b,c的值或找出它們之間的'關(guān)系(相等與否)等,因此考慮利用因式分解將所給式子進行變形。因為a2+b2+c2+338=10a+24b+26c,所以a2-10a+b2-24b+c2-26c+338=0,所以a2-10a+25+b2-24b+144+c2-26c+169=0,所以(a-5)2+(b-12)2+(c-13)2=0。因為(a-5)2≥0,(b-12)2≥0,(c-13)2≥0,所以a-5=0,b-12=0,c-13=0,即a=5,b=12,c=13。因為52+122=132,所以a2+b2=c2,即△ABC是直角三角形。
點評:用代數(shù)方法來研究幾何問題是勾股定理的逆定理的"數(shù)形結(jié)合思想"的重要體現(xiàn)。
三、利用勾股定理說明線段平方和、差之間的關(guān)系
例4:如圖3,在△ABC中,∠C=90?,D是AC的中點,DE⊥AB于E點,試說明:BC2=BE2-AE2。
析解:由于要說明的是線段平方差問題,故可考慮利用勾股定理,注意到∠C=∠BED=∠AED=90?及CD=AD,可連結(jié)BD來解決。因為∠C=90?,所以BD2=BC2+CD2。又DE⊥AB,所以∠BED=∠AED=90?,在Rt△BED中,有BD2=BE2+DE2。在Rt△AED中,有AD2=DE2+AE2。又D是AC的中點,所以AD=CD。故BC2+CD2=BC2+AD2=BC2+DE2+AE2=BE2+DE2,所以BE2=BC2+AE2,所以BC2=BE2-AE2。
點評:若所給題目的已知或結(jié)論中含有線段的平方和或平方差關(guān)系時,則可考慮構(gòu)造直角三角形,利用勾股定理來解決問題。
初二數(shù)學(xué)教案 14
課型:
復(fù)習(xí)課
學(xué)習(xí)目標(biāo)(學(xué)習(xí)重點):
1. 針對函數(shù)及其圖象一章,查漏補缺,答疑解惑;
2. 一次函數(shù)應(yīng)用的復(fù)習(xí).
補充例題:
例1.如圖,lA lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關(guān)系
(1)B出發(fā)時與A相距 千米;
(2)走了一段路后,自行車發(fā)生故障,進行修理,所用的時間是 小時;
(3)B出發(fā)后 小時與A相遇;
(4)求出A行走的路程S與時間t的函數(shù)關(guān)系式;
(5)若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進, 小時與A相遇,相遇點離B的出發(fā)點 千米,在圖中表示出這個相遇點C.
例2.在平面直角坐標(biāo)系中,過一點分別作坐標(biāo)軸的垂線,若與坐標(biāo)軸圍成矩形的周長與面積相等,則這個點叫做和諧點.例如,圖中過點P分別作x軸, y的垂線,與坐標(biāo)軸圍成矩形OAPB的周長與面積相等,則點P是和諧點.
(1)判斷點M(1,2),N(4,4)是否為和諧點,并說明理由;
(2)若和諧點P(a,3)在直線y=-x+b(b為常數(shù))上,求點a, b的值.
例3.在平面直角坐標(biāo)系中,一動點P(x,y)從M(1,0)出發(fā),沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四點組成的正方形邊線(如圖①)按一定方向運動.圖②是P點運動的路程s(個單位)與運動時間 (秒)之間的.函數(shù)圖象,圖③是P點的縱坐標(biāo)y與P點運動的路程s之間的函數(shù)圖象的一部分.
(1)求s與t之間的函數(shù)關(guān)系式.
(2)與圖③相對應(yīng)的P點的運動路徑是: ;P點出發(fā) 秒首次到達點B;
(3)寫出當(dāng)38時,y與s之間的函數(shù)關(guān)系式,并在圖③中補全函數(shù)圖象.
課后續(xù)助:
1.某市自來水公司為限制單位用水,每月只給某單位計劃內(nèi)用水3000噸,計劃內(nèi)用水每噸收費0.5元,超計劃部分每噸按0.8元收費.
(1)寫出該單位水費y(元)與每月用水量x(噸)之間的函數(shù)關(guān)系式
、儆盟啃∮诘扔3000噸 ;②用水量大于3000噸 .
(2)某月該單位用水3200噸,水費是 元;若用水2800噸,水費 元.
(3)若某月該單位繳納水費1540元,則該單位用水多少噸?
2.某通訊公司推出①、②兩種通訊收費方式供用戶選擇,其中一種有月租費,另一種無月租費,且兩種收費方式的通訊時間x(分鐘)與收費y(元)之間的函數(shù)關(guān)系如圖所示.
(1)有月租費的收費方式是 (填①或②),月租費是 元;
(2)分別求出①、②兩種收費方式中y與自變量x之間的函數(shù)關(guān)系式;
(3)請你根據(jù)用戶通訊時間的多少,給出經(jīng)濟實惠的選擇建議.
3.某氣象研究中心觀測一場沙塵暴從發(fā)生到結(jié)束全過程, 開始時風(fēng)暴平均每小時增加2千米/時,4小時后,沙塵暴經(jīng)過開闊荒漠地,風(fēng)速變?yōu)槠骄啃r增加4千米/時,一段時間,風(fēng)暴保持不變,當(dāng)沙塵暴遇到綠色植被區(qū)時,其風(fēng)速平均每小時減小1千米/時,最終停止。 結(jié)合風(fēng)速與時間的圖像,回答下列問題:
(1)在y軸( )內(nèi)填入相應(yīng)的數(shù)值;
(2)沙塵暴從發(fā)生到結(jié)束,共經(jīng)過多少小時?
(3)求出當(dāng)x25時,風(fēng)速y(千米/時)與時間x(小時)之間的函數(shù)關(guān)系式.
(4)若風(fēng)速達到或超過20千米/時,稱為強沙塵暴,則強沙塵暴持續(xù)多長時間?
初二數(shù)學(xué)教案 15
教學(xué)目標(biāo):
知識與技能
1.掌握直角三角形的判別條件,并能進行簡單應(yīng)用;
2.進一步發(fā)展數(shù)感,增加對勾股數(shù)的直觀體驗,培養(yǎng)從實際問題抽象出數(shù)學(xué)問題的能力,建立數(shù)學(xué)模型.
3.會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應(yīng)用哪個結(jié)論.
情感態(tài)度與價值觀
敢于面對數(shù)學(xué)學(xué)習(xí)中的困難,并有獨立克服困難和運用知識解決問題的成功經(jīng)驗,進一步體會數(shù)學(xué)的應(yīng)用價值,發(fā)展運用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動的意識.
教學(xué)重點
運用身邊熟悉的事物,從多種角度發(fā)展數(shù)感,會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應(yīng)用哪個結(jié)論.
教學(xué)難點
會辨析哪些問題應(yīng)用哪個結(jié)論.
課前準(zhǔn)備
標(biāo)有單位長度的細(xì)繩、三角板、量角器、題篇
教學(xué)過程:
復(fù)習(xí)引入:
請學(xué)生復(fù)述勾股定理;使用勾股定理的前提條件是什么?
已知△ABC的兩邊AB=5,AC=12,則BC=13對嗎?
創(chuàng)設(shè)問題情景:由課前準(zhǔn)備好的一組學(xué)生以小品的形式演示教材第9頁古埃及造直角的方法.
這樣做得到的是一個直角三角形嗎?
提出課題:能得到直角三角形嗎
講授新課:
、比绾蝸砼袛?(用直角三角板檢驗)
這個三角形的三邊分別是多少?(一份視為1)它們之間存在著怎樣的關(guān)系?
就是說,如果三角形的三邊為,,,請猜想在什么條件下,以這三邊組成的三角形是直角三角形?(當(dāng)滿足較小兩邊的平方和等于較大邊的平方時)
⒉繼續(xù)嘗試:下面的三組數(shù)分別是一個三角形的三邊長a,b,c:
5,12,13;6,8,10;8,15,17.
(1)這三組數(shù)都滿足a2+b2=c2嗎?
(2)分別以每組數(shù)為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎?
、持苯侨切闻卸ǘɡ恚喝绻切蔚.三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.
滿足a2+b2=c2的三個正整數(shù),稱為勾股數(shù).
⒋例1一個零件的形狀如左圖所示,按規(guī)定這個零件中∠A和∠DBC都應(yīng)為直角.工人師傅量得這個零件各邊尺寸如右圖所示,這個零件符合要求嗎?
隨堂練習(xí):
、毕铝袔捉M數(shù)能否作為直角三角形的三邊長?說說你的理由.
⑴9,12,15;⑵15,36,39;
、12,35,36;⑷12,18,22.
、惨阎?ABC中BC=41,AC=40,AB=9,則此三角形為_______三角形,______是角.
、乘倪呅蜛BCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求這個四邊形的面積.
⒋習(xí)題1.3
課堂小結(jié):
、敝苯侨切闻卸ǘɡ恚喝绻切蔚娜呴La,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.
⒉滿足a2+b2=c2的三個正整數(shù),稱為勾股數(shù).勾股數(shù)擴大相同倍數(shù)后,仍為勾股數(shù).
【初二數(shù)學(xué)教案】相關(guān)文章:
數(shù)學(xué)教案12-30
小班數(shù)學(xué)教案:種花_小班數(shù)學(xué)教案07-06
趣味的數(shù)學(xué)教案02-25
人教版數(shù)學(xué)教案04-19
初中數(shù)學(xué)教案11-26
分類的數(shù)學(xué)教案11-16