- 相關(guān)推薦
高三數(shù)學(xué)復(fù)習(xí)知識點(diǎn)歸納總結(jié)6篇
總結(jié)是事后對某一階段的學(xué)習(xí)、工作或其完成情況加以回顧和分析的一種書面材料,它能幫我們理順知識結(jié)構(gòu),突出重點(diǎn),突破難點(diǎn),讓我們一起認(rèn)真地寫一份總結(jié)吧。那么總結(jié)要注意有什么內(nèi)容呢?下面是小編為大家收集的高三數(shù)學(xué)復(fù)習(xí)知識點(diǎn)歸納總結(jié),僅供參考,希望能夠幫助到大家。
高三數(shù)學(xué)復(fù)習(xí)知識點(diǎn)歸納總結(jié)1
一、充分條件和必要條件
當(dāng)命題“若A則B”為真時,A稱為B的充分條件,B稱為A的必要條件。
二、充分條件、必要條件的常用判斷法
1、定義法:判斷B是A的條件,實際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關(guān)系畫出箭頭示意圖,再利用定義判斷即可
2、轉(zhuǎn)換法:當(dāng)所給命題的充要條件不易判斷時,可對命題進(jìn)行等價裝換,例如改用其逆否命題進(jìn)行判斷。
3、集合法
在命題的條件和結(jié)論間的`關(guān)系判斷有困難時,可從集合的角度考慮,記條件p、q對應(yīng)的集合分別為A、B,則:
若A?B,則p是q的充分條件。
若A?B,則p是q的必要條件。
若A=B,則p是q的充要條件。
若A?B,且B?A,則p是q的既不充分也不必要條件。
三、知識擴(kuò)展
1、四種命題反映出命題之間的內(nèi)在聯(lián)系,要注意結(jié)合實際問題,理解其關(guān)系(尤其是兩種等價關(guān)系)的產(chǎn)生過程,關(guān)于逆命題、否命題與逆否命題,也可以敘述為:
。1)交換命題的條件和結(jié)論,所得的新命題就是原來命題的逆命題;
。2)同時否定命題的條件和結(jié)論,所得的新命題就是原來的否命題;
。3)交換命題的條件和結(jié)論,并且同時否定,所得的新命題就是原命題的逆否命題。
2、由于“充分條件與必要條件”是四種命題的關(guān)系的深化,他們之間存在這密切的聯(lián)系,故在判斷命題的條件的充要性時,可考慮“正難則反”的原則,即在正面判斷較難時,可轉(zhuǎn)化為應(yīng)用該命題的逆否命題進(jìn)行判斷。一個結(jié)論成立的充分條件可以不止一個,必要條件也可以不止一個。
高三數(shù)學(xué)復(fù)習(xí)知識點(diǎn)歸納總結(jié)2
不等式分類:
不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。一般地,用純粹的大于號、小于號“>”“<”連接的不等式稱為嚴(yán)格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號)“≥”(大于等于符號)“≤”(小于等于符號)連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式。
通常不等式中的數(shù)是實數(shù),字母也代表實數(shù),不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z)(其中不等號也可以為<,≥,>中某一個),兩邊的解析式的.公共定義域稱為不等式的定義域,不等式既可以表達(dá)一個命題,也可以表示一個問題。
高三數(shù)學(xué)復(fù)習(xí)知識點(diǎn)歸納總結(jié)3
1、有關(guān)平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復(fù)遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規(guī)律——充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。
2、判定兩個平面平行的方法:
。1)根據(jù)定義——證明兩平面沒有公共點(diǎn);
。2)判定定理——證明一個平面內(nèi)的兩條相交直線都平行于另一個平面;
(3)證明兩平面同垂直于一條直線。
3、兩個平面平行的主要性質(zhì):
。1)由定義知:“兩平行平面沒有公共點(diǎn)”;
。2)由定義推得:“兩個平面平行,其中一個平面內(nèi)的'直線必平行于另一個平面”;
。3)兩個平面平行的性質(zhì)定理:“如果兩個平行平面同時和第三個平面相交,那么它們的交線平行”;
。4)一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面;
。5)夾在兩個平行平面間的平行線段相等;
。6)經(jīng)過平面外一點(diǎn)只有一個平面和已知平面平行。
高三數(shù)學(xué)復(fù)習(xí)知識點(diǎn)歸納總結(jié)4
考點(diǎn)一:集合與簡易邏輯
集合部分一般以選擇題出現(xiàn),屬容易題。重點(diǎn)考查集合間關(guān)系的理解和認(rèn)識。近年的試題加強(qiáng)了對集合計算化簡能力的考查,并向無限集發(fā)展,考查抽象思維能力。在解決這些問題時,要注意利用幾何的直觀性,并注重集合表示方法的轉(zhuǎn)換與化簡。簡易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關(guān)系、邏輯聯(lián)結(jié)詞、“充要關(guān)系”、命題真?zhèn)蔚呐袛、全稱命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達(dá)數(shù)學(xué)解題過程和邏輯推理。
考點(diǎn)二:函數(shù)與導(dǎo)數(shù)
函數(shù)是高考的重點(diǎn)內(nèi)容,以選擇題和填空題的為載體針對性考查函數(shù)的定義域與值域、函數(shù)的性質(zhì)、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對數(shù)、冪函數(shù))的應(yīng)用等,分值約為10分,解答題與導(dǎo)數(shù)交匯在一起考查函數(shù)的性質(zhì)。導(dǎo)數(shù)部分一方面考查導(dǎo)數(shù)的運(yùn)算與導(dǎo)數(shù)的幾何意義,另一方面考查導(dǎo)數(shù)的簡單應(yīng)用,如求函數(shù)的單調(diào)區(qū)間、極值與最值等,通常以客觀題的形式出現(xiàn),屬于容易題和中檔題,三是導(dǎo)數(shù)的綜合應(yīng)用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式出現(xiàn),如一些不等式恒成立問題、參數(shù)的取值范圍問題、方程根的個數(shù)問題、不等式的證明等問題。
考點(diǎn)三:三角函數(shù)與平面向量
一般是2道小題,1道綜合解答題。小題一道考查平面向量有關(guān)概念及運(yùn)算等,另一道對三角知識點(diǎn)的補(bǔ)充。大題中如果沒有涉及正弦定理、余弦定理的應(yīng)用,可能就是一道和解答題相互補(bǔ)充的三角函數(shù)的圖像、性質(zhì)或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數(shù)形結(jié)合思想在解題中的應(yīng)用。向量重點(diǎn)考查平面向量數(shù)量積的概念及應(yīng)用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等結(jié)合,解決角度、垂直、共線等問題是“新熱點(diǎn)”題型、
考點(diǎn)四:數(shù)列與不等式
不等式主要考查一元二次不等式的解法、一元二次不等式組和簡單線性規(guī)劃問題、基本不等式的應(yīng)用等,通常會在小題中設(shè)置1到2道題。對不等式的工具性穿插在數(shù)列、解析幾何、函數(shù)導(dǎo)數(shù)等解答題中進(jìn)行考查、在選擇、填空題中考查等差或等比數(shù)列的概念、性質(zhì)、通項公式、求和公式等的靈活應(yīng)用,一道解答題大多凸顯以數(shù)列知識為工具,綜合運(yùn)用函數(shù)、方程、不等式等解決問題的能力,它們都屬于中、高檔題目、
考點(diǎn)五:立體幾何與空間向量
一是考查空間幾何體的結(jié)構(gòu)特征、直觀圖與三視圖;二是考查空間點(diǎn)、線、面之間的位置關(guān)系;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求)、在高考試卷中,一般有1~2個客觀題和一個解答題,多為中檔題。
考點(diǎn)六:解析幾何
一般有1~2個客觀題和1個解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關(guān)系、圓錐曲線的定義應(yīng)用、標(biāo)準(zhǔn)方程的求解、離心率的計算等,解答題則主要考查直線與橢圓、拋物線等的位置關(guān)系問題,經(jīng)常與平面向量、函數(shù)與不等式交匯,考查一些存在性問題、證明問題、定點(diǎn)與定值、最值與范圍問題等。
考點(diǎn)七:算法復(fù)數(shù)推理與證明
高考對算法的考查以選擇題或填空題的'形式出現(xiàn),或給解答題披層“外衣”、考查的熱點(diǎn)是流程圖的識別與算法語言的閱讀理解、算法與數(shù)列知識的網(wǎng)絡(luò)交匯命題是考查的主流、復(fù)數(shù)考查的重點(diǎn)是復(fù)數(shù)的有關(guān)概念、復(fù)數(shù)的代數(shù)形式、運(yùn)算及運(yùn)算的幾何意義,一般是選擇題、填空題,難度不大、推理證明部分命題的方向主要會在函數(shù)、三角、數(shù)列、立體幾何、解析幾何等方面,單獨(dú)出題的可能性較小。對于理科,數(shù)學(xué)歸納法可能作為解答題的一小問、
高三數(shù)學(xué)復(fù)習(xí)知識點(diǎn)歸納總結(jié)5
。1)先看“充分條件和必要條件”
當(dāng)命題“若p則q”為真時,可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。但為什么說q是p的'必要條件呢?事實上,與“p=>q”等價的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說,q對于p是必不可少的,因而是必要的。
。2)再看“充要條件”
若有p=>q,同時q=>p,則p既是q的充分條件,又是必要條件。簡稱為p是q的充要條件。記作p<=>q
。3)定義與充要條件
數(shù)學(xué)中,只有A是B的充要條件時,才用A去定義B,因此每個定義中都包含一個充要條件。如“兩組對邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個四邊形為平行四邊形的充要條件是它的兩組對邊分別平行。
顯然,一個定理如果有逆定理,那么定理、逆定理合在一起,可以用一個含有充要條件的語句來表示!俺湟獥l件”有時還可以改用“當(dāng)且僅當(dāng)”來表示,其中“當(dāng)”表示“充分”!皟H當(dāng)”表示“必要”。
(4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質(zhì)定理中的“結(jié)論”都可作為必要條件。
高三數(shù)學(xué)復(fù)習(xí)知識點(diǎn)歸納總結(jié)6
第一部分集合
。1)含n個元素的集合的子集數(shù)為2^n,真子集數(shù)為2^n—1;非空真子集的數(shù)為2^n—2;
(2)注意:討論的時候不要遺忘了的情況。
第二部分函數(shù)與導(dǎo)數(shù)
1、映射:注意①第一個集合中的元素必須有象;②一對一,或多對一。
2、函數(shù)值域的求法:①分析法;②配方法;③判別式法;④利用函數(shù)單調(diào)性;⑤換元法;⑥利用均值不等式;⑦利用數(shù)形結(jié)合或幾何意義(斜率、距離、絕對值的意義等);⑧利用函數(shù)有界性(、、等);⑨導(dǎo)數(shù)法
3、復(fù)合函數(shù)的有關(guān)問題
。1)復(fù)合函數(shù)定義域求法:
①若f(x)的定義域為〔a,b〕,則復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出
、谌鬴[g(x)]的定義域為[a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時,求g(x)的值域。
。2)復(fù)合函數(shù)單調(diào)性的判定:
、偈紫葘⒃瘮(shù)分解為基本函數(shù):內(nèi)函數(shù)與外函數(shù);
、诜謩e研究內(nèi)、外函數(shù)在各自定義域內(nèi)的單調(diào)性;
、鄹鶕(jù)“同性則增,異性則減”來判斷原函數(shù)在其定義域內(nèi)的單調(diào)性。
注意:外函數(shù)的定義域是內(nèi)函數(shù)的值域。
4、分段函數(shù):值域(最值)、單調(diào)性、圖象等問題,先分段解決,再下結(jié)論。
5、函數(shù)的奇偶性
⑴函數(shù)的定義域關(guān)于原點(diǎn)對稱是函數(shù)具有奇偶性的必要條件;
⑵是奇函數(shù);
、鞘桥己瘮(shù);
、绕婧瘮(shù)在原點(diǎn)有定義,則;
、稍陉P(guān)于原點(diǎn)對稱的單調(diào)區(qū)間內(nèi):奇函數(shù)有相同的`單調(diào)性,偶函數(shù)有相反的單調(diào)性;
。6)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先等價變形,再判斷其奇偶性;
1、對于函數(shù)f(x),如果對于定義域內(nèi)任意一個x,都有f(—x)=—f(x),那么f(x)為奇函數(shù);
2、對于函數(shù)f(x),如果對于定義域內(nèi)任意一個x,都有f(—x)=f(x),那么f(x)為偶函數(shù);
3、一般地,對于函數(shù)y=f(x),定義域內(nèi)每一個自變量x,都有f(a+x)=2b—f(a—x),則y=f(x)的圖象關(guān)于點(diǎn)(a,b)成中心對稱;
4、一般地,對于函數(shù)y=f(x),定義域內(nèi)每一個自變量x都有f(a+x)=f(a—x),則它的圖象關(guān)于x=a成軸對稱。
5、函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);
6、由函數(shù)奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內(nèi)的任意一個x,則—x也一定是定義域內(nèi)的一個自變量(即定義域關(guān)于原點(diǎn)對稱)。
【高三數(shù)學(xué)復(fù)習(xí)知識點(diǎn)歸納總結(jié)】相關(guān)文章:
高三數(shù)學(xué)知識點(diǎn)歸納總結(jié)04-20
高三數(shù)學(xué)復(fù)習(xí)知識點(diǎn)總結(jié)06-17
高三數(shù)學(xué)知識點(diǎn)歸納總結(jié)6篇07-03
高三數(shù)學(xué)復(fù)習(xí)知識點(diǎn)總結(jié) 7篇06-17
高三數(shù)學(xué)復(fù)習(xí)知識點(diǎn)總結(jié) (7篇)06-17
高三數(shù)學(xué)知識點(diǎn)總結(jié)歸納(匯編6篇)06-11
高三數(shù)學(xué)知識點(diǎn)總結(jié)歸納集錦6篇06-11
高三數(shù)學(xué)知識點(diǎn)總結(jié)歸納(集合6篇)06-11