成年女人色视频在线观看网站_一本久精品无码免费_亚洲成a人片在线观看无码专区_开心婷婷五月综合基地六月

《函數(shù)的應(yīng)用》教案

時(shí)間:2023-02-26 14:06:28 教案 投訴 投稿
  • 相關(guān)推薦

《函數(shù)的應(yīng)用》教案

  在教學(xué)工作者實(shí)際的教學(xué)活動(dòng)中,常常需要準(zhǔn)備教案,編寫教案有利于我們科學(xué)、合理地支配課堂時(shí)間。那么大家知道正規(guī)的教案是怎么寫的嗎?下面是小編整理的《函數(shù)的應(yīng)用》教案,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

《函數(shù)的應(yīng)用》教案

《函數(shù)的應(yīng)用》教案1

  教學(xué)目標(biāo):

  1.能運(yùn)用反比例函數(shù)的相關(guān)知識(shí)分析和解決一些簡(jiǎn)單的實(shí)際問題。

  2.在解決實(shí)際問題的過程中,進(jìn)一步體會(huì)和認(rèn)識(shí)反比例函數(shù)是刻

  畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一種數(shù)學(xué)模型。

  教學(xué)重點(diǎn)運(yùn)用反比例函數(shù)解決實(shí)際問題

  教學(xué)難點(diǎn)運(yùn)用反比例函數(shù)解決實(shí)際問題

  教學(xué)過程:

  一、情景創(chuàng)設(shè)

  引例:小麗是一個(gè)近視眼,整天眼鏡不離鼻子,但自己一直不理解自己的眼鏡配制的原理,很是苦悶,近來她了解到近視眼鏡的度數(shù)y(度)與鏡片的焦距為x(m)成反比例,并請(qǐng)教師傅了解到自己400度的近視眼鏡鏡片的焦距為0.2m,可惜她不知道反比例函數(shù)的概念,所以她寫不出y與x的`函數(shù)關(guān)系式,我們大家正好學(xué)過反比例函數(shù)了,誰能幫助她解決這個(gè)問題呢?

  反比例函數(shù)在生活、生產(chǎn)實(shí)際中也有著廣泛的應(yīng)用。

  例如:在矩形中S一定,a和b之間的關(guān)系?你能舉例嗎?

  二、例題精析

  例1、見課本73頁

  例2、見課本74頁

  例3、某氣球內(nèi)充滿一定質(zhì)量的氣體,當(dāng)溫度不變時(shí),氣球內(nèi)氣體的氣壓p(千帕)是氣球體積V(米3)的反比例函數(shù)(1)寫出這個(gè)函數(shù)解析式(2)當(dāng)氣球的體積為0.8m3時(shí),氣球的氣壓是多少千帕?(3)當(dāng)氣球內(nèi)的氣壓大于144千帕?xí)r,氣球?qū)⒈,為了安全起見,氣球的體積不小于多少立方米?

  四、課堂練習(xí)課本P74練習(xí)1、2題

  五、課堂小結(jié)反比例函數(shù)的應(yīng)用

  六、課堂作業(yè)課本P75習(xí)題9.3第1、2題

  七、教學(xué)反思

  更多初二數(shù)學(xué)教案,請(qǐng)點(diǎn)擊

《函數(shù)的應(yīng)用》教案2

  一、教學(xué)目標(biāo):

  1.掌握用待定系數(shù)法求三角函數(shù)解析式的方法;

  2.培養(yǎng)學(xué)生用已有的知識(shí)解決實(shí)際問題的能力;

  3.能用計(jì)算機(jī)處理有關(guān)的近似計(jì)算問題.

  二、重點(diǎn)難點(diǎn):

  重點(diǎn)是待定系數(shù)法求三角函數(shù)解析式;

  難點(diǎn)是選擇合理數(shù)學(xué)模型解決實(shí)際問題.

  三、教學(xué)過程:

  【創(chuàng)設(shè)情境】

  三角函數(shù)能夠模擬許多周期現(xiàn)象,因此在解決實(shí)際問題中有著廣泛的應(yīng)用.

  【自主學(xué)習(xí)探索研究】

  1.學(xué)生自學(xué)完成P42例1

  點(diǎn)O為做簡(jiǎn)諧運(yùn)動(dòng)的物體的平衡位置,取向右的方向?yàn)槲矬w位移的正方向,若已知振幅為3cm,周期為3s,且物體向右運(yùn)動(dòng)到距平衡位置最遠(yuǎn)處時(shí)開始計(jì)時(shí).

  (1)求物體對(duì)平衡位置的位移x(cm)和時(shí)間t(s)之間的函數(shù)關(guān)系;

 。2)求該物體在t=5s時(shí)的位置.

 。ń處熯M(jìn)行適當(dāng)?shù)脑u(píng)析.并回答下列問題:據(jù)物理常識(shí),應(yīng)選擇怎樣的函數(shù)式模擬物體的運(yùn)動(dòng);怎樣求和初相位θ;第二問中的“t=5s時(shí)的位置”與函數(shù)式有何關(guān)系?)

  2.講解p43例2(題目加已改變)

  2.講析P44例3

  海水受日月的引力,在一定的時(shí)候發(fā)生漲落的現(xiàn)象叫潮汐,一般的早潮叫潮,晚潮叫汐.在通常的情況下,船在漲潮時(shí)駛進(jìn)航道,靠近船塢;卸貨后落潮是返回海洋.下面給出了某港口在某季節(jié)每天幾個(gè)時(shí)刻的`水深.

 。1)選用一個(gè)三角函數(shù)來近似描述這個(gè)港口的水深與時(shí)間的函數(shù)關(guān)系,并給出在整點(diǎn)時(shí)的近似數(shù)值.

 。2)一條貨船的吃水深度(船底與水面的距離)為4米,安全條例規(guī)定至少要有1.5米的安全間隙(船底與海底的距離),該船何時(shí)能進(jìn)入港口?在港口能呆多久?

 。3)若船的吃水深度為4米,安全間隙為1.5米,該船在2:00開始卸貨,吃水深度以每小時(shí)0.3米的速度減少,那么該船在什么時(shí)間必須停止卸貨,將船駛向較深的水域?

  問題:

 。1)選擇怎樣的數(shù)學(xué)模型反映該實(shí)際問題?

  (2)圖表中的最大值與三角函數(shù)的哪個(gè)量有關(guān)?

 。3)函數(shù)的周期為多少?

 。4)“吃水深度”對(duì)應(yīng)函數(shù)中的哪個(gè)字母?

  3.學(xué)生完成課本P45的練習(xí)1,3并評(píng)析.

  【提煉總結(jié)】

  從以上問題可以發(fā)現(xiàn)三角函數(shù)知識(shí)在解決實(shí)際問題中有著十分廣泛的應(yīng)用,而待定系數(shù)法是三角函數(shù)中確定函數(shù)解析式最重要的方法.三角函數(shù)知識(shí)作為數(shù)學(xué)工具之一,在以后的學(xué)習(xí)中將經(jīng)常有所涉及.學(xué)數(shù)學(xué)是為了用數(shù)學(xué),通過學(xué)習(xí)我們逐步提高自己分析問題解決問題的能力.

  四、布置作業(yè):

  P46習(xí)題1.3第14、15題

《函數(shù)的應(yīng)用》教案3

  一、方程的根與函數(shù)的零點(diǎn)

  1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù)y=f(x),使f(x)=0 的實(shí)數(shù)x叫做函數(shù)的零點(diǎn)。(實(shí)質(zhì)上是函數(shù)y=f(x)與x軸交點(diǎn)的橫坐標(biāo))

  2、函數(shù)零點(diǎn)的意義:方程f(x)=0 有實(shí)數(shù)根函數(shù)y=f(x)的圖象與x軸有交點(diǎn)函數(shù)y=f(x)有零點(diǎn)

  3、零點(diǎn)定理:函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的,并且有f(a)f(b)0,那么函數(shù)y=f(x)在區(qū)間(a,b)至少有一個(gè)零點(diǎn)c,使得f( c)=0,此時(shí)c也是方程 f(x)=0 的根。

  4、函數(shù)零點(diǎn)的求法:求函數(shù)y=f(x)的零點(diǎn):

  (1) (代數(shù)法)求方程f(x)=0 的實(shí)數(shù)根;

  (2) (幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)y=f(x)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).

  5、二次函數(shù)的零點(diǎn):二次函數(shù)f(x)=ax2+bx+c(a≠0).

  1)△0,方程f(x)=0有兩不等實(shí)根,二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).

  2)△=0,方程f(x)=0有兩相等實(shí)根(二重根),二次函數(shù)的圖象與x軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).

  3)△0,方程f(x)=0無實(shí)根,二次函數(shù)的圖象與x軸無交點(diǎn),二次函數(shù)無零點(diǎn).

  二、二分法

  1、概念:對(duì)于在區(qū)間[a,b]上連續(xù)不斷且f(a)f(b)0的函數(shù)y=f(x),通過不斷地把函數(shù)f(x)的零點(diǎn)所在的區(qū)間一分為二,使區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫做二分法。

  2、用二分法求方程近似解的步驟:

 、糯_定區(qū)間[a,b],驗(yàn)證f(a)f(b)0,給定精確度ε;

  ⑵求區(qū)間(a,b)的中點(diǎn)c;

 、怯(jì)算f(c),

  ①若f(c)=0,則c就是函數(shù)的零點(diǎn);

 、谌鬴(a)f(c)0,則令b=c(此時(shí)零點(diǎn)x0∈(a,c))

 、廴鬴(c)f(b)0,則令a=c(此時(shí)零點(diǎn)x0∈(c,b))

  (4)判斷是否達(dá)到精確度ε:即若|a-b|ε,則得到零點(diǎn)近似值為a(或b);否則重復(fù)⑵~⑷

  三、函數(shù)的應(yīng)用:

  (1)評(píng)價(jià)模型: 給定模型利用學(xué)過的`知識(shí)解模型驗(yàn)證是否符合實(shí)際情況。

  (2)幾個(gè)增長(zhǎng)函數(shù)模型:一次函數(shù):y=ax+b(a0)

  指數(shù)函數(shù):y=ax(a1) 指數(shù)型函數(shù): y=kax(k1)

  冪函數(shù): y=xn( nN*) 對(duì)數(shù)函數(shù):y=logax(a1)

  二次函數(shù):y=ax2+bx+c(a0)

  增長(zhǎng)快慢:V(ax)V(xn)V(logax)

  解不等式 (1) log2x x2 (2) log2x 2x

  (3)分段函數(shù)的應(yīng)用:注意端點(diǎn)不能重復(fù)取,求函數(shù)值先判斷自變量所在的區(qū)間。

  (4)二次函數(shù)模型: y=ax2+bx+c(a≠0) 先求函數(shù)的定義域,在求函數(shù)的對(duì)稱軸,看它在不在定義域內(nèi),在的話代進(jìn)求出最值,不在的話,將定義域內(nèi)離對(duì)稱軸最近的點(diǎn)代進(jìn)求最值。

  (5)數(shù)學(xué)建模:

《函數(shù)的應(yīng)用》教案4

  一、內(nèi)容與解析

  (一)內(nèi)容:函數(shù)單調(diào)性的應(yīng)用

 。ǘ┙馕觯罕竟(jié)課要學(xué)的內(nèi)容指的是會(huì)判定函數(shù)在某個(gè)區(qū)間上的單調(diào)性、會(huì)確定函數(shù)的單調(diào)區(qū)間、能證明函數(shù)的單調(diào)性,其關(guān)鍵是利用形式化的定義處理有關(guān)的單調(diào)性問題,理解它關(guān)鍵就是要學(xué)會(huì)轉(zhuǎn)換式子 。學(xué)生已經(jīng)掌握了函數(shù)單調(diào)性的定義、代數(shù)式的變換、函數(shù)的概念等知識(shí),本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的應(yīng)用。教學(xué)的重點(diǎn)是應(yīng)用定義證明函數(shù)在某個(gè)區(qū)間上的單調(diào)性,解決重點(diǎn)的關(guān)鍵是嚴(yán)格按過程進(jìn)行證明。

  二、教學(xué)目標(biāo)及解析

 。ㄒ唬┙虒W(xué)目標(biāo):

  掌握用定義證明函數(shù)單調(diào)性的步驟,會(huì)求函數(shù)的單調(diào)區(qū)間,提高應(yīng)用知識(shí)解決問題的能力。

 。ǘ┙馕觯

  會(huì)證明就是指會(huì)利用三步曲證明函數(shù)的單調(diào)性;會(huì)求函數(shù)的單調(diào)區(qū)間就是指會(huì)利用函數(shù)的圖象寫出單調(diào)增區(qū)間或減區(qū)間;應(yīng)用知識(shí)解決問題就是指能利用函數(shù)單調(diào)性的意義去求參變量的取值情況或轉(zhuǎn)化成熟悉的問題。

  三、問題診斷分析

  在本節(jié)課的'教學(xué)中,學(xué)生可能遇到的問題是如何才能準(zhǔn)確確定 的符號(hào),產(chǎn)生這一問題的原因是學(xué)生對(duì)代數(shù)式的恒等變換不熟練。要解決這一問題,就是要根據(jù)學(xué)生的實(shí)際情況進(jìn)行知識(shí)補(bǔ)習(xí),特別是因式分解、二次根式中的分母有理化的補(bǔ)習(xí)。

  四、教學(xué)支持條件分析

  在本節(jié)課()的教學(xué)中,準(zhǔn)備使用(),因?yàn)槭褂茫ǎ,有利于()?/p>

《函數(shù)的應(yīng)用》教案5

  一、教學(xué)目標(biāo):

  了解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系.掌握利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性的方法.

  二、教學(xué)重點(diǎn):

  利用導(dǎo)數(shù)判斷一個(gè)函數(shù)在其定義區(qū)間內(nèi)的'單調(diào)性.

  教學(xué)難點(diǎn):判斷復(fù)合函數(shù)的單調(diào)區(qū)間及應(yīng)用;利用導(dǎo)數(shù)的符號(hào)判斷函數(shù)的單調(diào)性.

  三、教學(xué)過程

 。ㄒ唬⿵(fù)習(xí)引入

  1.增函數(shù)、減函數(shù)的定義

  一般地,設(shè)函數(shù)f(x)的定義域?yàn)镮:如果對(duì)于屬于定義域I內(nèi)某個(gè)區(qū)間上的任意兩個(gè)自變量x1,x2,當(dāng)x1<x2時(shí),都有f(x1)<f(x2),那么就說f(x)在這個(gè)區(qū)間上是增函數(shù).當(dāng)x1<x2時(shí),都有f(x1)>f(x2),那么就說f(x)在這個(gè)區(qū)間上是減函數(shù).

  2.函數(shù)的單調(diào)性

  如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么就說函數(shù)y=f(x)在這一區(qū)間具有(嚴(yán)格的)單調(diào)性,這一區(qū)間叫做y=f(x)的單調(diào)區(qū)間.

  在單調(diào)區(qū)間上增函數(shù)的圖象是上升的,減函數(shù)的圖象是下降的.

  例1討論函數(shù)y=x2-4x+3的單調(diào)性.

  解:取x1<x2,x1、x2∈R,取值

  f(x1)-f(x2)=(x12-4x1+3)-(x22-4x2+3)作差

 。(x1-x2)(x1+x2-4)變形

  當(dāng)x1<x2<2時(shí),x1+x2-4<0,f(x1)>f(x2),定號(hào)

  ∴y=f(x)在(-∞, 2)單調(diào)遞減.判斷

  當(dāng)2<x1<x2時(shí),x1+x2-4>0,f(x1)<f(x2),

  ∴y=f(x)在(2,+∞)單調(diào)遞增.綜上所述y=f(x)在(-∞, 2)單調(diào)遞減,y=f(x)在(2,+∞)單調(diào)遞增。

  能否利用導(dǎo)數(shù)的符號(hào)來判斷函數(shù)單調(diào)性?

《函數(shù)的應(yīng)用》教案6

  【學(xué)習(xí)目標(biāo)】

  1、學(xué)習(xí)利用正、余弦函數(shù)的圖像和性質(zhì)解決一些簡(jiǎn)單應(yīng)用;

  2、比較單位圓和圖像法研究三角函數(shù)的性質(zhì)時(shí)各自的特點(diǎn);

  3、進(jìn)一步熟悉正、余弦函數(shù)的最值、單調(diào)性、奇偶性、圖像的對(duì)稱性的應(yīng)用;

  【學(xué)習(xí)重點(diǎn)】

  正、余弦函數(shù)的圖像和性質(zhì)的簡(jiǎn)單應(yīng)用

  【學(xué)習(xí)難點(diǎn)】

  運(yùn)用函數(shù)觀點(diǎn)和數(shù)形結(jié)合思想研究函數(shù)性質(zhì)

  【學(xué)習(xí)過程】

  一、預(yù)習(xí)自學(xué)(把握基礎(chǔ))

 。亓(xí)課本第18頁、28頁、31頁、32頁關(guān)于正、余弦函數(shù)的'圖像和性質(zhì)的內(nèi)容,解決下列內(nèi)容)

  1、角α終邊和單位圓交于點(diǎn)P(u,v)時(shí),sinα= ;csα= ;

  若P(x,)是角α終邊上一點(diǎn),則sinα= ; csα= ;

  2、描點(diǎn)法畫余弦曲線時(shí)的五個(gè)關(guān)鍵點(diǎn)是:

  3、說說正、余弦函數(shù)的性質(zhì)有哪些相同點(diǎn)和不同點(diǎn)?(畫出表格比較)

  二、合作探究(鞏固深化,發(fā)展思維)

  例1.書第24頁A組第6題

  例2.書第24頁B組第4題

  例3、書第35頁B組第1題

  三、達(dá)標(biāo)檢測(cè)(相信自我,收獲成功)

  1、函數(shù)=2csx, 412【導(dǎo)學(xué)案】正、余弦函數(shù)的圖像和性質(zhì)的應(yīng)用 的增區(qū)間為 ;減區(qū)間為 。

  2、書第35頁B組第2題(分csx<0和csx≥0兩種情況化簡(jiǎn)解析式后畫出圖像)

 。1)該函數(shù)圖像為:

 。2)定義域?yàn)?;值域?yàn)?;x= 時(shí),

  函數(shù)最大值為 ;最小正周期為 ;奇偶性為 ;

  (3)該函數(shù)圖像的對(duì)稱性是 ;

  增區(qū)間為 ;

  減區(qū)間為 。

 。4)函數(shù)在[-2π,2π]上的圖像與直線=-1的交點(diǎn)個(gè)數(shù)是 。

  四、學(xué)習(xí)體會(huì)

  我的疑惑:

《函數(shù)的應(yīng)用》教案7

  一、基礎(chǔ)知識(shí)回顧:

  1、仰角、俯角 2、坡度、坡角

  二、基礎(chǔ)知識(shí)回顧:

  1、在傾斜角為300的山坡上種樹,要求相鄰兩棵數(shù)間的水平距離為3米,那么相鄰兩棵樹間的斜坡距離為 米

  2、升國(guó)旗時(shí),某同學(xué)站在離旗桿底部20米處行注目禮,當(dāng)國(guó)旗升至旗桿頂端時(shí),該同學(xué)視線的仰角為300,若雙眼離地面1.5米,則旗桿高度為 米(保留根號(hào))

  3、如圖:B、C是河對(duì)岸的兩點(diǎn),A是對(duì)岸岸邊一點(diǎn),測(cè)得∠ACB=450,BC=60米,則點(diǎn)A到BC的距離是 米。

  3、如圖所示:某地下車庫(kù)的入口處有斜坡AB,其坡度I=1:1.5,

  則AB= 。

  三、典型例題:

  例2、右圖為住宅區(qū)內(nèi)的兩幢樓,它們的高AB=CD=30米,兩樓間的距離AC=24米,現(xiàn)需了解甲樓對(duì)乙樓采光的影響,當(dāng)太陽光與水平線的夾角為300時(shí),求甲樓的影子在乙樓上有多高?

  例2、如圖所示:在湖邊高出水面50米的山頂A處望見一艘飛艇停留在湖面上空某處,觀察到飛艇底部標(biāo)志P處的仰角為450,又觀其在湖中之像的俯角為600,試求飛艇離湖面的高度h米(觀察時(shí)湖面處于平靜狀態(tài))

  例3、如圖所示:某貨船以20海里/時(shí)的速度將一批重要貨物由A處運(yùn)往正西方的B處,經(jīng)過16小時(shí)的航行到達(dá),到達(dá)后必須立即卸貨,此時(shí)接到氣象部門通知,一臺(tái)風(fēng)中心正以40海里/時(shí)的速度由A向北偏西600方向移動(dòng),距離臺(tái)風(fēng)中心200海里的`圓形區(qū)域(包括邊界)均會(huì)受到影響。

 。1)問B處是否會(huì)受到臺(tái)風(fēng)的影響?請(qǐng)說明理由。

 。2)為避免受到臺(tái)風(fēng)的影響,該船應(yīng)該在多少小時(shí)內(nèi)卸完貨物?

 。ü┻x數(shù)據(jù):=1.4 =1.7)

  四、鞏固提高:

  1、 若某人沿坡度i=3:4的斜坡前進(jìn)10米,則他所在的位置比原來的位置升高 米。

  2、如圖:A市東偏北600方向一旅游景點(diǎn)M,在A市東偏北300的公路上向前行800米到達(dá)C處,測(cè)得M位于C的北偏西150,則景點(diǎn)M到公路AC的距離為 。(結(jié)果保留根號(hào))

  3、同一個(gè)圓的內(nèi)接正方形和它的外切正方形的邊長(zhǎng)之比為( )

  A、sin450 B、sin600 C、cos300 D、cos600

  3、如圖所示,梯子AB靠在墻上,梯子的底端A到墻根O的距離為2米,梯子的頂端B到地面的距離為7米,現(xiàn)將梯子的底端A向外移動(dòng)到A,使梯子的底端A到墻根O的距離等于3米,同時(shí)梯子的頂端B下降至B,那么BB( )(填序號(hào))

  A、等于1米B、大于1米C、小于1米

  5、如圖所示:某學(xué)校的教室A處東240米的O點(diǎn)處有一貨物,經(jīng)過O點(diǎn)沿北偏西600方向有一條公路,假定運(yùn)貨車輛形成的噪音影響范圍在130米以內(nèi)。

 。1)通過計(jì)算說明,公路上車輛的噪音是否對(duì)學(xué)校造成影響?

 。2)為了消除噪音對(duì)學(xué)校的影響,計(jì)劃在公路邊修一段隔音墻,請(qǐng)你計(jì)算隔音墻的長(zhǎng)度(只考慮聲音的直線傳播)

《函數(shù)的應(yīng)用》教案8

  一、教學(xué)目標(biāo) :

  1、知識(shí)目標(biāo):掌握excel的公式組成格式。理解函數(shù)的概念,掌握常見函數(shù)如 (sum,average)的使用。

  2、能力目標(biāo):掌握使用函數(shù)(sum,average)計(jì)算所給數(shù)據(jù)的求和,求平均值,并且能夠根據(jù)工作需要修改函數(shù)參數(shù),最后達(dá)到能夠利用所學(xué)知識(shí)與技能來解決現(xiàn)實(shí)生活中所遇到的問題。

  3、情感目標(biāo):故事情境的導(dǎo)入,激發(fā)了學(xué)生學(xué)習(xí)excel電子表格的強(qiáng)烈欲望,在逐一問題得到解決中,感受學(xué)習(xí)excel電子表格必要性和重要性。在任務(wù)的驅(qū)動(dòng)下,激活學(xué)生自主學(xué)習(xí)意識(shí),在任務(wù)的完成過程中體會(huì)成功的喜悅,并在具體的任務(wù)中感受助人為樂的快樂與充實(shí)。

  二、教學(xué)重點(diǎn)、難點(diǎn):

  1、重點(diǎn):公式格式的輸入,sum、average函數(shù)的插入和使用。

  2、難點(diǎn):公式格式的修改,函數(shù)參數(shù)的正確使用以及修改。

  三、教學(xué)方法:

  引導(dǎo)操作,自主探究,任務(wù)驅(qū)動(dòng),互助學(xué)習(xí)

  四、教學(xué)素材準(zhǔn)備:

  excel電子表格版的學(xué)生成績(jī)單。

  五、教學(xué)過程

  1、 情境引入:

  (1)、 劉老師是位有著28年教學(xué)經(jīng)驗(yàn)的老教師,在這28年當(dāng)中,都擔(dān)任班主任,工作盡心盡責(zé),深受學(xué)生、校領(lǐng)導(dǎo)、家長(zhǎng)的好評(píng)!然而,隨著科學(xué)技術(shù)的.發(fā)展,學(xué)校從今年起開始步入無紙化辦公,面對(duì)計(jì)算機(jī)的使用操作,劉老師感覺心有余而力不足,畢竟老了.如今劉老師要分析學(xué)生第一次月考成績(jī),面對(duì)excel電子表格,她向以往填紙制表格一樣,用計(jì)算器逐個(gè)計(jì)算,然后再填入表格中,用時(shí)大概兩個(gè)小時(shí)。對(duì)于這項(xiàng)工作,如果你會(huì)操作電子表格,只需兩分鐘左右就可以解決。同學(xué)們,你們想擁有這種能力嗎?愿意幫劉老師的大忙嗎?

  (2)、劉老師要處理的excel電子表格。

  (3)、通過觀察劉老師要處理的excel電子表格,讓學(xué)生明確要學(xué)習(xí)的內(nèi)容與目的,——引出本節(jié)課的學(xué)習(xí)目標(biāo)。

  2、明確學(xué)習(xí)目標(biāo)

 。1)、了解公式的概念,掌握公式格式,并使用公式對(duì)數(shù)據(jù)進(jìn)行處理。

 。2)、了解函數(shù)的概念,掌握常用函數(shù)的使用如:求和函數(shù) sum,求平均值函數(shù) average。

  (3)、能夠根據(jù)工作需要修改函數(shù)參數(shù),最后達(dá)到能夠利用所學(xué)知識(shí)與技能來解決現(xiàn)實(shí)生活中所遇到的問題。

  3、新課教學(xué)

  (1)、教學(xué)活動(dòng)之一

  公式的概念——公式是excel電子表格中進(jìn)行數(shù)值計(jì)算的等式。

  公式的組成格式: =表達(dá)式。

  表達(dá)式可包含:有運(yùn)算符、單元格、常量、函數(shù)等。

  例如: =b2+6, =b2+c2+d2, =sum(參數(shù))

  在預(yù)設(shè)置的電子表格——“練兵場(chǎng)1”進(jìn)行探究,首先通過引導(dǎo)操作,讓學(xué)生掌握公式的組成及自定義公式的使用,再把時(shí)間留給學(xué)生,通過自主探究,最終掌握最基本公式組成格式及自定義公式的使用,最后利用自定義公式計(jì)算10名學(xué)生成績(jī)的總分、平均分。

  假如: 對(duì)于某項(xiàng)工作,共有200列,也需要我們進(jìn)行求和,那么,我們也一樣逐個(gè)這樣進(jìn)行相加操作嗎?有沒有更快的解決辦法呢?為了提高工作效率,引出特殊公式——函數(shù)。

  (2)、教學(xué)活動(dòng)之二

  函數(shù)的概念——函數(shù)是excel電子表格預(yù)先定義好的特殊公式。

  函數(shù)組成: = 函數(shù)名(參數(shù))

  例如: =sum(b2:d2)

  =average(b2:d2)

  在預(yù)設(shè)置的電子表格——“練兵場(chǎng)2”進(jìn)行探究,首先通過引導(dǎo)操作,讓學(xué)生掌握最常用的函數(shù)(sum,average)的組成及使用,再把時(shí)間留給學(xué)生,通過自主探究,最終掌握最常用的函數(shù)(sum,average)的組成及使用,最后讓他們利用所學(xué)知識(shí)技能計(jì)算10名學(xué)生成績(jī)的總分、平均分。

《函數(shù)的應(yīng)用》教案9

  一. 教材分析

  1、教材的地位及作用

  函數(shù)是一種重要的數(shù)學(xué)思想,是實(shí)際生活中數(shù)學(xué)建模的重要工具,二次函數(shù)的教學(xué)在初中數(shù)學(xué)教學(xué)中有著重要的地位。本節(jié)內(nèi)容的教學(xué),在函數(shù)的教學(xué)中有著承上啟下的作用。它既是對(duì)已學(xué)一次函數(shù)及反比例函數(shù)的復(fù)習(xí),又是對(duì)二次函數(shù)知識(shí)的延續(xù)和深化,為將來二次函數(shù)一般情形的教學(xué)乃至高中階段函數(shù)的教學(xué)打下基礎(chǔ),做好鋪墊。

  2.教學(xué)目標(biāo)

  (1) 掌握二此函數(shù)的概念并能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。注重學(xué)生參與,聯(lián)系實(shí)際,豐富學(xué)生的感性認(rèn)識(shí),培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣。[知識(shí)與技能目標(biāo)]

  (2)讓學(xué)生經(jīng)歷觀察、比較、歸納、應(yīng)用,以及猜想、驗(yàn)證的學(xué)習(xí)過程,使學(xué)生掌握類比、轉(zhuǎn)化等學(xué)習(xí)數(shù)學(xué)的方法,養(yǎng)成既能自主探索,又能合作探究的良好學(xué)習(xí)習(xí)慣。[過程與方法目標(biāo)]

  (3) 讓學(xué)生在數(shù)學(xué)活動(dòng)中學(xué)會(huì)與人相處,感受探索與創(chuàng)造,體驗(yàn)成功的喜悅,[情感、態(tài)度、價(jià)值觀目標(biāo)]

  3、教學(xué)的重、難點(diǎn)

  重點(diǎn):二次函數(shù)的概念和解析式

  難點(diǎn):本節(jié)“合作學(xué)習(xí)”涉及的實(shí)際問題有的較為復(fù)雜,要求學(xué)生有較強(qiáng)的概括能力

  4、 學(xué)情分析

 、賹W(xué)生已掌握一次函數(shù),反比例函數(shù)的概念,圖象的畫法,以及它們圖象的性質(zhì)。 ②學(xué)生個(gè)性活潑,積極性高,初步具有對(duì)數(shù)學(xué)問題進(jìn)行合作探究的意識(shí)與 能力。

 、鄢跞龑W(xué)生程度參差不齊,兩極分化已形成。

  二、教法學(xué)法分析

  1` 教法(關(guān)鍵詞:情境、探究、分層)

  基于本節(jié)課內(nèi)容的特點(diǎn)和初三學(xué)生的年齡特征,我以“探究式”體驗(yàn)教學(xué)法和“啟發(fā)式”教學(xué)法 為主進(jìn)行教學(xué)。讓學(xué)生在開放的情境中,在教師的 引導(dǎo)啟發(fā)下,同學(xué)的合作幫助下,通過探究發(fā)現(xiàn),讓學(xué)生經(jīng)歷數(shù)學(xué)知識(shí)的形成和應(yīng)用過程,加深對(duì)數(shù)學(xué)知識(shí)的理解。教師著眼于引導(dǎo),學(xué)生著眼于探索,側(cè)重于學(xué)生能力的提高、思維的訓(xùn)練。同時(shí)考慮到學(xué)生的個(gè)體差異,在教學(xué)的各個(gè)環(huán)節(jié)中進(jìn)行分層施教。

  2、學(xué)法(關(guān)鍵詞:類比、自主、合作)

  根據(jù)學(xué)生的思維特點(diǎn)、認(rèn)知水平,遵循“教必須以學(xué)為立足點(diǎn)”的教育理念,讓每一個(gè)學(xué)生自主參與整堂課的知識(shí)構(gòu)建。在各個(gè)環(huán)節(jié)中引導(dǎo)學(xué)生類比遷移,對(duì)照學(xué)習(xí)。以自主探索為主,學(xué)會(huì)合作交流,在師生互動(dòng)、生生互動(dòng)中讓每個(gè)學(xué)生動(dòng)口,動(dòng)手,動(dòng)腦,培養(yǎng)學(xué)生學(xué)習(xí)的主動(dòng)性和積極性,使學(xué)生由“學(xué)會(huì)”變“會(huì)學(xué)”和“樂學(xué)”。

  3、教學(xué)手段

  采用多媒體教學(xué),直觀呈現(xiàn)拋物線和諧、對(duì)稱的美,激發(fā)學(xué)生的學(xué)習(xí) 興趣,參與熱情,增大教學(xué)容量,提高教學(xué)效率。

  三、教學(xué)過程

  完整的數(shù)學(xué)學(xué)習(xí)過程是一個(gè)不斷探索、發(fā)現(xiàn)、驗(yàn)證的過程,根據(jù)新課標(biāo)要求,根據(jù)“以人為本,以學(xué)定教”的教學(xué)理念,結(jié)合學(xué)生實(shí)際,制訂以下教學(xué)流程:

  (一).創(chuàng)設(shè)情境 溫故引新

  以提問的形式復(fù)習(xí)一元二次方程的一般形式,一次函數(shù),反比例函數(shù)的'定義,然后讓學(xué)生欣賞一組優(yōu)美的有關(guān)拋物線的圖案,創(chuàng)設(shè)情境:

  (1)你們喜歡打籃球嗎?

  (2)你們知道:投籃時(shí),籃球運(yùn)動(dòng)的路線是什么曲線?怎樣計(jì)算籃球達(dá)到最高點(diǎn)時(shí)的高度?

  從而引出課題〈〈二次函數(shù)〉〉,導(dǎo)入新課

  (二).合作學(xué)習(xí),探索新知

  為了更貼近生活,我先設(shè)計(jì)了兩個(gè)和實(shí)際生活有關(guān)的練習(xí)題。鼓勵(lì)學(xué)生積極發(fā)言,充分調(diào)動(dòng)學(xué)生的主動(dòng)性。然后出示課本上的兩個(gè)問題,在這個(gè)環(huán)節(jié)中,我讓學(xué)生在教師的引導(dǎo)下,先獨(dú)立思考,再以小組為單位交流成果,以培養(yǎng)學(xué)生自主探索、合作探究的能力。四個(gè)解析式都列出來后。讓學(xué)生通過觀察與思考,這些解析式有什么共同特征,啟發(fā)學(xué)生用自己的語言總結(jié),從而得出二次函數(shù)的概念,并且提高了學(xué)生的語言表達(dá)能力。

  學(xué)生在學(xué)習(xí)二次函數(shù)的概念時(shí)要求學(xué)生既要知道表示二次函數(shù)的解析式中字母的意義,還要能根據(jù)給出的函數(shù)解析式判斷一個(gè)函數(shù)是不是二次函數(shù)

  (三)當(dāng)堂訓(xùn)練 鞏固提高

  由于學(xué)生層次不一,練習(xí)的設(shè)計(jì)充分考慮到學(xué)生的個(gè)體差異,滿足不同層次學(xué)生的學(xué)習(xí)需求,實(shí)現(xiàn)有“差異的”發(fā)展。讓每一個(gè)學(xué)生都感受成功的喜悅。我設(shè)計(jì)了3道練習(xí)題,其難易程度逐步提高,第一道題面對(duì)所有的學(xué)生,學(xué)生可以根據(jù)二次函數(shù)的概念直接判斷,但需要強(qiáng)調(diào)該化簡(jiǎn)的必須化簡(jiǎn)后才可以判斷。第二道題讓學(xué)生逆向思維,根據(jù)條件自己寫二次函數(shù),從而加深了對(duì)二次函數(shù)概念的理解。最后一道題綜合性較強(qiáng),可以提高他們的綜合素質(zhì)。

  (四).小結(jié)歸納 拓展轉(zhuǎn)化

  讓學(xué)生用自己的語言談?wù)勛约旱氖斋@,可以將這一節(jié)的知識(shí)條理化,進(jìn)一步掌握二次函數(shù)的概念。

  (五)布置作業(yè) 學(xué)以致用

  作業(yè)分必做題、選做題,體現(xiàn)分層思想,通過作業(yè),內(nèi)化知識(shí),檢驗(yàn)學(xué)生掌握知識(shí)的情況,發(fā)現(xiàn)和彌補(bǔ)教與學(xué)中遺漏與不足。同時(shí),選做題具有總結(jié)性,可引導(dǎo)學(xué)生研究二次函數(shù),一次函數(shù),正比例函數(shù)的聯(lián)系.

  四.評(píng)價(jià)分析

  本節(jié)課的教學(xué)從學(xué)生已有的認(rèn)知基礎(chǔ)出發(fā),以學(xué)生自主探索、合作交流為主線,讓學(xué)生經(jīng)歷數(shù)學(xué)知識(shí)的形成與應(yīng)用過程,加深對(duì)所學(xué)知識(shí)的理解,從而突破重難點(diǎn)。整節(jié)課注重學(xué)生能力的培養(yǎng)和習(xí)慣的養(yǎng)成。由于學(xué)生的層次不一,我全程關(guān)注每一個(gè)學(xué)生的學(xué)習(xí)狀態(tài),進(jìn)行分層施教,因勢(shì)利導(dǎo),隨機(jī)應(yīng)變,適時(shí)調(diào)整教學(xué)環(huán)節(jié),,實(shí)現(xiàn)評(píng)價(jià)主體和形式的多樣化,把握評(píng)價(jià)的時(shí)機(jī)與尺度,激發(fā)學(xué)生的學(xué)習(xí)興趣,激活課堂氣氛,使課堂教學(xué)達(dá)到最佳狀態(tài)。

  五.教學(xué)反思

  1.本節(jié)課通過學(xué)生合作交流,自己列出不同問題中的解析式,并通過觀察他們的共同特征,成功得出了二次函數(shù)的概念。

  2.本節(jié)課設(shè)計(jì)的以問題為主線,培養(yǎng)學(xué)生有條理思考問題的習(xí)慣和歸納概括能力,并重視培養(yǎng)學(xué)生的語言表達(dá)能力。同時(shí)不斷激發(fā)學(xué)生的探索精神,提高了學(xué)生分析和解決問題的能力。使學(xué)生有成功體驗(yàn)。

《函數(shù)的應(yīng)用》教案10

  教學(xué)目標(biāo):

  1、能利用反比例函數(shù)的相關(guān)的知識(shí)分析和解決一些簡(jiǎn)單的實(shí)際問題

  2、能根據(jù)實(shí)際問題中的條件確定反比例函數(shù)的解析式。

  3、在解決實(shí)際問題的過程中,進(jìn)一步體會(huì)和認(rèn)識(shí)反比例函數(shù)是刻畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一種數(shù)學(xué)模型。

  教學(xué)重點(diǎn)、難點(diǎn):

  重點(diǎn):能利用反比例函數(shù)的相關(guān)的知識(shí)分析和解決一些簡(jiǎn)單的實(shí)際問題

  難點(diǎn):根據(jù)實(shí)際問題中的條件確定反比例函數(shù)的解析式

  教學(xué)過程:

  一、情景創(chuàng)設(shè):

  為了預(yù)防“非典”,某學(xué)校對(duì)教室采用藥熏消毒法進(jìn)行消毒, 已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量(g)與時(shí)間x(in)成正比例.藥物燃燒后,與x成反比例(如圖所示),現(xiàn)測(cè)得藥物8in燃畢,此時(shí)室內(nèi)空氣中每立方米的含藥量為6g,請(qǐng)根據(jù)題中所提供的信息,解答下列問題:

  (1)藥物燃燒時(shí),關(guān)于x 的函數(shù)關(guān)系式為: ________, 自變量x 的取值范圍是:_______,藥物燃燒后關(guān)于x的函數(shù)關(guān)系式為_______.

  (2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6g時(shí)學(xué)生方可進(jìn)教室,那么從消毒開始,至少需要經(jīng)過______分鐘后,學(xué)生才能回到教室;

  (3)研究表明,當(dāng)空氣中每立方米的'含藥量不低于3g且持續(xù)時(shí)間不低于10in時(shí),才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?

  二、新授:

  例1、小明將一篇24000字的社會(huì)調(diào)查報(bào)告錄入電腦,打印成文。

 。1)如果小明以每分種120字的速度錄入,他需要多少時(shí)間才能完成錄入任務(wù)?

  (2)錄入文字的速度v(字/in)與完成錄入的時(shí)間t(in)有怎樣的函數(shù)關(guān)系?

 。3)小明希望能在3h內(nèi)完成錄入任務(wù),那么他每分鐘至少應(yīng)錄入多少個(gè)字?

  例2某自來水公司計(jì)劃新建一個(gè)容積為 的長(zhǎng)方形蓄水池。

 。1)蓄水池的底部S 與其深度 有怎樣的函數(shù)關(guān)系?

 。2)如果蓄水池的深度設(shè)計(jì)為5,那么蓄水池的底面積應(yīng)為多少平方米?

 。3)由于綠化以及輔助用地的需要,經(jīng)過實(shí)地測(cè)量,蓄水池的長(zhǎng)與寬最多只能設(shè)計(jì)為100和60,那么蓄水池的深度至少達(dá)到多少才能滿足要求?(保留兩位小數(shù))

  三、課堂練習(xí)

  1、一定質(zhì)量的氧氣,它的密度 (g/3)是它的體積V( 3) 的反比例函數(shù), 當(dāng)V=103時(shí),=1.43g/3. (1)求與V的函數(shù)關(guān)系式;(2)求當(dāng)V=23時(shí)求氧氣的密度.

  2、某地上年度電價(jià)為0.8元&nt;/&nt;度,年用電量為1億度.本年度計(jì)劃將電價(jià)調(diào)至0.55元至0.75元之間.經(jīng)測(cè)算,若電價(jià)調(diào)至x元,則本年度新增用電量(億度)與(x-0.4)(元)成反比例,當(dāng)x=0.65時(shí),=-0.8.

  (1)求與x之間的函數(shù)關(guān)系式;

  (2)若每度電的成本價(jià)為0.3元,則電價(jià)調(diào)至多少元時(shí),本年度電力部門的收益將比上年度增加20%? [收益=(實(shí)際電價(jià)-成本價(jià))×(用電量)]

  3、如圖,矩形ABCD中,AB=6,AD=8,點(diǎn)P在BC邊上移動(dòng)(不與點(diǎn)B、C重合),設(shè)PA=x,點(diǎn)D到PA的距離DE=.求與x之間的函數(shù)關(guān)系式及自變量x的取值范圍.

  四、小結(jié)

  五、作業(yè)

  30.3——1、2、3

《函數(shù)的應(yīng)用》教案11

  教學(xué)目標(biāo)

  1、能夠運(yùn)用函數(shù)的性質(zhì),指數(shù)函數(shù),對(duì)數(shù)函數(shù)的性質(zhì)解決某些簡(jiǎn)單的實(shí)際問題.

  (1)能通過閱讀理解讀懂題目中文字?jǐn)⑹鏊从车膶?shí)際背景,領(lǐng)悟其中的數(shù)學(xué)本,弄清題中出現(xiàn)的量及其數(shù)學(xué)含義.

  (2)能根據(jù)實(shí)際問題的具體背景,進(jìn)行數(shù)學(xué)化設(shè)計(jì),將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,并調(diào)動(dòng)函數(shù)的相關(guān)性質(zhì)解決問題.

  (3)能處理有關(guān)幾何問題,增長(zhǎng)率的問題,和物理方面的實(shí)際問題.

  2、通過聯(lián)系實(shí)際的引入問題和解決帶有實(shí)際意義的某些問題,培養(yǎng)學(xué)生分析問題,解決問題的能力和運(yùn)用數(shù)學(xué)的意識(shí),也體現(xiàn)了函數(shù)知識(shí)的應(yīng)用價(jià)值,也滲透了訓(xùn)練的價(jià)值.

  3、通過對(duì)實(shí)際問題的研究解決,滲透了數(shù)學(xué)建模的思想.提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,使學(xué)生對(duì)函數(shù)思想等有了進(jìn)一步的了解.

  教學(xué)建議

  教材分析

 。1)本小節(jié)內(nèi)容是全章知識(shí)的綜合應(yīng)用.這一節(jié)的出現(xiàn)體現(xiàn)了強(qiáng)化應(yīng)用意識(shí)的要求,讓學(xué)生能把數(shù)學(xué)知識(shí)應(yīng)用到生產(chǎn),生活的實(shí)際中去,形成應(yīng)用數(shù)學(xué)的意識(shí).所以培養(yǎng)學(xué)生分析解決問題的能力和運(yùn)用數(shù)學(xué)的意識(shí)是本小節(jié)的重點(diǎn),根據(jù)實(shí)際問題建立數(shù)學(xué)模型是本小節(jié)的難點(diǎn).

 。2)在解決實(shí)際問題過程中常用到函數(shù)的知識(shí)有:函數(shù)的概念,函數(shù)解析式的確定,指數(shù)函數(shù)的概念及其性質(zhì),對(duì)數(shù)概念及其性質(zhì),和二次函數(shù)的概念和性質(zhì).在方法上涉及到換元法,配方法,方程的思想,數(shù)形結(jié)合等重要的思方法..事業(yè)本節(jié)的學(xué)習(xí),既是對(duì)知識(shí)的復(fù)習(xí),也是對(duì)方法和思想的再認(rèn)識(shí).

  教法建議

 。1)本節(jié)中處理的均為應(yīng)用問題,在題目的敘述表達(dá)上均較長(zhǎng),其中要分析把握的信息量較多.事業(yè)處理這種大信息量的閱讀題首先要在閱讀上下功夫,找出關(guān)鍵語言,關(guān)鍵數(shù)據(jù),特別是對(duì)實(shí)際問題中數(shù)學(xué)變量的隱含限制條件的提取尤為重要.

 。2)對(duì)于應(yīng)用問題的處理,第二步應(yīng)根據(jù)各個(gè)量的關(guān)系,進(jìn)行數(shù)學(xué)化設(shè)計(jì)建立目標(biāo)函數(shù),將實(shí)際問題通過分析概括,抽象為數(shù)學(xué)問題,最后是用數(shù)學(xué)方法將其化為常規(guī)的函數(shù)問題(或其它數(shù)學(xué)問題)解決.此類題目一般都是分為這樣三步進(jìn)行.

 。3)在現(xiàn)階段能處理的應(yīng)用問題一般多為幾何問題,利潤(rùn)最大,費(fèi)用最省問題,增長(zhǎng)率的問題及物理方面的問題.在選題時(shí)應(yīng)以以上幾方面問題為主.

  教學(xué)設(shè)計(jì)示例

  函數(shù)初步應(yīng)用

  教學(xué)目標(biāo)

  1、能夠運(yùn)用常見函數(shù)的性質(zhì)及平面幾何有關(guān)知識(shí)解決某些簡(jiǎn)單的實(shí)際問題.

  2、通過對(duì)實(shí)際問題的研究,培養(yǎng)學(xué)生分析問題,解決問題的能力

  3、通過把實(shí)際問題向數(shù)學(xué)問題的轉(zhuǎn)化,滲透數(shù)學(xué)建模的思想,提高學(xué)生用數(shù)學(xué)的意識(shí),及學(xué)習(xí)數(shù)學(xué)的興趣.

  教學(xué)重點(diǎn),難點(diǎn)

  重點(diǎn)是應(yīng)用問題的閱讀分析和解決.

  難點(diǎn)是根據(jù)實(shí)際問題建立相應(yīng)的數(shù)學(xué)模型

  教學(xué)方法

  師生互動(dòng)式

  教學(xué)用具

  投影儀

  教學(xué)過程b

  一、提出問題

  數(shù)學(xué)來自生活,又應(yīng)用于生活和生產(chǎn)實(shí)踐.而實(shí)際問題中又蘊(yùn)涵著豐富的數(shù)學(xué)知識(shí),數(shù)學(xué)思想與方法.如剛剛學(xué)過的函數(shù)內(nèi)容在實(shí)際生活中就有著廣泛的應(yīng)用.今天我們就一起來探討幾個(gè)應(yīng)用問題.

  問題一:如圖,△是邊長(zhǎng)為2的正三角形,這個(gè)三角形在直線的左方被截得圖形的面積為,求函數(shù)的解析式及定義域.(板書)

  (作為應(yīng)用問題由于學(xué)生是初次研究,所以可先選擇以數(shù)學(xué)知識(shí)為背景的應(yīng)用題,讓學(xué)生研究)

  首先由學(xué)生自己閱讀題目,教師可利用計(jì)算機(jī)讓直線運(yùn)動(dòng)起來,觀察三角形的變化,由學(xué)生提出研究方法.由學(xué)生說出由于圖形的不同計(jì)算方法也不同,應(yīng)分類討論.分界點(diǎn)應(yīng)在,再由另一個(gè)學(xué)生說出面積的計(jì)算方法.

  當(dāng)時(shí)(采用直接計(jì)算的方法)

  當(dāng)時(shí)(板書)

  (計(jì)算第二段時(shí),可以再畫一個(gè)相應(yīng)的圖形,如圖)

  綜上!

  此時(shí)可以問學(xué)生這是什么函數(shù)?定義域應(yīng)怎樣計(jì)算?讓學(xué)生明確是分段函數(shù)的前提條件下,求出定義域?yàn)椋?板書)

  問題解決后可由教師簡(jiǎn)單小結(jié)一下研究過程中的主要步驟(1)閱讀理解;(2)建立目標(biāo)函數(shù);(3)按要求解決數(shù)學(xué)問題.

  下面我們一起看第二個(gè)問題

  問題二:某工廠制定了從1999年底開始到20xx年底期間的生產(chǎn)總值持續(xù)增長(zhǎng)的兩個(gè)三年計(jì)劃,預(yù)計(jì)生產(chǎn)總值年平均增長(zhǎng)率為,則第二個(gè)三年計(jì)劃生產(chǎn)總值與第一個(gè)三年計(jì)劃生產(chǎn)總值相比,增長(zhǎng)率為多少?(投影儀打出)

  首先讓學(xué)生搞清增長(zhǎng)率的含義是兩個(gè)三年總產(chǎn)值之間的關(guān)系問題,所以問題轉(zhuǎn)化為已知年增長(zhǎng)率為,分別求兩個(gè)三年計(jì)劃的總產(chǎn)值.

  設(shè)1999年總產(chǎn)值為,第一步讓學(xué)生依次說出20xx年到20xx年的年總產(chǎn)值,它們分別為:

  20xx年20xx年

  20xx年20xx年

  20xx年20xx年(板書)

  第二步再讓學(xué)生分別算出第一個(gè)三年總產(chǎn)值和第二個(gè)三年總產(chǎn)值

  =++

  =.

  =++

  =.(板書)

  第三步計(jì)算增長(zhǎng)率.

  .(板書)

  計(jì)算后教師可以讓學(xué)生總結(jié)一下關(guān)于增長(zhǎng)率問題的研究應(yīng)注意的問題.最后教師再指出關(guān)于增長(zhǎng)率的問題經(jīng)常構(gòu)建的數(shù)學(xué)模型為,其中為基數(shù),為增長(zhǎng)率,為時(shí)間.所以經(jīng)常會(huì)用到指數(shù)函數(shù)有關(guān)知識(shí)加以解決.

  總結(jié)后再提出最后一個(gè)問題

  問題三:一商場(chǎng)批發(fā)某種商品的'進(jìn)價(jià)為每個(gè)80元,零售價(jià)為每個(gè)100元,為了促進(jìn)銷售,擬采用買一個(gè)這種商品贈(zèng)送一個(gè)小禮品的辦法,試驗(yàn)表明,禮品價(jià)格為1元時(shí),銷售量可增加10%,且在一定范圍內(nèi)禮品價(jià)格每增加1元銷售量就可增加10%.設(shè)未贈(zèng)送禮品時(shí)的銷售量為件.

  (1)寫出禮品價(jià)值為元時(shí),所獲利潤(rùn)(元)關(guān)于的函數(shù)關(guān)系式;

  (2)請(qǐng)你設(shè)計(jì)禮品價(jià)值,以使商場(chǎng)獲得最大利潤(rùn).(為節(jié)省時(shí)間,應(yīng)用題都可以用投影儀打出)

  題目出來后要求學(xué)生認(rèn)真讀題,找出關(guān)鍵量.再引導(dǎo)學(xué)生找出與利潤(rùn)相關(guān)的量.包括銷售量,每件的利潤(rùn)及禮品價(jià)值等.讓學(xué)生思考后,列出銷售量的式子.再找學(xué)生說出每件商品的利潤(rùn)的表達(dá)式,完成第一問的列式計(jì)算.

  解:.(板書)

  完成第一問后讓學(xué)生觀察解析式的特點(diǎn),提出如何求這個(gè)函數(shù)的最大值(此出最值問題是學(xué)生比較陌生的,方法也是學(xué)生不熟悉的)所以學(xué)生遇到思維障礙,教師可適當(dāng)提示,如可以先具體計(jì)算幾個(gè)值看一看能否發(fā)現(xiàn)規(guī)律,若看不出規(guī)律,能否把具體計(jì)算改進(jìn)一下,再計(jì)算中能體現(xiàn)它是最大?也就是讓學(xué)生意識(shí)到應(yīng)用最大值的概念來解決問題.最終將問題概括為兩個(gè)不等式的求解即

  (2)若使利潤(rùn)最大應(yīng)滿足

  同時(shí)成立即解得

  當(dāng)或時(shí),有最大值.

  由于這是實(shí)際應(yīng)用問題,在答案的選擇上應(yīng)考慮價(jià)值為9元的禮品贈(zèng)送,可獲的最大利潤(rùn).

  三.小結(jié)

  通過以上三個(gè)應(yīng)用問題的研究,要學(xué)生了解解決應(yīng)用問題的具體步驟及相應(yīng)的注意事項(xiàng).

  四.作業(yè)略

  五.板書設(shè)計(jì)

  2.9函數(shù)初步應(yīng)用

  問題一:

  解:

  問題二

  分析

  問題三

  分析

  小結(jié):

《函數(shù)的應(yīng)用》教案12

  教學(xué)目標(biāo):

  ①掌握對(duì)數(shù)函數(shù)的性質(zhì)。

 、趹(yīng)用對(duì)數(shù)函數(shù)的性質(zhì)可以解決:對(duì)數(shù)的大小比較,求復(fù)

  合函數(shù)的定義域、值 域及單調(diào)性。

 、 注重函數(shù)思想、等價(jià)轉(zhuǎn)化、分類討論等思想的滲透,提高

  解題能力。

  教學(xué)重點(diǎn)與難點(diǎn):對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用。

  教學(xué)過程設(shè)計(jì):

  ⒈復(fù)習(xí)提問:對(duì)數(shù)函數(shù)的概念及性質(zhì)。

  ⒉開始正課

  1 比較數(shù)的大小

  例 1 比較下列各組數(shù)的大小。

 、舕oga5。1 ,loga5。9 (a>0,a≠1)

  ⑵log0。50。6 ,logЛ0。5 ,lnЛ

  師:請(qǐng)同學(xué)們觀察一下⑴中這兩個(gè)對(duì)數(shù)有何特征?

  生:這兩個(gè)對(duì)數(shù)底相等。

  師:那么對(duì)于兩個(gè)底相等的對(duì)數(shù)如何比大?

  生:可構(gòu)造一個(gè)以a為底的對(duì)數(shù)函數(shù),用對(duì)數(shù)函數(shù)的單調(diào)性比大小。

  師:對(duì),請(qǐng)敘述一下這道題的解題過程。

  生:對(duì)數(shù)函數(shù)的單調(diào)性取決于底的大。寒(dāng)0

  調(diào)遞減,所以loga5。1>loga5。9 ;當(dāng)a>1時(shí),函數(shù)y=logax單調(diào)遞

  增,所以loga5。1

  板書:

  解:Ⅰ)當(dāng)0

  ∵5。1<5。9 1="">loga5。9

 、颍┊(dāng)a>1時(shí),函數(shù)y=logax在(0,+∞)上是增函數(shù),

  ∵5。1<5。9 ∴l(xiāng)oga5。1

  師:請(qǐng)同學(xué)們觀察一下⑵中這三個(gè)對(duì)數(shù)有何特征?

  生:這三個(gè)對(duì)數(shù)底、真數(shù)都不相等。

  師:那么對(duì)于這三個(gè)對(duì)數(shù)如何比大小?

  生:找“中間量”, log0。50。6>0,lnЛ>0,logЛ0。5<0;lnл>1,log0。50。6<1,所以logЛ0。5< log0。50。6< lnЛ。

  板書:略。

  師:比較對(duì)數(shù)值的大小常用方法:①構(gòu)造對(duì)數(shù)函數(shù),直接利用對(duì)數(shù)函

  數(shù) 的單調(diào)性比大小,②借用“中間量”間接比大小,③利用對(duì)數(shù)

  函數(shù)圖象的位置關(guān)系來比大小。

  2 函數(shù)的定義域, 值 域及單調(diào)性。

  例 2 ⑴求函數(shù)y=的定義域。

 、平獠坏仁絣og0。2(x2+2x-3)>log0。2(3x+3)

  師:如何來求⑴中函數(shù)的定義域?(提示:求函數(shù)的定義域,就是要

  使函數(shù)有意義。若函數(shù)中含有分母,分母不為零;有偶次根式,

  被開方式大于或等于零;若函數(shù)中有對(duì)數(shù)的形式,則真數(shù)大于

  零,如果函數(shù)中同時(shí)出現(xiàn)以上幾種情況,就要全部考慮進(jìn)去,求

  它們共同作用的結(jié)果。)

  生:分母2x-1≠0且偶次根式的被開方式log0。8x-1≥0,且真數(shù)x>0。

  板書:

  解:∵ 2x-1≠0 x≠0。5

  log0。8x-1≥0 , x≤0。8

  x>0 x>0

  ∴x(0,0。5)∪(0。5,0。8〕

  師:接下來我們一起來解這個(gè)不等式。

  分析:要解這個(gè)不等式,首先要使這個(gè)不等式有意義,即真數(shù)大于零,

  再根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性求解。

  師:請(qǐng)你寫一下這道題的解題過程。

  生:<板書>

  解: x2+2x-3>0 x<-3 x="">1

  (3x+3)>0 , x>-1

  x2+2x-3<(3x+3) -2

  不等式的解為:1

  ⒊小結(jié)

  這堂課主要講解如何應(yīng)用對(duì)數(shù)函數(shù)的性質(zhì)解決一些問題,希望能通過這堂課使同學(xué)們對(duì)等價(jià)轉(zhuǎn)化、分類討論等思想加以應(yīng)用,提高解題能力。

  ⒋作業(yè)

 、沤獠坏仁

 、賚g(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a為常數(shù))

  ⑵已知函數(shù)y=loga(x2-2x),(a>0,a≠1)

 、偾笏腵單調(diào)區(qū)間;②當(dāng)0

 、且阎瘮(shù)y=loga (a>0, b>0, 且 a≠1)

 、偾笏亩x域;②討論它的奇偶性;

 、塾懻撍膯握{(diào)性。

 、纫阎瘮(shù)y=loga(ax-1) (a>0,a≠1),

 、偾笏亩x域;

 、诋(dāng)x為何值時(shí),函數(shù)值大于1;

 、塾懻撍膯握{(diào)性。

《函數(shù)的應(yīng)用》教案13

  教學(xué)目標(biāo):使學(xué)生對(duì)反比例函數(shù)和反比 例函數(shù)的圖象意義加深理解。

  教學(xué)重點(diǎn):反比例函數(shù) 的應(yīng)用

  教學(xué)程序:

  一、新授:

  1、實(shí)例1:(1)用含S的代數(shù)式 表示P,P是 S的反比例函數(shù)嗎?為什么?

  答:P=600s (s0),P 是S的'反比例函數(shù)。

  (2)、當(dāng)木板面積為0.2 m2時(shí),壓強(qiáng)是多少?

  答:P=3000Pa

  (3)、如果要求壓強(qiáng)不超過6000Pa,木板的面積至少 要多少?

  答:至少0.lm2。

  (4)、在直角坐標(biāo)系中,作出相應(yīng)的函數(shù) 圖象。

  (5)、請(qǐng)利用圖象(2)和(3)作出直觀 解釋,并與同伴進(jìn)行交流。

  二、做一做

  1、(1)蓄電池的電 壓為定值,使用此電源時(shí),電流I(A)與電阻R()之間的函數(shù)關(guān)系如圖5-8 所示。

  (2)蓄電池的電壓是多少?你以寫出這一函數(shù)的表達(dá)式嗎?

  電壓U=36V , I=60k

  2、完成下表,并 回答問題,如果以蓄電池為電源的用電器限制電流不得超過10A,那么用電器的可變電阻應(yīng)控制在什么范圍內(nèi)?

  R() 3 4 5 6 7 8 9 10

  I(A )

  3、如圖5-9,正比例函數(shù)y=k1x的圖象與反比例函數(shù)y=60k 的圖象相交于A、B兩點(diǎn),其中點(diǎn)A的坐標(biāo)為(3 ,23 )

  (1)分別寫出這兩個(gè)函 數(shù)的表達(dá)式;

  (2)你能求出點(diǎn)B的坐標(biāo)嗎?你是怎樣求的?與同伴進(jìn)行交流;

  隨堂練習(xí):

  P145~146 1、2、3、4、5

  作業(yè):P146 習(xí)題5.4 1、2

《函數(shù)的應(yīng)用》教案14

  從容說課

  我們學(xué)習(xí)知識(shí)的目的就是為了應(yīng)用,如能把書本上學(xué)到的知識(shí)運(yùn)用到實(shí)際生活中,這就說明確實(shí)把知識(shí)學(xué)好了,會(huì)用了

  用函數(shù)觀點(diǎn)處理實(shí)際問題的關(guān)鍵在于分析實(shí)際情境、建立函數(shù)模型,并進(jìn)一步提出明確的數(shù)學(xué)問題,教學(xué)時(shí)應(yīng)注意分析的過程,即將實(shí)際問題置于已有知識(shí)背景之中,用數(shù)學(xué)知識(shí)重新解釋這是什么?可以看成什么?讓學(xué)生逐步學(xué)會(huì)用數(shù)學(xué)的眼光考查實(shí)際問題.同時(shí),在解決問題的過程中,要充分利用函數(shù)的圖象,滲透數(shù)形結(jié)合的思想

  此外,解決實(shí)際問題時(shí).還要引導(dǎo)學(xué)生體會(huì)知識(shí)之間的聯(lián)系以及知識(shí)的綜合運(yùn)用

  教學(xué)目標(biāo)

  (一)教學(xué)知識(shí)點(diǎn)

  1.經(jīng)歷分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題的過程

  2.體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí).提高運(yùn)用代數(shù)方法解決問題的能力

  (二)能力訓(xùn)練要求

  通過對(duì)反比例函數(shù)的應(yīng)用,培養(yǎng)學(xué)生解決問題的能力

  (三)情感與價(jià)值觀要求

  經(jīng)歷將一些實(shí)際問題抽象為數(shù)學(xué)問題的過程,初步學(xué)會(huì)從數(shù)學(xué)的角度提出問題。理解問題,并能綜合運(yùn)用所學(xué)的知識(shí)和技能解決問題.發(fā)展應(yīng)用意識(shí),初步認(rèn)識(shí)數(shù)學(xué)與人類生活的密切聯(lián)系及對(duì)人類歷史發(fā)展的作用

  教學(xué)重點(diǎn)

  用反比例函數(shù)的知識(shí)解決實(shí)際問題

  教學(xué)難點(diǎn)

  如何從實(shí)際問題中抽象出數(shù)學(xué)問題、建立數(shù)學(xué)模型,用數(shù)學(xué)知識(shí)去解決實(shí)際問題

  教學(xué)方法

  教師引導(dǎo)學(xué)生探索法

  教學(xué)過程

 、.創(chuàng)設(shè)問題情境,引入新課

  [師]有關(guān)反比例函數(shù)的表達(dá)式,圖象的特征我們都研究過了,那么,我們學(xué)習(xí)它們的目的是什么呢?

  [生]是為了應(yīng)用

  [師]很好;學(xué)習(xí)的目的是為了用學(xué)到的知識(shí)解決實(shí)際問題.究竟反比例函數(shù)能解決一些什么問題呢?本節(jié)課我們就來學(xué)一學(xué)

 、. 新課講解

  某?萍夹〗M進(jìn)行野外考察,途中遇到片十幾米寬的爛泥濕地.為了安全、迅速通過這片濕地,他們沿著前進(jìn)路線鋪墊了若干塊木板,構(gòu)筑成一條臨時(shí)通道,從而順利完成了任務(wù);你能解釋他們這樣做的道理嗎?當(dāng)人和木板對(duì)濕地的壓力一定時(shí)隨著木板面積S(m2)的變化,人和木板對(duì)地面的壓強(qiáng)p(Pa)將如何變化?如果人和木板對(duì)濕地地面的壓力合計(jì)600 N,那么

  (1)用含S的代數(shù)式表示p,p是S的反比例函數(shù)嗎?為什么?

  (2)當(dāng)木板畫積為 0.2 m2時(shí).壓強(qiáng)是多少?

  (3)如果要求壓強(qiáng)不超過6000 Pa,木板面積至少要多大?

  (4)在直角坐標(biāo)系中,作出相應(yīng)的函數(shù)圖象

  (5)清利用圖象對(duì)(2)和(3)作出直觀解釋,并與同伴進(jìn)行交流

  [師]分析:首先要根據(jù)題意分析實(shí)際問題中的兩個(gè)變量,然后看這兩個(gè)變量之間存在的關(guān)系,從而去分析它們之間的關(guān)系是否為反比例函數(shù)關(guān)系,若是則可用反比例函數(shù)的有關(guān)知識(shí)去解決問題

  請(qǐng)大家互相交流后回答

  [生](1)由p=得p=

  p是S的反比例函數(shù),因?yàn)榻o定一個(gè)S的值.對(duì)應(yīng)的就有唯一的一個(gè)p值和它對(duì)應(yīng),根據(jù)函數(shù)定義,則p是S的反比例函數(shù)

  (2)當(dāng)S= 0.2 m2時(shí), p==3000(Pa)

  當(dāng)木板面積為 0.2m2時(shí),壓強(qiáng)是3000Pa.

  (3)當(dāng)p=6000 Pa時(shí),

  S==0.1(m2)

  如果要求壓強(qiáng)不超過6000 Pa,木板面積至少要 0.1 m2

  (4)圖象如下:

  (5)(2)是已知圖象上某點(diǎn)的橫坐標(biāo)為0.2,求該點(diǎn)的縱坐標(biāo);(3)是已知圖象上點(diǎn)的縱坐標(biāo)不大于6000,求這些點(diǎn)所處的位置及它們橫坐標(biāo)的取值范圍

  [師]這位同學(xué)回答的很好,下面我要提一個(gè)問題,大家知道反比例函數(shù)的圖象是兩支雙曲線、它們要么位于第一、三象限,要么位于第二、四象限,從(1)中已知p=>0,所以圖象應(yīng)位于第一、三象限,為什么這位同學(xué)只畫出了一支曲線,是不是另一支曲線丟掉了呢?還是因?yàn)轭}中只給出了第一象限呢?

  [生]第三象限的曲線不存在,因?yàn)檫@是實(shí)際問題,S不可能取負(fù)數(shù),所以第三象限的曲線不存在

  [師]很好,那么在(1)中是不是應(yīng)該有條件限制呢?

  [生]是,應(yīng)為p= (S>0).

  做一做

  1、蓄電池的電壓為定值,使用此電源時(shí),電流I(A)與電阻R(Ω)之間的函數(shù)關(guān)系如下圖;

  (1)蓄電池的電壓是多少?你能寫出這一函數(shù)的表達(dá)式嗎?

  (2)完成下表,并回答問題:如果以此蓄電池為電源的用電器限制電流不得超過 10A,那么用電器的可變電阻應(yīng)控制在什么范圍內(nèi)?

  [師]從圖形上來看,I和R之間可能是反比例函數(shù)關(guān)系.電壓U就相當(dāng)于反比例函數(shù)中的k.要寫出函數(shù)的表達(dá)式,實(shí)際上就是確定k(U),只需要一個(gè)條件即可,而圖中已給出了一個(gè)點(diǎn)的坐標(biāo),所以這個(gè)問題就解決了,填表實(shí)際上是已知自變量求函數(shù)值.

  [生]解:(1)由題意設(shè)函數(shù)表達(dá)式為I=

  ∵A(9,4)在圖象上,

  ∴U=IR=36

  ∴表達(dá)式為I=

  蓄電池的電壓是36伏

  (2)表格中從左到右依次是:12,9,7.2,6,4.5,3.6

  電源不超過 10 A,即I最大為 10 A,代入關(guān)系式中得R=3.6,為最小電阻,所以用電器的可變電阻應(yīng)控制在R≥3.6這個(gè)范圍內(nèi)

  2、如下圖,正比例函數(shù)y=k1x的圖象與反比例函數(shù)y=的'圖象相交于A,B兩點(diǎn),其中點(diǎn)A的坐標(biāo)為(,2)

  (1)分別寫出這兩個(gè)函數(shù)的表達(dá)式:

  (2)你能求出點(diǎn)B的坐標(biāo)嗎?你是怎樣求的?與同伴進(jìn)行交流

  [師]要求這兩個(gè)函數(shù)的表達(dá)式,只要把A點(diǎn)的坐標(biāo)代入即可求出k1,k2,求點(diǎn)B的

  坐標(biāo)即求y=k1x與y=的交點(diǎn)

  [生]解:(1)∵A(,2)既在y=k1x圖象上,又在y=的圖象上

  ∴k1=2,2=

  ∴k1=2,k2=6

  ∴表達(dá)式分別為y=2x,y=

  ∴x2=3

  ∴x=±

  當(dāng)x= ?時(shí),y= ?2

  ∴B(?,?2)

  Ⅲ.課堂練習(xí)

  1.某蓄水池的排水管每時(shí)排水 8 m3,6 h可將滿池水全部排空

  (1)蓄水池的容積是多少?

  (2)如果增加排水管,使每時(shí)的排水量達(dá)到Q(m3),那么將滿池水排空所需的時(shí)間t(h)將如何變化?

  (3)寫出t與Q之間的關(guān)系式;

  (4)如果準(zhǔn)備在5 h內(nèi)將滿池水排空,那么每時(shí)的排水量至少為多少?

  (5)已知排水管的最大排水量為每時(shí) 12m3,那么最少多長(zhǎng)時(shí)間可將滿池水全部排空?

  解:(1)8×6=48(m3)

  所以蓄水池的容積是 48 m3

  (2)因?yàn)樵黾优潘,使每時(shí)的排水量達(dá)到Q(m3),所以將滿池水排空所需的時(shí)間t(h)將減少.

  (3)t與Q之間的關(guān)系式為t=

  (4)如果準(zhǔn)備在5 h內(nèi)將滿池水排空,那么每時(shí)的排水量至少為=9.6(m3)

  (5)已知排水管的最大排水量為每時(shí) 12m3,那么最少要=4小時(shí)可將滿池水全部排空.

 、、課時(shí)小結(jié)

  節(jié)課我們學(xué)習(xí)了反比例函數(shù)的應(yīng)用.具體步驟是:認(rèn)真分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而用反比例函數(shù)的有關(guān)知識(shí)解決實(shí)際問題.

 、跽n后作業(yè)

  習(xí)題5.4.

  板書設(shè)計(jì)

  § 5.3反比例函數(shù)的應(yīng)用

  一、1.例題講解

  2.做一做

  二、課堂練習(xí)

  三、課時(shí)小節(jié)

  四、課后作業(yè)(習(xí)題5.4)

《函數(shù)的應(yīng)用》教案15

  一、內(nèi)容與解析

  (一)內(nèi)容:對(duì)數(shù)函數(shù)的性質(zhì)

  (二)解析:本節(jié)課要學(xué)的內(nèi)容是對(duì)數(shù)函數(shù)的性質(zhì)及簡(jiǎn)單應(yīng)用,其核心(或關(guān)鍵)是對(duì)數(shù)函數(shù)的性質(zhì),理解它關(guān)鍵就是要利用對(duì)數(shù)函數(shù)的圖象.學(xué)生已經(jīng)掌握了對(duì)數(shù)函數(shù)的圖象特點(diǎn),本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的發(fā)展.由于它是構(gòu)造復(fù)雜函數(shù)的基本元素之一,所以對(duì)數(shù)函數(shù)的性質(zhì)是本單元的重要內(nèi)容之一.的重點(diǎn)是掌握對(duì)數(shù)函數(shù)的性質(zhì),解決重點(diǎn)的關(guān)鍵是利用對(duì)數(shù)函數(shù)的圖象,通過數(shù)形結(jié)合的思想進(jìn)行歸納總結(jié)。

  二、目標(biāo)及解析

  (一)教學(xué)目標(biāo):

  1.掌握對(duì)數(shù)函數(shù)的性質(zhì)并能簡(jiǎn)單應(yīng)用

  (二)解析:

  (1)就是指根據(jù)對(duì)數(shù)函數(shù)的兩類圖象總結(jié)并理解對(duì)數(shù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、函數(shù)值的分布特征等性質(zhì),并能將這些性質(zhì)應(yīng)用到簡(jiǎn)單的問題中。

  三、問題診斷分析

  在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是底數(shù)a對(duì)對(duì)數(shù)函數(shù)圖象和性質(zhì)的影響,產(chǎn)生這一問題的原因是學(xué)生對(duì)參量認(rèn)識(shí)不到位,往往將參量等同于自變量.要解決這一問題,就是要將參量的取值多元化,最好應(yīng)用幾何畫板的快捷性處理這類問題,其中關(guān)鍵是應(yīng)用好幾何畫板.

  四、教學(xué)支持條件分析

  在本節(jié)課()的教學(xué)中,準(zhǔn)備使用(),因?yàn)槭褂?),有利于().

  五、教學(xué)過程

  問題1.先畫出下列函數(shù)的簡(jiǎn)圖,再根據(jù)圖象歸納總結(jié)對(duì)數(shù)函數(shù) 的相關(guān)性質(zhì)。

  設(shè)計(jì)意圖:

  師生活動(dòng)(小問題):

  1.這些對(duì)數(shù)函數(shù)的解析式有什么共同特征?

  2.通過這些函數(shù)的圖象請(qǐng)從值域、單調(diào)性、奇偶性方面進(jìn)行總結(jié)函數(shù)的性質(zhì)。

  3.通過這些函數(shù)圖象請(qǐng)從函數(shù)值的分布角度總結(jié)相關(guān)性質(zhì)

  4.通過這些函數(shù)圖象請(qǐng)總結(jié):當(dāng)自變量取一個(gè)值時(shí),函數(shù)值隨底數(shù)有什么樣的變化規(guī)律?

  問題2.先畫出下列函數(shù)的簡(jiǎn)圖,根據(jù)圖象歸納總結(jié)對(duì)數(shù)函數(shù) 的相關(guān)性質(zhì)。

  問題3.根據(jù)問題1、2填寫下表

  圖象特征函數(shù)性質(zhì)

  a>10<a<1a>10<a<1

  向y軸正負(fù)方向無限延伸函數(shù)的值域?yàn)镽+

  圖象關(guān)于原點(diǎn)和y軸不對(duì)稱非奇非偶函數(shù)

  函數(shù)圖象都在y軸右側(cè)函數(shù)的定義域?yàn)镽

  函數(shù)圖象都過定點(diǎn)(1,0)

  自左向右,圖象逐漸上升自左向右,圖象逐漸下降增函數(shù)減函數(shù)

  在第一象限內(nèi)的圖象縱坐標(biāo)都大于0,橫坐標(biāo)大于1在第一象限內(nèi)的圖象縱坐標(biāo)都大于0,橫標(biāo)大于0小于1

  在第四象限內(nèi)的圖象縱坐標(biāo)都小于0,橫標(biāo)大于0小于1在第四象限內(nèi)的圖象縱坐標(biāo)都小于0,橫標(biāo)大于1

  [設(shè)計(jì)意圖]發(fā)現(xiàn)性質(zhì)、弄清性質(zhì)的來龍去脈,是為了更好揭示對(duì)數(shù)函數(shù)的本質(zhì)屬性,傳統(tǒng)教學(xué)往往讓學(xué)生在解題中領(lǐng)悟。為了扭轉(zhuǎn)這種方式,我先引導(dǎo)學(xué)生回顧指數(shù)函數(shù)的性質(zhì),再利用類比的思想,小組合作的形式通過圖象主動(dòng)探索出對(duì)數(shù)函數(shù)的性質(zhì)。教學(xué)實(shí)踐表明:當(dāng)學(xué)生對(duì)對(duì)數(shù)函數(shù)的圖象已有感性認(rèn)識(shí)后,得到這些性質(zhì)必然水到渠成

  例1.比較下列各組數(shù)中兩個(gè)值的大小:

  (1) log 23.4 , log 28.5 (2)log 0.31.8 , log 0.32.7

 。3)log a5.1 , log a5.9 ( a>0 , 且a≠1 )

  變式訓(xùn)練:1. 比較下列各題中兩個(gè)值的大小:

 、 log106 log108 ⑵ log0.56 log0.54

 、 log0.10.5 log0.10. 6 ⑷ log1.50.6 log1.50.4

  2.已知下列不等式,比較正數(shù)m,n 的大。

  (1) log 3 m < log 3 n (2) log 0.3 m > log 0.3 n

  (3) log a m < loga n (0 log a n (a>1)

  例2.(1)若 且 ,求 的取值范圍

  (2)已知 ,求 的取值范圍;

  六、目標(biāo)檢測(cè)

  1.比較 , , 的大。

  2.求下列各式中的x的值

 。1)

  演繹推理導(dǎo)學(xué)案

  2.1.2 演繹推理

  學(xué)習(xí)目標(biāo)

  1.結(jié)合已學(xué)過的數(shù)學(xué)實(shí)例和生活中的實(shí)例,體會(huì)演繹推理的重要性;

  2.掌握演繹推理的基本方法,并能運(yùn)用它們進(jìn)行一些簡(jiǎn)單的推理.

  學(xué)習(xí)過程

  一、前準(zhǔn)備

  復(fù)習(xí)1:歸納推理是由 到 的推理.

  類比推理是由 到 的推理.

  復(fù)習(xí)2:合情推理的結(jié)論 .

  二、新導(dǎo)學(xué)

  ※ 學(xué)習(xí)探究

  探究任務(wù)一:演繹推理的概念

  問題:觀察下列例子有什么特點(diǎn)?

 。1)所有的金屬都能夠?qū)щ姡~是金屬,所以 ;

 。2)一切奇數(shù)都不能被2整除,20xx是奇數(shù),所以 ;

 。3)三角函數(shù)都是周期函數(shù), 是三角函數(shù),所以 ;

  (4)兩條直線平行,同旁內(nèi)角互補(bǔ).如果A與B是兩條平行直線的同旁內(nèi)角,那么 .

  新知:演繹推理是

  的推理.簡(jiǎn)言之,演繹推理是由 到 的`推理.

  探究任務(wù)二:觀察上述例子,它們都由幾部分組成,各部分有什么特點(diǎn)?

  所有的金屬都導(dǎo)電 銅是金屬 銅能導(dǎo)電

  已知的一般原理 特殊情況 根據(jù)原理,對(duì)特殊情況做出的判斷

  大前提 小前提 結(jié)論

  新知:“三段論”是演繹推理的一般模式:

  大前提—— ;

  小前提—— ;

  結(jié)論—— .

  新知:用集合知識(shí)說明“三段論”:

  大前提:

  小前提:

  結(jié) 論:

  試試:請(qǐng)把探究任務(wù)一中的演繹推理(2)至(4)寫成“三段論”的形式.

  ※ 典型例題

  例1 命題:等腰三角形的兩底角相等

  已知:

  求證:

  證明:

  把上面推理寫成三段論形式:

  變式:已知空間四邊形ABCD中,點(diǎn)E,F分別是AB,AD的中點(diǎn), 求證:EF 平面BCD

  例2求證:當(dāng)a>1時(shí),有

  動(dòng)手試試:1證明函數(shù) 的值恒為正數(shù)。

  2 下面的推理形式正確嗎?推理的結(jié)論正確嗎?為什么?

  所有邊長(zhǎng)相等的凸多邊形是正多邊形,(大前提)

  菱形是所有邊長(zhǎng)都相等的凸多邊形, (小前提)

  菱形是正多邊形. (結(jié) 論)

  小結(jié):在演繹推理中,只要前提和推理形式是正確的,結(jié)論必定正確.

  三、總結(jié)提升

  ※ 學(xué)習(xí)小結(jié)

  1. 合情推理 ;結(jié)論不一定正確.

  2. 演繹推理:由一般到特殊.前提和推理形式正確結(jié)論一定正確.

  3應(yīng)用“三段論”解決問題時(shí),首先應(yīng)該明確什么是大前提和小前提,但為了敘述簡(jiǎn)潔,如果大前提是顯然的,則可以省略.

  ※ 當(dāng)堂檢測(cè)(時(shí)量:5分鐘 滿分:10分)計(jì)分:

  1. 因?yàn)橹笖?shù)函數(shù) 是增函數(shù), 是指數(shù)函數(shù),則 是增函數(shù).這個(gè)結(jié)論是錯(cuò)誤的,這是因?yàn)?/p>

  A.大前提錯(cuò)誤 B.小前提錯(cuò)誤 C.推理形式錯(cuò)誤 D.非以上錯(cuò)誤

  2. 有這樣一段演繹推理是這樣的“有些有理數(shù)是真分?jǐn)?shù),整數(shù)是有理數(shù),則整數(shù)是真分?jǐn)?shù)”

  結(jié)論顯然是錯(cuò)誤的,是因?yàn)?/p>

  A.大前提錯(cuò)誤 B.小前提錯(cuò)誤 C.推理形式錯(cuò)誤 D.非以上錯(cuò)誤

  3. 有一段演繹推理是這樣的:“直線平行于平面,則平行于平面內(nèi)所有直線;已知直線 平面 ,直線 平面 ,直線 ∥平面 ,則直線 ∥直線 ”的結(jié)論顯然是錯(cuò)誤的,這是因?yàn)?/p>

  A.大前提錯(cuò)誤 B.小前提錯(cuò)誤 C.推理形式錯(cuò)誤 D.非以上錯(cuò)誤

  4.歸納推理是由 到 的推理;

  類比推理是由 到 的推理;

  演繹推理是由 到 的推理.

  后作業(yè)

  1. 運(yùn)用完全歸納推理證明:函數(shù) 的值恒為正數(shù)。

  直觀圖

  總 課 題空間幾何體總課時(shí)第4課時(shí)

  分 課 題直觀圖畫法分課時(shí)第4課時(shí)

  目標(biāo)掌握斜二側(cè)畫法的畫圖規(guī)則.會(huì)用斜二側(cè)畫法畫出立體圖形的直觀圖.

  重點(diǎn)難點(diǎn)用斜二側(cè)畫法畫圖.

   引入新課

  1.平行投影、中心投影、斜投影、正投影的有關(guān)概念.

  2.空間圖形的直觀圖的畫法——斜二側(cè)畫法:

  規(guī)則:(1)____________________________________________________________.

  (2)____________________________________________________________.

 。3)____________________________________________________________.

  (4)____________________________________________________________.

   例題剖析

  例1 畫水平放置的正三角形的直觀圖.

  例2 畫棱長(zhǎng)為 的正方體的直觀圖.

   鞏固練習(xí)

  1.在下列圖形中,采用中心投影(透視)畫法的是__________.

  2.用斜二測(cè)畫法畫出下列水平放置的圖形的直觀圖.

  3.根據(jù)下面的三視圖,畫出相應(yīng)的空間圖形的直觀圖.

   課堂小結(jié)

  通過例題弄清空間圖形的直觀圖的斜二側(cè)畫法方法及步驟.

【《函數(shù)的應(yīng)用》教案】相關(guān)文章:

函數(shù)概念教案11-26

冪函數(shù)教案04-07

初中數(shù)學(xué)函數(shù)教案02-23

《對(duì)數(shù)函數(shù)》教案03-01

反比例函數(shù)教案01-15

二次函數(shù)教案07-28

函數(shù)數(shù)學(xué)教案11-26

函數(shù)奇偶性教案02-15

《二次函數(shù)》教案03-02