高三數學知識點總結歸納(匯編6篇)
總結是對某一階段的工作、學習或思想中的經驗或情況進行分析研究的書面材料,它能夠使頭腦更加清醒,目標更加明確,因此十分有必須要寫一份總結哦?偨Y你想好怎么寫了嗎?下面是小編收集整理的高三數學知識點總結歸納,希望能夠幫助到大家。
高三數學知識點總結歸納1
符合一定條件的動點所形成的圖形,或者說,符合一定條件的點的全體所組成的集合,叫做滿足該條件的點的軌跡.
軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性).
【軌跡方程】就是與幾何軌跡對應的代數描述。
一、求動點的軌跡方程的基本步驟
、苯⑦m當的坐標系,設出動點M的坐標;
、矊懗鳇cM的集合;
⒊列出方程=0;
、椿喎匠虨樽詈喰问;
、禉z驗。
二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、參數法和交軌法等。
、敝弊g法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
、捕x法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的'方法叫做定義法。
⒊相關點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。
、磪捣ǎ寒攧狱c坐標x、y之間的直接關系難以找到時,往往先尋找x、y與某一變數t的關系,得再消去參變數t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數法。
、到卉壏ǎ簩蓜忧方程中的參數消去,得到不含參數的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。
_直譯法:求動點軌跡方程的一般步驟
、俳ㄏ怠⑦m當的坐標系;
②設點——設軌跡上的任一點P(x,y);
、哿惺健谐鰟狱cp所滿足的關系式;
④代換——依條件的特點,選用距離公式、斜率公式等將其轉化為關于X,Y的方程式,并化簡;
⑤證明——證明所求方程即為符合條件的動點軌跡方程。
高三數學知識點總結歸納2
1.等差數列的定義
如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,那么這個數列就叫做等差數列,這個常數叫做等差數列的公差,通常用字母d表示.
2.等差數列的通項公式
若等差數列{an}的首項是a1,公差是d,則其通項公式為an=a1+(n-1)d.
3.等差中項
如果A=(a+b)/2,那么A叫做a與b的等差中項.
4.等差數列的常用性質
(1)通項公式的推廣:an=am+(n-m)d(n,m∈N_).
(2)若{an}為等差數列,且m+n=p+q,
則am+an=ap+aq(m,n,p,q∈N_).
(3)若{an}是等差數列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數列.
(4)數列Sm,S2m-Sm,S3m-S2m,…也是等差數列.
(5)S2n-1=(2n-1)an.
(6)若n為偶數,則S偶-S奇=nd/2;
若n為奇數,則S奇-S偶=a中(中間項).
注意:
一個推導
利用倒序相加法推導等差數列的前n項和公式:
Sn=a1+a2+a3+…+an,①
Sn=an+an-1+…+a1,②
、+②得:Sn=n(a1+an)/2
兩個技巧
已知三個或四個數組成等差數列的'一類問題,要善于設元.
(1)若奇數個數成等差數列且和為定值時,可設為…,a-2d,a-d,a,a+d,a+2d,….
(2)若偶數個數成等差數列且和為定值時,可設為…,a-3d,a-d,a+d,a+3d,…,其余各項再依據等差數列的定義進行對稱設元.
四種方法
等差數列的判斷方法
(1)定義法:對于n≥2的任意自然數,驗證an-an-1為同一常數;
(2)等差中項法:驗證2an-1=an+an-2(n≥3,n∈N_)都成立;
(3)通項公式法:驗證an=pn+q;
(4)前n項和公式法:驗證Sn=An2+Bn.
注:后兩種方法只能用來判斷是否為等差數列,而不能用來證明等差數列.
高三數學知識點總結歸納3
(1)先看“充分條件和必要條件”
當命題“若p則q”為真時,可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。
但為什么說q是p的必要條件呢?
事實上,與“p=>q”等價的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說,q對于p是必不可少的,因而是必要的。
(2)再看“充要條件”
若有p=>q,同時q=>p,則p既是q的.充分條件,又是必要條件。簡稱為p是q的充要條件。記作p<=>q
(3)定義與充要條件
數學中,只有A是B的充要條件時,才用A去定義B,因此每個定義中都包含一個充要條件。如“兩組對邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個四邊形為平行四邊形的充要條件是它的兩組對邊分別平行。
顯然,一個定理如果有逆定理,那么定理、逆定理合在一起,可以用一個含有充要條件的語句來表示。
“充要條件”有時還可以改用“當且僅當”來表示,其中“當”表示“充分”。“僅當”表示“必要”。
(4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質定理中的“結論”都可作為必要條件。
高三數學知識點總結歸納4
1.數列的定義、分類與通項公式
(1)數列的定義:
、贁盗校喊凑找欢樞蚺帕械囊涣袛.
②數列的項:數列中的每一個數.
(2)數列的分類:
分類標準類型滿足條件
項數有窮數列項數有限
無窮數列項數無限
項與項間的.大小關系遞增數列an+1>an其中n∈N_
遞減數列an+1
常數列an+1=an
(3)數列的通項公式:
如果數列{an}的第n項與序號n之間的關系可以用一個式子來表示,那么這個公式叫做這個數列的通項公式.
2.數列的遞推公式
如果已知數列{an}的首項(或前幾項),且任一項an與它的前一項an-1(n≥2)(或前幾項)間的關系可用一個公式來表示,那么這個公式叫數列的遞推公式.
3.對數列概念的理解
(1)數列是按一定“順序”排列的一列數,一個數列不僅與構成它的“數”有關,而且還與這些“數”的排列順序有關,這有別于集合中元素的無序性.因此,若組成兩個數列的數相同而排列次序不同,那么它們就是不同的兩個數列.
(2)數列中的數可以重復出現(xiàn),而集合中的元素不能重復出現(xiàn),這也是數列與數集的區(qū)別.
4.數列的函數特征
數列是一個定義域為正整數集N_(或它的有限子集{1,2,3,…,n})的特殊函數,數列的通項公式也就是相應的函數解析式,即f(n)=an(n∈N_).
高三數學知識點總結歸納5
付正軍:高考數學中有函數、數列、三角函數、平面向量、不等式、立體幾何等九大章節(jié),主要是考函數和導數,這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函數的性質,包括函數的單調性、奇偶性;第二是函數的解答題,重點考察的是二次函數和高次函數,分函數和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。
第二個是平面向量和三角函數。重點考察三個方面:一個是劃減與求值,第一,重點掌握公式,重點掌握五組基本公式。第二,是三角函數的圖像和性質,這里重點掌握正弦函數和余弦函數的性質,第三,正弦定理和余弦定理來解三角形。難度比較小。
第三,是數列,數列這個板塊,重點考兩個方面:一個通項;一個是求和。
第四,空間向量和立體幾何。在里面重點考察兩個方面:一個是證明;一個是計算。
第五,概率和統(tǒng)計,這一板塊主要是屬于數學應用問題的范疇,當然應該掌握下面幾個方面,第一等可能的概率,第二事件,第三是獨立事件,還有獨立重復事件發(fā)生的概率。
第六,解析幾何,這是我們比較頭疼的問題,是整個試卷里難度比較大,計算量最高的題,當然這一類題,我總結下面五類常考的題型,包括第一類所講的直線和曲線的位置關系,這是考試最多的內容?忌鷳撜莆账耐ǚ,第二類我們所講的動點問題,第三類是弦長問題,第四類是對稱問題,這也是20xx年高考已經考過的一點,第五類重點問題,這類題時往往覺得有思路,但是沒有答案,當然這里我相等的是,這道題盡管計算量很大,但是造成計算量大的'原因,往往有這個原因,我們所選方法不是很恰當,因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準確度,這是我們所講的第六大板塊。
第七,押軸題,考生在備考復習時,應該重點不等式計算的方法,雖然說難度比較大,我建議考生,采取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。
高三數學知識點總結歸納6
第一部分集合
(1)含n個元素的集合的子集數為2^n,真子集數為2^n—1;非空真子集的數為2^n—2;
。2)注意:討論的時候不要遺忘了的情況。
第二部分函數與導數
1、映射:注意①第一個集合中的元素必須有象;②一對一,或多對一。
2、函數值域的求法:①分析法;②配方法;③判別式法;④利用函數單調性;⑤換元法;⑥利用均值不等式;⑦利用數形結合或幾何意義(斜率、距離、絕對值的意義等);⑧利用函數有界性(、、等);⑨導數法
3、復合函數的有關問題
。1)復合函數定義域求法:
、偃鬴(x)的定義域為〔a,b〕,則復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出
、谌鬴[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域。
。2)復合函數單調性的判定:
、偈紫葘⒃瘮捣纸鉃榛竞瘮担簝群瘮蹬c外函數;
②分別研究內、外函數在各自定義域內的單調性;
、鄹鶕巴詣t增,異性則減”來判斷原函數在其定義域內的單調性。
注意:外函數的定義域是內函數的值域。
4、分段函數:值域(最值)、單調性、圖象等問題,先分段解決,再下結論。
5、函數的奇偶性
、藕瘮档亩x域關于原點對稱是函數具有奇偶性的必要條件;
⑵是奇函數;
、鞘桥己瘮;
、绕婧瘮翟谠c有定義,則;
、稍陉P于原點對稱的`單調區(qū)間內:奇函數有相同的單調性,偶函數有相反的單調性;
(6)若所給函數的解析式較為復雜,應先等價變形,再判斷其奇偶性;
1、對于函數f(x),如果對于定義域內任意一個x,都有f(—x)=—f(x),那么f(x)為奇函數;
2、對于函數f(x),如果對于定義域內任意一個x,都有f(—x)=f(x),那么f(x)為偶函數;
3、一般地,對于函數y=f(x),定義域內每一個自變量x,都有f(a+x)=2b—f(a—x),則y=f(x)的圖象關于點(a,b)成中心對稱;
4、一般地,對于函數y=f(x),定義域內每一個自變量x都有f(a+x)=f(a—x),則它的圖象關于x=a成軸對稱。
5、函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;
6、由函數奇偶性定義可知,函數具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則—x也一定是定義域內的一個自變量(即定義域關于原點對稱)。
【高三數學知識點總結歸納】相關文章:
高三數學知識點歸納總結04-20
高三數學知識點歸納總結6篇07-03
小升初的數學知識點總結歸納07-13
數學高二知識點總結歸納07-25
高二知識點數學總結歸納02-02
初三數學知識點總結歸納07-25
高三生物知識點歸納總結06-24
高三化學考試必背知識點總結歸納05-17
數學高二知識點總結歸納13篇07-25
數學高二知識點總結歸納(13篇)07-25