- 相關(guān)推薦
冪函數(shù)教案
作為一位不辭辛勞的人民教師,很有必要精心設(shè)計一份教案,教案有助于學(xué)生理解并掌握系統(tǒng)的知識。教案應(yīng)該怎么寫才好呢?以下是小編幫大家整理的冪函數(shù)教案,歡迎閱讀,希望大家能夠喜歡。
教學(xué)目標(biāo)
1、使學(xué)生掌握的概念,圖象和性質(zhì)。
。1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域。
。2)能在基本性質(zhì)的指導(dǎo)下,用列表描點法畫出的圖象,能從數(shù)形兩方面認識的性質(zhì)。
。3)x能利用的性質(zhì)比較某些冪形數(shù)的大小,會利用的圖象畫出形如x的圖象。
2、x通過對的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進一步體會數(shù)形結(jié)合的思想方法。
3、通過對的研究,讓學(xué)生認識到數(shù)學(xué)的應(yīng)用價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生善于從現(xiàn)實生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題。
教學(xué)建議
教材分析
。1)x是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,所以應(yīng)重點研究。
(2)x本節(jié)的教學(xué)重點是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì)。難點是對底數(shù)x在x和x時,函數(shù)值變化情況的區(qū)分。
。3)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究。
教法建議
。1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是x的樣子,不能有一點差異,諸如x,x等都不是。
。2)對底數(shù)x的限制條件的理解與認識也是認識的重要內(nèi)容。如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關(guān)系到對的認識及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對數(shù)函數(shù)中底數(shù)的認識,所以一定要真正了解它的由來。
關(guān)于圖象的繪制,雖然是用列表描點法,但在具體教學(xué)中應(yīng)避免描點前的盲目列表計算,也應(yīng)避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當(dāng)之處,所以應(yīng)在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導(dǎo)再列表計算,描點得圖象。
教學(xué)設(shè)計示例
課題
教學(xué)目標(biāo)
1。x理解的定義,初步掌握的圖象,性質(zhì)及其簡單應(yīng)用。
2。x通過的圖象和性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析,歸納的能力,進一步體會數(shù)形結(jié)合的思想方法。
3。x通過對的研究,使學(xué)生能把握函數(shù)研究的基本方法,激發(fā)學(xué)生的學(xué)習(xí)興趣。
教學(xué)重點和難點
重點是理解的定義,把握圖象和性質(zhì)。
難點是認識底數(shù)對函數(shù)值影響的認識。
教學(xué)用具
投影儀
教學(xué)方法
啟發(fā)討論研究式
教學(xué)過程
一、x引入新課
我們前面學(xué)習(xí)了指數(shù)運算,在此基礎(chǔ)上,今天我們要來研究一類新的常見函數(shù)。
1、6、(板書)
這類函數(shù)之所以重點介紹的原因就是它是實際生活中的一種需要。比如我們看下面的問題:
問題1:某種細胞分裂時,由1個分裂成2個,2個分裂成4個……一個這樣的細胞分裂x次后,得到的細胞分裂的個數(shù)x與x之間,構(gòu)成一個函數(shù)關(guān)系,能寫出x與x之間的函數(shù)關(guān)系式嗎?
由學(xué)生回答:x與x之間的關(guān)系式,可以表示為x。
問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了x次后繩子剩余的長度為x米,試寫出x與x之間的函數(shù)關(guān)系。
由學(xué)生回答:x。
在以上兩個實例中我們可以看到這兩個函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量x均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為。
x的概念(板書)
1、定義:形如x的函數(shù)稱為。(板書)
教師在給出定義之后再對定義作幾點說明。
2、幾點說明x(板書)
。1)x關(guān)于對x的規(guī)定:
教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學(xué)生感到有困難,可將問題分解為若x會有什么問題?如x,此時x,x等在實數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在。
若x對于x都無意義,若x則x無論x取何值,它總是1,對它沒有研究的必要。為了避免上述各種情況的發(fā)生,所以規(guī)定x且x。
(2)關(guān)于的定義域x(板書)
教師引導(dǎo)學(xué)生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù)。此時教師可指出,其實當(dāng)指數(shù)為無理數(shù)時,x也是一個確定的實數(shù),對于無理指數(shù)冪,學(xué)過的有理指數(shù)冪的"性質(zhì)和運算法則它都適用,所以將指數(shù)范圍擴充為實數(shù)范圍,所以的定義域為x。擴充的另一個原因是因為使她它更具代表更有應(yīng)用價值。
。3)關(guān)于是否是的判斷(板書)
剛才分別認識了中底數(shù),指數(shù)的要求,下面我們從整體的角度來認識一下,根據(jù)定義我們知道什么樣的函數(shù)是,請看下面函數(shù)是否是。
。4)x,x
。5)x。
學(xué)生回答并說明理由,教師根據(jù)情況作點評,指出只有(1)和(3)是,其中(3)x可以寫成x,也是指數(shù)圖象。
最后提醒學(xué)生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時研究的關(guān)鍵在于畫出它的圖象,再細致歸納性質(zhì)。
3、歸納性質(zhì)
作圖的用什么方法。用列表描點發(fā)現(xiàn),教師準備明確性質(zhì),再由學(xué)生回答。
函數(shù)
1、定義域x:
2、值域:
3、奇偶性x:既不是奇函數(shù)也不是偶函數(shù)
4、截距:在x軸上沒有,在x軸上為1。
對于性質(zhì)1和2可以兩條合在一起說,并追問起什么作用。(確定圖象存在的大致位置)對第3條還應(yīng)會證明。對于單調(diào)性,我建議找一些特殊點。,先看一看,再下定論。對最后一條也是指導(dǎo)函數(shù)圖象畫圖的依據(jù)。(圖象位于x軸上方,且與x軸不相交。)
在此基礎(chǔ)上,教師可指導(dǎo)學(xué)生列表,描點了。取點時還要提醒學(xué)生由于不具備對稱性,故x的值應(yīng)有正有負,且由于單調(diào)性不清,所取點的個數(shù)不能太少。
此處教師可利用計算機列表描點,給出十組數(shù)據(jù),而學(xué)生自己列表描點,至少六組數(shù)據(jù)。連點成線時,一定提醒學(xué)生圖象的變化趨勢(當(dāng)x越小,圖象越靠近x軸,x越大,圖象上升的越快),并連出光滑曲線。
二、圖象與性質(zhì)(板書)
1、圖象的畫法:性質(zhì)指導(dǎo)下的列表描點法。
2、草圖:
當(dāng)畫完第一個圖象之后,可問學(xué)生是否需要再畫第二個?它是否具有代表性?(教師可提示底數(shù)的條件是且x,取值可分為兩段)讓學(xué)生明白需再畫第二個,不妨取x為例。
此時畫它的圖象的方法應(yīng)讓學(xué)生來選擇,應(yīng)讓學(xué)生意識到列表描點不是唯一的方法,而圖象變換的方法更為簡單。即x=x與x圖象之間關(guān)于x軸對稱,而此時x的圖象已經(jīng)有了,具備了變換的條件。讓學(xué)生自己做對稱,教師借助計算機畫圖,在同一坐標(biāo)系下得到x的圖象。
最后問學(xué)生是否需要再畫。(可能有兩種可能性,若學(xué)生認為無需再畫,則追問其原因并要求其說出性質(zhì),若認為還需畫,則教師可利用計算機再畫出如x的圖象一起比較,再找共性)
由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個表,如下:
以上內(nèi)容學(xué)生說不齊的,教師可適當(dāng)提出觀察角度讓學(xué)生去描述,然后再讓學(xué)生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿。
填好后,讓學(xué)生仿照此例再列一個x的表,將相應(yīng)的內(nèi)容填好。為進一步整理性質(zhì),教師可提出從另一個角度來分類,整理函數(shù)的性質(zhì)。
3、性質(zhì)。
(1)無論x為何值,x都有定義域為x,值域為x,都過點x。
。2)x時,x在定義域內(nèi)為增函數(shù),x時,x為減函數(shù)。
。3)x時,x,x x時,x。
總結(jié)之后,特別提醒學(xué)生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì)。
三、簡單應(yīng)用x (板書)
1、利用單調(diào)性比大小。x(板書)
一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡單的問題。首先我們來看下面的問題。
例1、x比較下列各組數(shù)的大小
。1)x與x;x(2)x與x;
(3)x與1x。(板書)
首先讓學(xué)生觀察兩個數(shù)的特點,有什么相同?由學(xué)生指出它們底數(shù)相同,指數(shù)不同。再追問根據(jù)這個特點,用什么方法來比較它們的大小呢?讓學(xué)生聯(lián)想,提出構(gòu)造函數(shù)的方法,即把這兩個數(shù)看作某個函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小。然后以第(1)題為例,給出解答過程。
解:x在x上是增函數(shù),且 教師最后再強調(diào)過程必須寫清三句話: 。1)x構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性。 。2)x自變量的大小比較。 。3)x函數(shù)值的大小比較。 后兩個題的過程略。要求學(xué)生仿照第(1)題敘述過程。 例2。比較下列各組數(shù)的大小 (1)x與x;x(2)x與x ; 。3)x與x。(板書) 先讓學(xué)生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法。引導(dǎo)學(xué)生發(fā)現(xiàn)對(1)來說x可以寫成x,這樣就可以轉(zhuǎn)化成同底的問題,再用例1的方法解決,對(2)來說x可以寫成x,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學(xué)生思考解決。(教師可提示學(xué)生的函數(shù)值與1有關(guān),可以用1來起橋梁作用) 最后由學(xué)生說出x>1,<1。 解決后由教師小結(jié)比較大小的方法 。1)x構(gòu)造函數(shù)的方法:x數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的) 。2)x搭橋比較法:x用特殊的數(shù)1或0。 四、鞏固練習(xí) 練習(xí):比較下列各組數(shù)的大。ò鍟 。1)x與x x(2)x與x; 。3)x與x;x(4)x與x。解答過程略 五、小結(jié) 1、的概念 2、的圖象和性質(zhì) 3、簡單應(yīng)用 六、板書設(shè)計 【冪函數(shù)教案】相關(guān)文章: 教案中班教案02-23 小雞教案中班教案01-21 小班教案游戲教案01-13 小班教案健康教案07-08 蔬菜教案整理 《蔬菜》教案11-01 安全教案 關(guān)于安全教案09-20 語言故事教案中班教案11-08 化學(xué)教案物質(zhì)的量教案12-30 小班教案:最好吃的蛋糕 教案07-13