二次根式教案范文集錦八篇
作為一名教職工,常常要根據(jù)教學需要編寫教案,教案是教學活動的依據(jù),有著重要的地位。優(yōu)秀的教案都具備一些什么特點呢?以下是小編為大家收集的二次根式教案8篇,僅供參考,大家一起來看看吧。
二次根式教案 篇1
一、內容解析
本節(jié)教材是在學生學習二次根式概念的基礎上,結合二次根式的概念和算術平方根的概念,通過觀察、歸納和思考得到二次根式的兩個基本性質.
對于二次根式的性質,教材沒有直接從算術平方根的意義得到,而是考慮學生的年齡特征,先通過 “探究”欄目中給出四個具體問題,讓學生學生根據(jù)算術平方根的意義,就具體數(shù)字進行分析得出結果,再分析這些結果的共同特征,由特殊到一般地歸納出結論.基于以上分析,確定本節(jié)課的教學重點為:理解二次根式的性質.
二、目標和目標解析
1.教學目標
。1)經(jīng)歷探索二次根式的性質的過程,并理解其意義;
。2)會運用二次根式的性質進行二次根式的化簡;
。3)了解代數(shù)式的概念.
2.目標解析
。1)學生能根據(jù)具體數(shù)字分析和算術平方根的意義,由特殊到一般地歸納出二次根式的性質,會用符號表述這一性質;
。2)學生能靈活運用二次根式的性質進行二次根式的化簡;
。3)學生能從已學過的各種式子中,體會其共同特點,得出代數(shù)式的概念.
三、教學問題診斷分析
二次根式的性質是二次根式化簡和運算的重要基礎.學生根據(jù)二次根式的概念和算術平方根的意義,由特殊到一般地得出二次根式的性質后,重在能靈活運用二次根式的性質進行二次根式的化簡和解決一些綜合性較強的問題.由于學生初次學習二次根式的性質,對二次根式性質的靈活運用存在一定的困難,突破這一難點需要教師精心設計好每一道習題,讓學生在練習中進一步掌握二次根式的性質,培養(yǎng)其靈活運用的能力.
本節(jié)課的教學難點為:二次根式性質的靈活運用.
四、教學過程設計
1.探究性質1
問題1 你能解釋下列式子的含義嗎?
師生活動:教師引導學生說出每一個式子的含義.
【設計意圖】讓學生初步感知,這些式子都表示一個非負數(shù)的算術平方根的平方.
問題2 根據(jù)算術平方根的意義填空,并說出得到結論的依據(jù).
師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結論的依據(jù).
【設計意圖】學生通過計算或根據(jù)算術平方根的意義得出結論,為歸納二次根式的性質1作鋪墊.
問題3 從以上的結論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?
師生活動:引導學生歸納得出二次根式的性質: ( ≥0).
【設計意圖】讓學生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質1,培養(yǎng)學生抽象概括的能力.
例2 計算
(1)
。2)
師生活動:學生獨立完成,集體訂正.
【設計意圖】鞏固二次根式的性質1,學會靈活運用.
2.探究性質2
問題4 你能解釋下列式子的含義嗎?
師生活動:教師引導學生說出每一個式子的含義.
【設計意圖】讓學生初步感知,這些式子都表示一個數(shù)的平方的算術平方根.
問題5 根據(jù)算術平方根的意義填空,并說出得到結論的依據(jù).
師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結論的依據(jù).
【設計意圖】學生通過計算或根據(jù)算術平方根的意義得出結論,為歸納二次根式的性質2作鋪墊.
問題6 從以上的結論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?
師生活動:引導學生歸納得出二次根式的性質: ( ≥0)
【設計意圖】讓學生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質2,培養(yǎng)學生抽象概括的.能力.
例3 計算
。1)
。2)
師生活動:學生獨立完成,集體訂正.
【設計意圖】鞏固二次根式的性質2,學會靈活運用.
3.歸納代數(shù)式的概念
問題7 回顧我們學過的式子,如 ___________ ( ≥0),這些式子有哪些共同特征?
師生活動:學生概括式子的共同特征,得得出代數(shù)式的概念.
【設計意圖】學生通過觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學生的概括能力.
4.綜合運用
。1)算一算:
【設計意圖】設計有一定綜合性的題目,考查學生的靈活運用的能力,第(2)、(3)、(4)小題要特別注意結果的符號.
。2)想一想: 中, 的取值范圍是什么?當 ≥0時, 等于多少?當 時, 又等于多少?
【設計意圖】通過此問題的設計,加深學生對 的理解,開闊學生的視野,訓練學生的思維.
(3)談一談你對 與 的認識.
【設計意圖】加深學生對二次根式性質的理解.
5.總結反思
。1)你知道了二次根式的哪些性質?
。2)運用二次根式性質進行化簡需要注意什么?
。3)請談談發(fā)現(xiàn)二次根式性質的思考過程?
。4)想一想,到現(xiàn)在為止,你學習了哪幾類字母表示數(shù)得到的式子?說說你對代數(shù)式的認識.
6.布置作業(yè):教科書習題16.1第2,4題.
二次根式教案 篇2
教學目標
課標要求:學生要學會學習、自主學習,要為學生終生學習打下堅實的基礎,根據(jù)教學大綱和新課標的要求,根據(jù)教材內容和學生的特點我確定了本節(jié)課的教學目標 1、了解二次根式的概念 2、了解二次根式的基本性質,經(jīng)歷觀察、比較、總結二次根式的基本性質的過程,發(fā)展學生的歸納概括能力。 3、通過對二次根式的概念和性質的探究,提高數(shù)學探究能力和歸納表達能力。 4、學生經(jīng)歷觀察、比較、總結和應用等數(shù)學活動,感受數(shù)學活動充滿了探索性與創(chuàng)造性,體驗發(fā)現(xiàn)的樂趣,并提高應用的意識。
教學重點:二次根式的概念和基本性質
教學難點:二次根式的基本性質的靈活運用
教法和學法
教學活動的本質是一種合作,一種交流。學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者、引導者與合作者,本節(jié)課主要采用自主學習,合作探究,引領提升的方式展開教學。依據(jù)學生的年齡特點和已有的'知識基礎,本節(jié)課注重加強知識間的縱向聯(lián)系,,拓展學生探索的空間,體現(xiàn)由具體到抽象的認識過程。為了為后續(xù)學習打下堅實的基礎,例如在“銳角三角函數(shù)”一章中,會遇到很多實際問題,在解決實際問題的過程中,要遇到將二次根式化成最簡二次根式等,本課適當加強練習,讓學生養(yǎng)成聯(lián)系和發(fā)展的觀點學習數(shù)學的習慣。
教學過程
活動一:根據(jù)學生已有知識探究二次根式的概念 1.探究二次根式概念 由四個實際問題(三個幾何問題,一個物理問題)入手,設置問題情境,讓學生感受到研究二次根式來源于生活又服務于生活。 思考:用帶有根號的式子填空,看看寫出的結果有什么特點? (1)要做一個兩條直角邊的長分別為7cm和4cm的三角尺,斜邊的長應為 cm
(2)面積為S的正方形的邊長為
(3)要修建一個面積為6.28m2的圓形噴水池,它的半徑為m(∏取3.14)
(4)一個物體從高處自由落下,落到地面所用的時間t(單位:s)與開始落下時的高度h(單位:m)滿足關系h=5t2.如果用含有h的式子表示t,則t= 學生發(fā)現(xiàn)所填結果都表示一個數(shù)的算術平方根,教師引導學生用一個式子表示這些有共同特點的式子。學生表示為,此時教師啟發(fā)學生回憶已學平方根的性質讓學生總結出a這一條件。在此基礎上總結出二次根式的概念。 2.例題評析 例1:哪些為二次根式? 練習:x取何值時下列各式有意義,通過4小題的訓練,讓學生體會二次根式概念的初步應用。加深對二次根式定義的理解,并注重新舊知識間的聯(lián)系,用轉化的思想解決問題,總結出解題規(guī)律:求未知數(shù)的取值范圍即轉化為①被開方數(shù)大于等于0②分母不為0列不等式或不等式組解決問題。
活動二:探究二次根式的性質1 1.探究(a)與0的關系 學生分類討論探究出:(a)是一個非負數(shù),此時歸納出二次根式的第一個性質:雙重非負性。培養(yǎng)學生的分類討論和概括能力。例2:,則變式:,
活動三:探究二次根式的性質2 探究()2=a(a)由課本具體的正數(shù)和零入手來研究二次根式的第二個性質,首先讓學生通過探究活動感受這條結論,然后再從算術平方根的意義出發(fā),結合具體例子對這條結論進行分析,引導學生由具體到抽象,得出一般的結論,并發(fā)現(xiàn)開平方運算與平方運算的關系,培養(yǎng)學生由特殊到一般的思維方式,提高歸納、總結的能力。前兩題學生口述教師板書,后面的兩題由學生板演引導學生分析(2)(4)實質是積的乘方和分式的乘方 拓展:反之(a)如 為后面的化最簡二次根式(簡單的分母有理化)做好鋪墊。 例4:在實數(shù)范圍內分解因式
活動四:探究二次根式的性質3 3.探究 在活動三的基礎上出示課本第4頁的探究: 引導學生比較活動三與活動四探究中兩組題目的不同之處,活動三中的題目是對非負數(shù)先進行開平方運算,再進行平方運算;而活動四中的題目正好相反,是先進行平方運算,再進行開平方運算。再次由特殊到一般的讓學生歸納出二次根式的又一個性質。培養(yǎng)學生觀察、對比的能力和意識。 此時引導學生談一談對()2和的聯(lián)系和區(qū)別 相同點:①都有平方和開平方運算 ②運算結果都是非負數(shù) ③僅當a時,()2= 不同點:①從形式和運算順序看:()2先開方后平方,先平方后開方 ②從a的取值范圍看:()2(a),(a為任意數(shù)) ③從運算結果看:()2=a(a),(a為任意數(shù)
二次根式教案 篇3
教學目的:
1、在二次根式的混合運算中,使學生掌握應用有理化分母的方法化簡和計算二次根式;
2、會求二次根式的代數(shù)的值;
3、進一步提高學生的綜合運算能力。
教學重點:在二次根式的混合運算中,靈活選擇有理化分母的方法化簡二次根式
教學難點:正確進行二次根式的混合運算和求含有二次根式的代數(shù)式的值
教學過程:
一、二次根式的混合運算
例1 計算:
分析:(1)題是二次根式的加減運算,可先把前三個二次根式化最簡二次根式,把第四式的分母有理化,然后再進行二次根式的加減運算。
(2)題是含乘方、加、減和除法的混合運算,應按運算的順序進行計算,先算括號內的式子,最后進行除法運算。注意的計算。
練習1:P206 / 8--① P207 / 1①②
例2 計算
問:計算思路是什么?
答:先把第一人的括號內的式子通分,把第二個括號內的式子的分母有理化,再進行計算。
二、求代數(shù)式的值。 注意兩點:
(1)如果已知條件為含二次根式的式子,先把它化簡;
(2)如果代數(shù)式是含二次根式的式子,應先把代數(shù)式化簡,再求值。
例3 已知,求的值。
分析:多項式可轉化為用與表示的式子,因此可根據(jù)已知條件中的及的`值。求得與的值。在計算中,先把及的式了有理化分母?墒褂嬎愫啽。
例4 已知,求的值。
觀察代數(shù)式的特點,請說出求這個代數(shù)式的值的思路。
答:所求的代數(shù)式中,相減的兩個式子的分母都含有二次根式,為化去它們的分母中的根號,可以分別先把各自的分母有理化或進行]通分,把這個代數(shù)式化簡后,再求值。
三、小結
1、對于二次根式的混合混合運算。應根據(jù)二次根式的加、減、乘除和乘方運算的順序進行,即先進行乘方運算,再進行乘、除運算,最后進行加、減運算。如果有括號,先進行括號內的式子的運算,運算結果要化為最簡二次根式。
2、在代數(shù)式求值問題中,如果已知條件所求式子中有含二次根式(或分式)的式子,應先把它們化簡,然后再求值。
3、在進行二次根式的混合運算時,要根據(jù)題目特點,靈活選擇解題方法,目的在于使計算更簡捷。
四、作業(yè)
P206 / 7 P206 / 8---②③
二次根式教案 篇4
一、教學目標
1.了解二次根式的意義;
2. 掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;
3. 掌握二次根式的性質 和 ,并能靈活應用;
4.通過二次根式的計算培養(yǎng)學生的邏輯思維能力;
5. 通過二次根式性質 和 的介紹滲透對稱性、規(guī)律性的數(shù)學美.
二、教學重點和難點
重點:(1)二次根的意義;(2)二次根式中字母的取值范圍.
難點:確定二次根式中字母的取值范圍.
三、教學方法
啟發(fā)式、講練結合.
四、教學過程
(一)復習提問
1.什么叫平方根、算術平方根?
2.說出下列各式的意義,并計算:
通過練習使學生進一步理解平方根、算術平方根的概念.
觀察上面幾個式子的特點,引導學生總結它們的被平方數(shù)都大于或等于零,其中 ,
表示的是算術平方根.
(二)引入新課
我們已遇到的這樣的式子是我們這節(jié)課研究的內容,引出:
新課:二次根式
定義: 式子 叫做二次根式.
對于 請同學們討論論應注意的問題,引導學生總結:
(1)式子 只有在條件a0時才叫二次根式, 是二次根式嗎? 呢?
若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分.
(2) 是二次根式,而 ,提問學生:2是二次根式嗎?顯然不是,因此二次
根式指的是某種式子的外在形態(tài).請學生舉出幾個二次根式的例子,并說明為什么是二次根式.下面例題根據(jù)二次根式定義,由學生分析、回答.
例1 當a為實數(shù)時,下列各式中哪些是二次根式?
分析: , , , 、 、 、 四個是二次根式. 因為a是實數(shù)時,a+10、a2-1不能保證是非負數(shù),即a+10、a2-1可以是負數(shù)(如當a-10時,a+10又如當0
例2 x是怎樣的實數(shù)時,式子 在實數(shù)范圍有意義?
解:略.
說明:這個問題實質上是在x是什么數(shù)時,x-3是非負數(shù),式子 有意義.
例3 當字母取何值時,下列各式為二次根式:
(1) (2) (3) (4)
分析:由二次根式的定義 ,被開方數(shù)必須是非負數(shù),把問題轉化為解不等式.
解:(1)∵a、b為任意實數(shù)時,都有a2+b20,當a、b為任意實數(shù)時, 是二次根式.
(2)-3x0,x0,即x0時, 是二次根式.
(3) ,且x0,x0,當x0時, 是二次根式.
(4) ,即 ,故x-20且x-20, x2.當x2時, 是二次根式.
例4 下列各式是二次根式,求式子中的字母所滿足的條件:
(1) ; (2) ; (3) ; (4)
分析:這個例題根據(jù)二次根式定義,讓學生分析式子中字母應滿足的`條件,進一步鞏固二次根式的定義,.即: 只有在條件a0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零.
解:(1)由2a+30,得 .
(2)由 ,得3a-10,解得 .
(3)由于x取任何實數(shù)時都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范圍是全體實數(shù).
(4)由-b20得b20,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0.
(三)小結(引導學生做出本節(jié)課學習內容小結)
1.式子 叫做二次根式,實際上是一個非負的實數(shù)a的算術平方根的表達式.
2.式子中,被開方數(shù)(式)必須大于等于零.
(四)練習和作業(yè)
練習:
1.判斷下列各式是否是二次根式
分析:(2) 中, , 是二次根式;(5)是二次根式. 因為x是實數(shù)時,x、x+1不能保證是非負數(shù),即x、x+1可以是負數(shù)(如x0時,又如當x-1時=,因此(1)(3)(4)不是二次根式,(6)無意義.
2.a是怎樣的實數(shù)時,下列各式在實數(shù)范圍內有意義?
五、作業(yè)
教材P.172習題11.1;A組1;B組1.
六、板書設計
二次根式教案 篇5
一、復習引入
學生活動:請同學們完成下列各題:
1.計算
(1)(2x+y)·zx(2)(2x2y+3xy2)÷xy
二、探索新知
如果把上面的x、y、z改寫成二次根式呢?以上的運算規(guī)律是否仍成立呢?仍成立.
整式運算中的x、y、z是一種字母,它的`意義十分廣泛,可以代表所有一切,當然也可以代表二次根式,所以,整式中的運算規(guī)律也適用于二次根式.
例1.計算:
。1)(+)×(2)(4-3)÷2分析:剛才已經(jīng)分析,二次根式仍然滿足整式的運算規(guī)律,所以直接可用整式的運算規(guī)律.
解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.計算
。1)(+6)(3-)(2)(+)(-)
分析:剛才已經(jīng)分析,二次根式的多項式乘以多項式運算在乘法公式運算中仍然成立.
解:(1)(+6)(3-)
=3-()2+18-6=13-3(2)(+)(-)=()2-()2
=10-7=3
三、鞏固練習
課本P20練習1、2.
四、應用拓展
例3.已知=2-,其中a、b是實數(shù),且a+b≠0,
化簡+,并求值.
分析:由于(+)(-)=1,因此對代數(shù)式的化簡,可先將分母有理化,再通過解含有字母系數(shù)的一元一次方程得到x的值,代入化簡得結果即可?
二次根式教案 篇6
【教學目標】
1.運用法則
進行二次根式的乘除運算;
2.會用公式
化簡二次根式。
【教學重點】
運用
進行化簡或計算
【教學難點】
經(jīng)歷二次根式的乘除法則的探究過程
【教學過程】
一、情境創(chuàng)設:
1.復習舊知:什么是二次根式?已學過二次根式的'哪些性質?
2.計算:
二、探索活動:
1.學生計算;
2.觀察上式及其運算結果,看看其中有什么規(guī)律?
3.概括:
得出:二次根式相乘,實際上就是把被開方數(shù)相乘,而根號不變。
將上面的公式逆向運用可得:
積的算術平方根,等于積中各因式的算術平方根的積。
三、例題講解:
1.計算:
2.化簡:
小結:如何化簡二次根式?
1.(關鍵)將被開方數(shù)因式分解或因數(shù)分解,使之出現(xiàn)“完全平方數(shù)”或“完全平方式”;
2.P62結果中,被開方數(shù)應不含能開得盡方的因數(shù)或因式。
四、課堂練習:
(一).P62 練習1、2
其中2中(5)
注意:
不是積的形式,要因數(shù)分解為36×16=242.
(二).P67 3 計算 (2)(4)
補充練習:
1.(x>0,y>0)
2.拓展與提高:
化簡:1).(a>0,b>0)
2).(y
2.若,求m的取值范圍。
☆3.已知:,求的值。
五、本課小結與作業(yè):
小結:二次根式的乘法法則
作業(yè):
1).課課練P9-10
2).補充習題
二次根式教案 篇7
教學目的
1.使學生掌握最簡二次根式的定義,并會應用此定義判斷一個根式是否為最簡二次根式;
2.會運用積和商的算術平方根的性質,把一個二次根式化為最簡二次根式。
教學重點
最簡二次根式的定義。
教學難點
一個二次根式化成最簡二次根式的方法。
教學過程
一、復習引入
1.把下列各根式化簡,并說出化簡的根據(jù):
2.引導學生觀察考慮:
化簡前后的根式,被開方數(shù)有什么不同?
化簡前的被開方數(shù)有分數(shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。
3.啟發(fā)學生回答:
二次根式,請同學們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?
二、講解新課
1.總結學生回答的內容后,給出最簡二次根式定義:
滿足下列兩個條件的二次根式叫做最簡二次根式:
(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開方數(shù)中不含能開得盡的因數(shù)或因式。
最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應化為因式連乘積的形式。
2.練習:
下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:
3.例題:
例1 把下列各式化成最簡二次根式:
例2 把下列各式化成最簡二次根式:
4.總結
把二次根式化成最簡二次根式的根據(jù)是什么?應用了什么方法?
當被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進行因數(shù)或因式分解,根據(jù)積的算術平方根的性質,把開得盡方的.因數(shù)或因式用它的算術平方根代替移到根號外面去。
當被開方數(shù)是分數(shù)或分式時,根據(jù)分式的基本性質和商的算術平方根的性質化去分母。
此方法是先根據(jù)分式的基本性質把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。
三、鞏固練習
1.把下列各式化成最簡二次根式:
2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。
四、小結
本節(jié)課學習了最簡二次根式的定義及化簡二次根式的方法。同學們掌握用最簡二次根式的定義判斷一個根式是否為最簡二次根式,要根據(jù)積的算術平方根和商的算術平方根的性質把一個根式化成最簡二次根式,特別注意當被開方數(shù)為多項式時要進行因式分解,被開方數(shù)為兩個分數(shù)的和則要先通分,再化簡。
五、布置作業(yè)
下列各式化成最簡二次根式:
二次根式教案 篇8
目 標
1. 熟練地運用二次根式的性質化簡二次根式;
2. 會運用二次根式解決簡單的實際問題;
3. 進一步體驗二次根式及其運算的實際意義和應用價值。
教學設想
本節(jié)課的重點是:二次根式及其運算的實際應用;難點是:例7涉及多方面的知識和綜合運用,思路比較復雜。
教 學 程序 與 策 略
一、預習檢測:
1.解決節(jié)前問題:
如圖,架在消防車上的云梯AB長為15m,AD:BD=1 :0.6,云梯底部離地面的距離BC為2m。你能求出云梯的頂端離地面的距離AE嗎?
歸納:
在日常生活和生產(chǎn)實際中,我們在解決一 些問題,尤其是涉及直角三角形邊長計算的問題時經(jīng)常用到二次根式及其運算。
二、合作交流:
1、:如圖,扶梯AB的坡比(BE與AE的長度之比)為1:0.8,滑梯CD的坡比為1:1.6,AE= 米,BC= CD。一男孩從扶梯走到滑梯的頂部,然后從滑梯滑下,他經(jīng)過了多少路程(結果要求先化簡,再取近似值,精確到0.01米)
讓學生有充分的時間閱讀問題,并結合圖形分析問題:(1)所求的路程實際上是哪些線段的和?哪些線段的長是已知的?哪些線段的'長是未知的?它們之間有什么關系?(2)列出的算式中有哪些運算?能化簡嗎?
注意解題格式
教 學 程 序 與 策 略
三、鞏固練習:
完成課本P17、1,組長檢查反饋;
四、拓展提高:
1:如圖是一張等腰三角形彩色紙,AC=BC=40cm,將斜邊上的高CD四等分,然后裁出3張寬度相等的長方形紙條。(1)分別求出3張長方形紙條的長度。(2)若用這些紙條為一幅正方形美術作品鑲邊(紙條不重疊),如右圖,正方形美術作品的面積最大不能超過多少cm。
師生共同分析解題思路,請學生寫出解題過程。
五、課堂小結:
1.談一談:本節(jié)課你有什么收獲?
2.運用二次根式解決簡單的實際問題時應注意的的問題
六、堂堂清
1: 作業(yè)本(2)
2:課本P17頁:第4、5題選做。
【二次根式教案】相關文章:
二次根式教案02-15
二次根式的加減教案01-19
二次根式教案優(yōu)秀08-24
二次根式教案(15篇)02-27
二次根式教案15篇02-16
二次根式教案合集5篇04-05
二次根式教案范文8篇04-09
二次根式教案匯編6篇04-08
二次根式教案匯總五篇04-03
【精品】二次根式教案三篇04-05