成年女人色视频在线观看网站_一本久精品无码免费_亚洲成a人片在线观看无码专区_开心婷婷五月综合基地六月

高三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)

時(shí)間:2022-04-20 09:59:08 總結(jié) 投訴 投稿

高三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)

  總結(jié)是在一段時(shí)間內(nèi)對(duì)學(xué)習(xí)和工作生活等表現(xiàn)加以總結(jié)和概括的一種書面材料,它可以幫助我們有尋找學(xué)習(xí)和工作中的規(guī)律,因此我們要做好歸納,寫好總結(jié)。那么總結(jié)有什么格式呢?下面是小編精心整理的高三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié),歡迎大家分享。

高三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)

  高三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)1

  付正軍:高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié),主要是考函數(shù)和導(dǎo)數(shù),這是我們整個(gè)高中階段里最核心的板塊,在這個(gè)板塊里,重點(diǎn)考察兩個(gè)方面:第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問(wèn)題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析就是二次方程的分布的問(wèn)題,這是第一個(gè)板塊。

  第二個(gè)是平面向量和三角函數(shù)。重點(diǎn)考察三個(gè)方面:一個(gè)是劃減與求值,第一,重點(diǎn)掌握公式,重點(diǎn)掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來(lái)解三角形。難度比較小。

  第三,是數(shù)列,數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。

  第四,空間向量和立體幾何。在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計(jì)算。

  第五,概率和統(tǒng)計(jì),這一板塊主要是屬于數(shù)學(xué)應(yīng)用問(wèn)題的范疇,當(dāng)然應(yīng)該掌握下面幾個(gè)方面,第一等可能的概率,第二事件,第三是獨(dú)立事件,還有獨(dú)立重復(fù)事件發(fā)生的概率。

  第六,解析幾何,這是我們比較頭疼的問(wèn)題,是整個(gè)試卷里難度比較大,計(jì)算量最高的題,當(dāng)然這一類題,我總結(jié)下面五類常考的題型,包括第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容?忌鷳(yīng)該掌握它的通法,第二類我們所講的動(dòng)點(diǎn)問(wèn)題,第三類是弦長(zhǎng)問(wèn)題,第四類是對(duì)稱問(wèn)題,這也是20xx年高考已經(jīng)考過(guò)的一點(diǎn),第五類重點(diǎn)問(wèn)題,這類題時(shí)往往覺(jué)得有思路,但是沒(méi)有答案,當(dāng)然這里我相等的是,這道題盡管計(jì)算量很大,但是造成計(jì)算量大的`原因,往往有這個(gè)原因,我們所選方法不是很恰當(dāng),因此,在這一章里我們要掌握比較好的算法,來(lái)提高我們做題的準(zhǔn)確度,這是我們所講的第六大板塊。

  第七,押軸題,考生在備考復(fù)習(xí)時(shí),應(yīng)該重點(diǎn)不等式計(jì)算的方法,雖然說(shuō)難度比較大,我建議考生,采取分部得分整個(gè)試卷不要留空白。這是高考所考的七大板塊核心的考點(diǎn)。

  高三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)2

  一個(gè)推導(dǎo)

  利用錯(cuò)位相減法推導(dǎo)等比數(shù)列的前n項(xiàng)和:Sn=a1+a1q+a1q2+…+a1qn-1,

  同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,

  兩式相減得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).

  兩個(gè)防范

  (1)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗(yàn)證a1≠0.

  (2)在運(yùn)用等比數(shù)列的前n項(xiàng)和公式時(shí),必須注意對(duì)q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導(dǎo)致解題失誤.

  三種方法

  等比數(shù)列的判斷方法有:

  (1)定義法:若an+1/an=q(q為非零常數(shù))或an/an-1=q(q為非零常數(shù)且n≥2且n∈N_),則{an}是等比數(shù)列.

  (2)中項(xiàng)公式法:在數(shù)列{an}中,an≠0且a=an·an+2(n∈N_),則數(shù)列{an}是等比數(shù)列.

  (3)通項(xiàng)公式法:若數(shù)列通項(xiàng)公式可寫成an=c·qn(c,q均是不為0的.常數(shù),n∈N_),則{an}是等比數(shù)列.

  注:前兩種方法也可用來(lái)證明一個(gè)數(shù)列為等比數(shù)列.

  高三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)3

  1.有關(guān)平行與垂直(線線、線面及面面)的問(wèn)題,是在解決立體幾何問(wèn)題的過(guò)程中,大量的、反復(fù)遇到的',而且是以各種各樣的問(wèn)題(包括論證、計(jì)算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問(wèn)題著手,通過(guò)較為基本問(wèn)題,熟悉公理、定理的內(nèi)容和功能,通過(guò)對(duì)問(wèn)題的分析與概括,掌握立體幾何中解決問(wèn)題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。

  2.判定兩個(gè)平面平行的方法:

  (1)根據(jù)定義--證明兩平面沒(méi)有公共點(diǎn);

  (2)判定定理--證明一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面;

  (3)證明兩平面同垂直于一條直線。

  3.兩個(gè)平面平行的主要性質(zhì):

  (1)由定義知:“兩平行平面沒(méi)有公共點(diǎn)”;

  (2)由定義推得:“兩個(gè)平面平行,其中一個(gè)平面內(nèi)的直線必平行于另一個(gè)平面”;

  (3)兩個(gè)平面平行的性質(zhì)定理:“如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行”;

  (4)一條直線垂直于兩個(gè)平行平面中的一個(gè)平面,它也垂直于另一個(gè)平面;

  (5)夾在兩個(gè)平行平面間的平行線段相等;

  (6)經(jīng)過(guò)平面外一點(diǎn)只有一個(gè)平面和已知平面平行。

  高三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)4

  1.等差數(shù)列的定義

  如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d表示.

  2.等差數(shù)列的通項(xiàng)公式

  若等差數(shù)列{an}的首項(xiàng)是a1,公差是d,則其通項(xiàng)公式為an=a1+(n-1)d.

  3.等差中項(xiàng)

  如果A=(a+b)/2,那么A叫做a與b的'等差中項(xiàng).

  4.等差數(shù)列的常用性質(zhì)

  (1)通項(xiàng)公式的推廣:an=am+(n-m)d(n,m∈N_).

  (2)若{an}為等差數(shù)列,且m+n=p+q,

  則am+an=ap+aq(m,n,p,q∈N_).

  (3)若{an}是等差數(shù)列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數(shù)列.

  (4)數(shù)列Sm,S2m-Sm,S3m-S2m,…也是等差數(shù)列.

  (5)S2n-1=(2n-1)an.

  (6)若n為偶數(shù),則S偶-S奇=nd/2;

  若n為奇數(shù),則S奇-S偶=a中(中間項(xiàng)).

  注意:

  一個(gè)推導(dǎo)

  利用倒序相加法推導(dǎo)等差數(shù)列的前n項(xiàng)和公式:

  Sn=a1+a2+a3+…+an,①

  Sn=an+an-1+…+a1,②

 、+②得:Sn=n(a1+an)/2

  兩個(gè)技巧

  已知三個(gè)或四個(gè)數(shù)組成等差數(shù)列的一類問(wèn)題,要善于設(shè)元.

  (1)若奇數(shù)個(gè)數(shù)成等差數(shù)列且和為定值時(shí),可設(shè)為…,a-2d,a-d,a,a+d,a+2d,….

  (2)若偶數(shù)個(gè)數(shù)成等差數(shù)列且和為定值時(shí),可設(shè)為…,a-3d,a-d,a+d,a+3d,…,其余各項(xiàng)再依據(jù)等差數(shù)列的定義進(jìn)行對(duì)稱設(shè)元.

  四種方法

  等差數(shù)列的判斷方法

  (1)定義法:對(duì)于n≥2的任意自然數(shù),驗(yàn)證an-an-1為同一常數(shù);

  (2)等差中項(xiàng)法:驗(yàn)證2an-1=an+an-2(n≥3,n∈N_)都成立;

  (3)通項(xiàng)公式法:驗(yàn)證an=pn+q;

  (4)前n項(xiàng)和公式法:驗(yàn)證Sn=An2+Bn.

  注:后兩種方法只能用來(lái)判斷是否為等差數(shù)列,而不能用來(lái)證明等差數(shù)列.

  高三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)5

  不等式這部分知識(shí),滲透在中學(xué)數(shù)學(xué)各個(gè)分支中,有著十分廣泛的應(yīng)用。因此不等式應(yīng)用問(wèn)題體現(xiàn)了一定的綜合性、靈活多樣性,對(duì)數(shù)學(xué)各部分知識(shí)融會(huì)貫通,起到了很好的促進(jìn)作用。在解決問(wèn)題時(shí),要依據(jù)題設(shè)與結(jié)論的結(jié)構(gòu)特點(diǎn)、內(nèi)在聯(lián)系、選擇適當(dāng)?shù)慕鉀Q方案,最終歸結(jié)為不等式的求解或證明。不等式的應(yīng)用范圍十分廣泛,它始終貫串在整個(gè)中學(xué)數(shù)學(xué)之中。

  諸如集合問(wèn)題,方程(組)的解的討論,函數(shù)單調(diào)性的研究,函數(shù)定義域的確定,三角、數(shù)列、復(fù)數(shù)、立體幾何、解析幾何中的值、最小值問(wèn)題,無(wú)一不與不等式有著密切的聯(lián)系,許多問(wèn)題,最終都可歸結(jié)為不等式的求解或證明。

  知識(shí)整合

  1、解不等式的核心問(wèn)題是不等式的同解變形,不等式的性質(zhì)則是不等式變形的理論依據(jù),方程的根、函數(shù)的性質(zhì)和圖象都與不等式的解法密切相關(guān),要善于把它們有機(jī)地聯(lián)系起來(lái),互相轉(zhuǎn)化。在解不等式中,換元法和圖解法是常用的技巧之一。通過(guò)換元,可將較復(fù)雜的不等式化歸為較簡(jiǎn)單的或基本不等式,通過(guò)構(gòu)造函數(shù)、數(shù)形結(jié)合,則可將不等式的解化歸為直觀、形象的圖形關(guān)系,對(duì)含有參數(shù)的不等式,運(yùn)用圖解法可以使得分類標(biāo)準(zhǔn)明晰。

  2、整式不等式(主要是一次、二次不等式)的.解法是解不等式的基礎(chǔ),利用不等式的性質(zhì)及函數(shù)的單調(diào)性,將分式不等式、絕對(duì)值不等式等化歸為整式不等式(組)是解不等式的基本思想,分類、換元、數(shù)形結(jié)合是解不等式的常用方法。方程的根、函數(shù)的性質(zhì)和圖象都與不等式的解密切相關(guān),要善于把它們有機(jī)地聯(lián)系起來(lái),相互轉(zhuǎn)化和相互變用。

  3、在不等式的求解中,換元法和圖解法是常用的技巧之一,通過(guò)換元,可將較復(fù)雜的不等式化歸為較簡(jiǎn)單的或基本不等式,通過(guò)構(gòu)造函數(shù),將不等式的解化歸為直觀、形象的圖象關(guān)系,對(duì)含有參數(shù)的不等式,運(yùn)用圖解法,可以使分類標(biāo)準(zhǔn)更加明晰。

  4、證明不等式的方法靈活多樣,但比較法、綜合法、分析法仍是證明不等式的最基本方法。要依據(jù)題設(shè)、題斷的結(jié)構(gòu)特點(diǎn)、內(nèi)在聯(lián)系,選擇適當(dāng)?shù)淖C明方法,要熟悉各種證法中的推理思維,并掌握相應(yīng)的步驟,技巧和語(yǔ)言特點(diǎn)。比較法的一般步驟是:作差(商)→變形→判斷符號(hào)(值)。

  高三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)6

  第一部分集合

 。1)含n個(gè)元素的集合的子集數(shù)為2^n,真子集數(shù)為2^n—1;非空真子集的數(shù)為2^n—2;

 。2)注意:討論的時(shí)候不要遺忘了的情況。

  第二部分函數(shù)與導(dǎo)數(shù)

  1、映射:注意①第一個(gè)集合中的元素必須有象;②一對(duì)一,或多對(duì)一。

  2、函數(shù)值域的求法:①分析法;②配方法;③判別式法;④利用函數(shù)單調(diào)性;⑤換元法;⑥利用均值不等式;⑦利用數(shù)形結(jié)合或幾何意義(斜率、距離、絕對(duì)值的意義等);⑧利用函數(shù)有界性(、、等);⑨導(dǎo)數(shù)法

  3、復(fù)合函數(shù)的有關(guān)問(wèn)題

 。1)復(fù)合函數(shù)定義域求法:

 、偃鬴(x)的定義域?yàn)椤瞐,b〕,則復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出

 、谌鬴[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域。

 。2)復(fù)合函數(shù)單調(diào)性的判定:

 、偈紫葘⒃瘮(shù)分解為基本函數(shù):內(nèi)函數(shù)與外函數(shù);

 、诜謩e研究?jī)?nèi)、外函數(shù)在各自定義域內(nèi)的單調(diào)性;

 、鄹鶕(jù)“同性則增,異性則減”來(lái)判斷原函數(shù)在其定義域內(nèi)的單調(diào)性。

  注意:外函數(shù)的定義域是內(nèi)函數(shù)的值域。

  4、分段函數(shù):值域(最值)、單調(diào)性、圖象等問(wèn)題,先分段解決,再下結(jié)論。

  5、函數(shù)的奇偶性

  ⑴函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的'必要條件;

  ⑵是奇函數(shù);

  ⑶是偶函數(shù);

  ⑷奇函數(shù)在原點(diǎn)有定義,則;

 、稍陉P(guān)于原點(diǎn)對(duì)稱的單調(diào)區(qū)間內(nèi):奇函數(shù)有相同的單調(diào)性,偶函數(shù)有相反的單調(diào)性;

  (6)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先等價(jià)變形,再判斷其奇偶性;

  1、對(duì)于函數(shù)f(x),如果對(duì)于定義域內(nèi)任意一個(gè)x,都有f(—x)=—f(x),那么f(x)為奇函數(shù);

  2、對(duì)于函數(shù)f(x),如果對(duì)于定義域內(nèi)任意一個(gè)x,都有f(—x)=f(x),那么f(x)為偶函數(shù);

  3、一般地,對(duì)于函數(shù)y=f(x),定義域內(nèi)每一個(gè)自變量x,都有f(a+x)=2b—f(a—x),則y=f(x)的圖象關(guān)于點(diǎn)(a,b)成中心對(duì)稱;

  4、一般地,對(duì)于函數(shù)y=f(x),定義域內(nèi)每一個(gè)自變量x都有f(a+x)=f(a—x),則它的圖象關(guān)于x=a成軸對(duì)稱。

  5、函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);

  6、由函數(shù)奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,則—x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱)。

  高三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)7

  等式的性質(zhì):

  ①不等式的性質(zhì)可分為不等式基本性質(zhì)和不等式運(yùn)算性質(zhì)兩部分。

  不等式基本性質(zhì)有:

  (1)a>bb

  (2)a>b,b>ca>c(傳遞性)

  (3)a>ba+c>b+c(c∈R)

  (4)c>0時(shí),a>bac>bc

  c<0時(shí),a>bac

  運(yùn)算性質(zhì)有:

  (1)a>b,c>da+c>b+d。

  (2)a>b>0,c>d>0ac>bd。

  (3)a>b>0an>bn(n∈N,n>1)。

  (4)a>b>0>(n∈N,n>1)。

  應(yīng)注意,上述性質(zhì)中,條件與結(jié)論的邏輯關(guān)系有兩種:“”和“”即推出關(guān)系和等價(jià)關(guān)系。一般地,證明不等式就是從條件出發(fā)施行一系列的推出變換。解不等式就是施行一系列的等價(jià)變換。因此,要正確理解和應(yīng)用不等式性質(zhì)。

 、陉P(guān)于不等式的性質(zhì)的考察,主要有以下三類問(wèn)題:

  (1)根據(jù)給定的不等式條件,利用不等式的性質(zhì),判斷不等式能否成立。

  (2)利用不等式的性質(zhì)及實(shí)數(shù)的性質(zhì),函數(shù)性質(zhì),判斷實(shí)數(shù)值的大小。

  (3)利用不等式的性質(zhì),判斷不等式變換中條件與結(jié)論間的充分或必要關(guān)系。

  高中數(shù)學(xué)集合復(fù)習(xí)知識(shí)點(diǎn)

  任一A,B,記做AB

  AB,BA ,A=B

  AB={|A|,且|B|}

  AB={|A|,或|B|}

  Card(AB)=card(A)+card(B)-card(AB)

  (1)命題

  原命題若p則q

  逆命題若q則p

  否命題若p則q

  逆否命題若q,則p

  (2)AB,A是B成立的充分條件

  BA,A是B成立的必要條件

  AB,A是B成立的充要條件

  1.集合元素具有①確定性;②互異性;③無(wú)序性

  2.集合表示方法①列舉法;②描述法;③韋恩圖;④數(shù)軸法

  (3)集合的運(yùn)算

 、貯∩(B∪C)=(A∩B)∪(A∩C)

 、贑u(A∩B)=CuA∪CuB

  Cu(A∪B)=CuA∩CuB

  (4)集合的性質(zhì)

  n元集合的字集數(shù):2n

  真子集數(shù):2n-1;

  非空真子集數(shù):2n-2

  高中數(shù)學(xué)集合知識(shí)點(diǎn)歸納

  1、集合的概念

  集合是數(shù)學(xué)中最原始的不定義的概念,只能給出,描述性說(shuō)明:某些制定的且不同的`對(duì)象集合在一起就稱為一個(gè)集合。組成集合的對(duì)象叫元素,集合通常用大寫字母A、B、C、…來(lái)表示。元素常用小寫字母a、b、c、…來(lái)表示。

  集合是一個(gè)確定的整體,因此對(duì)集合也可以這樣描述:具有某種屬性的對(duì)象的全體組成的一個(gè)集合。

  2、元素與集合的關(guān)系元素與集合的關(guān)系有屬于和不屬于兩種:

  元素a屬于集合A,記做a∈A;元素a不屬于集合A,記做a?A。

  3、集合中元素的特性

  (1)確定性:設(shè)A是一個(gè)給定的集合,_是某一具體對(duì)象,則_或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。例如A={0,1,3,4},可知0∈A,6?A。

  (2)互異性:“集合張的元素必須是互異的”,就是說(shuō)“對(duì)于一個(gè)給定的集合,它的任何兩個(gè)元素都是不同的”。

  (3)無(wú)序性:集合與其中元素的排列次序無(wú)關(guān),如集合{a,b,c}與集合{c,b,a}是同一個(gè)集合。

  4、集合的分類

  集合科根據(jù)他含有的元素個(gè)數(shù)的多少分為兩類:

  有限集:含有有限個(gè)元素的集合。如“方程3_+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個(gè)數(shù)是可數(shù)的,因此兩個(gè)集合是有限集。

  無(wú)限集:含有無(wú)限個(gè)元素的集合,如“到平面上兩個(gè)定點(diǎn)的距離相等于所有點(diǎn)”“所有的三角形”,組成上述集合的元素不可數(shù)的,因此他們是無(wú)限集。

  特別的,我們把不含有任何元素的集合叫做空集,記錯(cuò)F,如{|R|+1=0}。

  5、特定的集合的表示

  為了書寫方便,我們規(guī)定常見(jiàn)的數(shù)集用特定的字母表示,下面是幾種常見(jiàn)的數(shù)集表示方法,請(qǐng)牢記。

  (1)全體非負(fù)整數(shù)的集合通常簡(jiǎn)稱非負(fù)整數(shù)集(或自然數(shù)集),記做N。

  (2)非負(fù)整數(shù)集內(nèi)排出0的集合,也稱正整數(shù)集,記做N_或N+。

  (3)全體整數(shù)的集合通常簡(jiǎn)稱為整數(shù)集Z。

  (4)全體有理數(shù)的集合通常簡(jiǎn)稱為有理數(shù)集,記做Q。

  (5)全體實(shí)數(shù)的集合通常簡(jiǎn)稱為實(shí)數(shù)集,記做R。

  高三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)8

  不等式的解集:

 、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。

 、谝粋(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。

 、矍蟛坏仁浇饧倪^(guò)程叫做解不等式。

  不等式的判定:

 、俪R(jiàn)的不等號(hào)有“>”“<”“≤”“≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;

 、谠诓坏仁健癮>b”或“a

 、鄄坏忍(hào)的'開(kāi)口所對(duì)的數(shù)較大,不等號(hào)的尖頭所對(duì)的數(shù)較小;

 、茉诹胁坏仁綍r(shí),一定要注意不等式關(guān)系的關(guān)鍵字,如:正數(shù)、非負(fù)數(shù)、不大于、小于等等。

  高三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)9

  任一x=A,x=B,記做AB

  AB,BAA=B

  AB={x|x=A,且x=B}

  AB={x|x=A,或x=B}

  Card(AB)=card(A)+card(B)—card(AB)

 。1)命題

  原命題若p則q

  逆命題若q則p

  否命題若p則q

  逆否命題若q,則p

 。2)AB,A是B成立的充分條件

  BA,A是B成立的必要條件

  AB,A是B成立的充要條件

  1、集合元素具有

 、俅_定性;

  ②互異性;

  ③無(wú)序性

  2、集合表示方法

 、倭信e法;

 、诿枋龇;

  ③韋恩圖;

 、軘(shù)軸法

  (3)集合的運(yùn)算

 、貯∩(B∪C)=(A∩B)∪(A∩C)

 、贑u(A∩B)=CuA∪CuB

  Cu(A∪B)=CuA∩CuB

  (4)集合的.性質(zhì)

  n元集合的字集數(shù):2n

  真子集數(shù):2n—1;

  非空真子集數(shù):2n—2

  高三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)10

  三角函數(shù)。

  注意歸一公式、誘導(dǎo)公式的正確性。

  數(shù)列題。

  1、證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫上以誰(shuí)為首項(xiàng),誰(shuí)為公差(公比)的等差(等比)數(shù)列;

  2、最后一問(wèn)證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫上綜上:由①②得證;

  3、證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡(jiǎn)單

  立體幾何題。

  1、證明線面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單;

  2、求異面直線所成的角、線面角、二面角、存在性問(wèn)題、幾何體的高、表面積、體積等問(wèn)題時(shí),要建系;

  3、注意向量所成的角的.余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。

  概率問(wèn)題。

  1、搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個(gè)數(shù);

  2、搞清是什么概率模型,套用哪個(gè)公式;

  3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;

  4、求概率時(shí),正難則反(根據(jù)p1+p2+……+pn=1);

  5、注意計(jì)數(shù)時(shí)利用列舉、樹(shù)圖等基本方法;

  6、注意放回抽樣,不放回抽樣;

  正弦、余弦典型例題。

  1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為

  2、已知α為銳角,且,則α的度數(shù)是()A、30°B、45°C、60°D、90°

  3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是()A、75°B、90°C、105°D、120°

  4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°

  5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點(diǎn),EF⊥BC,垂足為F,求sin∠EBF的值。

  正弦、余弦解題訣竅。

  1、已知兩角及一邊,或兩邊及一邊的對(duì)角(對(duì)三角形是否存在要討論)用正弦定理。

  2、已知三邊,或兩邊及其夾角用余弦定理

  3、余弦定理對(duì)于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負(fù),還是為零,就可以確定是鈍角。直角還是銳角。

  高三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)11

 、僬忮F各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高).

 、谡忮F的高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形,正棱錐的高、側(cè)棱、側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形.

  ⑶特殊棱錐的頂點(diǎn)在底面的射影位置:

  ①棱錐的側(cè)棱長(zhǎng)均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心.

 、诶忮F的側(cè)棱與底面所成的角均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心.

 、劾忮F的各側(cè)面與底面所成角均相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心.

 、芾忮F的頂點(diǎn)到底面各邊距離相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心.

  ⑤三棱錐有兩組對(duì)棱垂直,則頂點(diǎn)在底面的射影為三角形垂心.

 、奕忮F的三條側(cè)棱兩兩垂直,則頂點(diǎn)在底面上的射影為三角形的垂心.

 、呙總(gè)四面體都有外接球,球心0是各條棱的`中垂面的交點(diǎn),此點(diǎn)到各頂點(diǎn)的距離等于球半徑;

 、嗝總(gè)四面體都有內(nèi)切球,球心

  是四面體各個(gè)二面角的平分面的交點(diǎn),到各面的距離等于半徑.

  [注]:i.各個(gè)側(cè)面都是等腰三角形,且底面是正方形的棱錐是正四棱錐.(×)(各個(gè)側(cè)面的等腰三角形不知是否全等)

  ii.若一個(gè)三角錐,兩條對(duì)角線互相垂直,則第三對(duì)角線必然垂直.

  簡(jiǎn)證:AB⊥CD,AC⊥BD

  BC⊥AD.令得,已知?jiǎng)t.

  iii.空間四邊形OABC且四邊長(zhǎng)相等,則順次連結(jié)各邊的中點(diǎn)的四邊形一定是矩形.

  iv.若是四邊長(zhǎng)與對(duì)角線分別相等,則順次連結(jié)各邊的中點(diǎn)的四邊是一定是正方形.

  簡(jiǎn)證:取AC中點(diǎn),則平面90°易知EFGH為平行四邊形

  EFGH為長(zhǎng)方形.若對(duì)角線等,則為正方形.

  高三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)12

  復(fù)數(shù)的概念:

  形如a+bi(a,b∈R)的數(shù)叫復(fù)數(shù),其中i叫做虛數(shù)單位。全體復(fù)數(shù)所成的集合叫做復(fù)數(shù)集,用字母C表示。

  復(fù)數(shù)的表示:

  復(fù)數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復(fù)數(shù)的代數(shù)形式,其中a叫復(fù)數(shù)的實(shí)部,b叫復(fù)數(shù)的虛部。

  復(fù)數(shù)的.幾何意義:

  (1)復(fù)平面、實(shí)軸、虛軸:

  點(diǎn)Z的橫坐標(biāo)是a,縱坐標(biāo)是b,復(fù)數(shù)z=a+bi(a、b∈R)可用點(diǎn)Z(a,b)表示,這個(gè)建立了直角坐標(biāo)系來(lái)表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實(shí)軸,y軸叫做虛軸。顯然,實(shí)軸上的點(diǎn)都表示實(shí)數(shù),除原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數(shù)

  (2)復(fù)數(shù)的幾何意義:復(fù)數(shù)集C和復(fù)平面內(nèi)所有的點(diǎn)所成的集合是一一對(duì)應(yīng)關(guān)系,即

  這是因?yàn),每一個(gè)復(fù)數(shù)有復(fù)平面內(nèi)惟一的一個(gè)點(diǎn)和它對(duì)應(yīng);反過(guò)來(lái),復(fù)平面內(nèi)的每一個(gè)點(diǎn),有惟一的一個(gè)復(fù)數(shù)和它對(duì)應(yīng)。

  這就是復(fù)數(shù)的一種幾何意義,也就是復(fù)數(shù)的另一種表示方法,即幾何表示方法。

  復(fù)數(shù)的模:

  復(fù)數(shù)z=a+bi(a、b∈R)在復(fù)平面上對(duì)應(yīng)的點(diǎn)Z(a,b)到原點(diǎn)的距離叫復(fù)數(shù)的模,記為|Z|,即|Z|=

  虛數(shù)單位i:

  (1)它的平方等于-1,即i2=-1;

  (2)實(shí)數(shù)可以與它進(jìn)行四則運(yùn)算,進(jìn)行四則運(yùn)算時(shí),原有加、乘運(yùn)算律仍然成立

  (3)i與-1的關(guān)系:i就是-1的一個(gè)平方根,即方程x2=-1的一個(gè)根,方程x2=-1的另一個(gè)根是-i。

  (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

  復(fù)數(shù)模的性質(zhì):

  復(fù)數(shù)與實(shí)數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系:

  對(duì)于復(fù)數(shù)a+bi(a、b∈R),當(dāng)且僅當(dāng)b=0時(shí),復(fù)數(shù)a+bi(a、b∈R)是實(shí)數(shù)a;當(dāng)b≠0時(shí),復(fù)數(shù)z=a+bi叫做虛數(shù);當(dāng)a=0且b≠0時(shí),z=bi叫做純虛數(shù);當(dāng)且僅當(dāng)a=b=0時(shí),z就是實(shí)數(shù)0。

  高三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)13

  1.不等式的定義

  在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號(hào)連接兩個(gè)數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號(hào)的式子,叫做不等式.

  2.比較兩個(gè)實(shí)數(shù)的.大小

  兩個(gè)實(shí)數(shù)的大小是用實(shí)數(shù)的運(yùn)算性質(zhì)來(lái)定義的,

  有a-b>0?;a-b=0?;a-b<0?.

  另外,若b>0,則有>1?;=1?;<1?.

  概括為:作差法,作商法,中間量法等.

  3.不等式的性質(zhì)

  (1)對(duì)稱性:a>b?;

  (2)傳遞性:a>b,b>c?;

  (3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

  (4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;

  (5)可乘方:a>b>0?(n∈N,n≥2);

  (6)可開(kāi)方:a>b>0?(n∈N,n≥2).

  復(fù)習(xí)指導(dǎo)

  1.“一個(gè)技巧”作差法變形的技巧:作差法中變形是關(guān)鍵,常進(jìn)行因式分解或配方.

  2.“一種方法”待定系數(shù)法:求代數(shù)式的范圍時(shí),先用已知的代數(shù)式表示目標(biāo)式,再利用多項(xiàng)式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標(biāo)式的范圍.

  3.“兩條常用性質(zhì)”

  (1)倒數(shù)性質(zhì):①a>b,ab>0?<;②a<0

 、踑>b>0,0;④0

  (2)若a>b>0,m>0,則

 、僬娣?jǐn)?shù)的性質(zhì):<;>(b-m>0);

  高三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)14

  Card(AB)=card(A)+card(B)-card(AB)

  (1)命題

  原命題若p則q

  逆命題若q則p

  否命題若p則q

  逆否命題若q,則p

  (2)AB,A是B成立的充分條件

  BA,A是B成立的必要條件

  AB,A是B成立的充要條件

  1.集合元素具有①確定性;②互異性;③無(wú)序性

  2.集合表示方法①列舉法;②描述法;③韋恩圖;④數(shù)軸法

  (3)集合的運(yùn)算

 、貯∩(B∪C)=(A∩B)∪(A∩C)

 、贑u(A∩B)=CuA∪CuB

  Cu(A∪B)=CuA∩CuB

  (4)集合的性質(zhì)

  n元集合的字集數(shù):2n

  真子集數(shù):2n-1;

  非空真子集數(shù):2n-2

  高三數(shù)學(xué)知識(shí)點(diǎn)2

  兩個(gè)復(fù)數(shù)相等的定義:

  如果兩個(gè)復(fù)數(shù)的實(shí)部和虛部分別相等,那么我們就說(shuō)這兩個(gè)復(fù)數(shù)相等,即:如果a,b,c,d∈R,那么a+bi=c+di

  a=c,b=d。特殊地,a,b∈R時(shí),a+bi=0

  a=0,b=0.

  復(fù)數(shù)相等的充要條件,提供了將復(fù)數(shù)問(wèn)題化歸為實(shí)數(shù)問(wèn)題解決的.途徑。

  復(fù)數(shù)相等特別提醒:

  一般地,兩個(gè)復(fù)數(shù)只能說(shuō)相等或不相等,而不能比較大小。如果兩個(gè)復(fù)數(shù)都是實(shí)數(shù),就可以比較大小,也只有當(dāng)兩個(gè)復(fù)數(shù)全是實(shí)數(shù)時(shí)才能比較大小。

  解復(fù)數(shù)相等問(wèn)題的方法步驟:

  (1)把給的復(fù)數(shù)化成復(fù)數(shù)的標(biāo)準(zhǔn)形式;

  (2)根據(jù)復(fù)數(shù)相等的充要條件解之。

【高三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)】相關(guān)文章:

高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)歸納總結(jié)09-16

高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)歸納總結(jié)6篇09-16

高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納6篇09-08

高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納(6篇)09-08

高三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)6篇11-16

高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納(匯編6篇)10-10

高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納集錦6篇10-10

高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納(集合6篇)10-10

高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納集合6篇10-10