- 初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納 推薦度:
- 相關(guān)推薦
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納4篇
總結(jié)是在一段時(shí)間內(nèi)對(duì)學(xué)習(xí)和工作生活等表現(xiàn)加以總結(jié)和概括的一種書面材料,它可以明確下一步的工作方向,少走彎路,少犯錯(cuò)誤,提高工作效益,為此要我們寫一份總結(jié)。但是卻發(fā)現(xiàn)不知道該寫些什么,下面是小編為大家收集的初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納,歡迎閱讀,希望大家能夠喜歡。
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納1
1、弧長(zhǎng)公式
n°的圓心角所對(duì)的弧長(zhǎng)l的計(jì)算公式為L(zhǎng)=nπr/180
2、扇形面積公式,其中n是扇形的圓心角度數(shù),R是扇形的半徑,l是扇形的弧長(zhǎng).
S=﹙n/360﹚πR2=1/2×lR
3、圓錐的側(cè)面積,其中l(wèi)是圓錐的母線長(zhǎng),r是圓錐的地面半徑.
S=1/2×l×2πr=πrl
4、弦切角定理
弦切角:圓的切線與經(jīng)過切點(diǎn)的弦所夾的.角,叫做弦切角.
弦切角定理:弦切角等于弦與切線夾的弧所對(duì)的圓周角.
一、選擇題
1.(20xxo珠海,第4題3分)已知圓柱體的底面半徑為3cm,髙為4cm,則圓柱體的側(cè)面積為()
A.24πcm2B.36πcm2C.12cm2D.24cm2
考點(diǎn):圓柱的計(jì)算.
分析:圓柱的側(cè)面積=底面周長(zhǎng)×高,把相應(yīng)數(shù)值代入即可求解.
解答:解:圓柱的側(cè)面積=2π×3×4=24π.
故選A.
點(diǎn)評(píng):本題考查了圓柱的計(jì)算,解題的關(guān)鍵是弄清圓柱的側(cè)面積的計(jì)算方法.
2.(20xxo廣西賀州,第11題3分)如圖,以AB為直徑的⊙O與弦CD相交于點(diǎn)E,且AC=2,AE=,CE=1.則弧BD的長(zhǎng)是()
A.B.C.D.
考點(diǎn):垂徑定理;勾股定理;勾股定理的逆定理;弧長(zhǎng)的計(jì)算.
分析:連接OC,先根據(jù)勾股定理判斷出△ACE的形狀,再由垂徑定理得出CE=DE,故=,由銳角三角函數(shù)的定義求出∠A的度數(shù),故可得出∠BOC的度數(shù),求出OC的長(zhǎng),再根據(jù)弧長(zhǎng)公式即可得出結(jié)論.
解答:解:連接OC,
∵△ACE中,AC=2,AE=,CE=1,
∴AE2+CE2=AC2,
∴△ACE是直角三角形,即AE⊥CD,
∵sinA==,
∴∠A=30°,
∴∠COE=60°,
∴=sin∠COE,即=,解得OC=,
∵AE⊥CD,
∴=,
∴===.
故選B.
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納2
1.代數(shù)式與有理式
用運(yùn)算符號(hào)把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。單獨(dú)的一個(gè)數(shù)或字母也是代數(shù)式。
整式和分式統(tǒng)稱為有理式。
2.整式和分式
含有加、減、乘、除、乘方運(yùn)算的代數(shù)式叫做有理式。
沒有除法運(yùn)算或雖有除法運(yùn)算但除式中不含有字母的有理式叫做整式。
有除法運(yùn)算并且除式中含有字母的有理式叫做分式。
3.單項(xiàng)式與多項(xiàng)式
沒有加減運(yùn)算的整式叫做單項(xiàng)式(數(shù)字與字母的積—包括單獨(dú)的一個(gè)數(shù)或字母)。
幾個(gè)單項(xiàng)式的和,叫做多項(xiàng)式。
說明:①根據(jù)除式中有否字母,將整式和分式區(qū)別開;根據(jù)整式中有否加減運(yùn)算,把單項(xiàng)式、多項(xiàng)式區(qū)分開。②進(jìn)行代數(shù)式分類時(shí),是以所給的代數(shù)式為對(duì)象,而非以變形后的代數(shù)式為對(duì)象。劃分代數(shù)式類別時(shí),是從外形來看。如=x,=│x│等。
4.系數(shù)與指數(shù)
區(qū)別與聯(lián)系:①?gòu)奈恢蒙峡?②從表示的意義上看;
5.同類項(xiàng)及其合并
條件:①字母相同;②相同字母的指數(shù)相同
合并依據(jù):乘法分配律
6.根式
表示方根的代數(shù)式叫做根式。
含有關(guān)于字母開方運(yùn)算的代數(shù)式叫做無理式。
注意:①?gòu)耐庑紊吓袛?②區(qū)別:是根式,但不是無理式(是無理數(shù))。
7.算術(shù)平方根
、耪龜(shù)a的正的''平方根([a≥0—與“平方根”的區(qū)別]);
⑵算術(shù)平方根與絕對(duì)值
、俾(lián)系:都是非負(fù)數(shù),=│a│
、趨^(qū)別:│a│中,a為一切實(shí)數(shù);中,a為非負(fù)數(shù)。
8.同類二次根式、最簡(jiǎn)二次根式、分母有理化
化為最簡(jiǎn)二次根式以后,被開方數(shù)相同的二次根式叫做同類二次根式。
滿足條件:①被開方數(shù)的因數(shù)是整數(shù),因式是整式;②被開方數(shù)中不含有開得盡方的因數(shù)或因式。
把分母中的根號(hào)劃去叫做分母有理化。
9.指數(shù)
、(—冪,乘方運(yùn)算)。
①a>0時(shí),>0;②a<0時(shí),>0(n是偶數(shù)),<0(n是奇數(shù))。
⑵零指數(shù):=1(a≠0)。
負(fù)整指數(shù):=1/(a≠0,p是正整數(shù))。
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納3
一、平行線分線段成比例定理及其推論:
1.定理:三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例。
2.推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例。
3.推論的逆定理:如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條線段平行于三角形的第三邊。
二、相似預(yù)備定理:
平行于三角形的一邊,并且和其他兩邊相交的直線,截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例。
三、相似三角形:
1.定義:對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的'三角形叫做相似三角形。
2.性質(zhì):(1)相似三角形的對(duì)應(yīng)角相等;
(2)相似三角形的對(duì)應(yīng)線段(邊、高、中線、角平分線)成比例;
(3)相似三角形的周長(zhǎng)比等于相似比,面積比等于相似比的平方。
說明:①等高三角形的面積比等于底之比,等底三角形的面積比等于高之比;②要注意兩個(gè)圖形元素的對(duì)應(yīng)。
3.判定定理:
(1)兩角對(duì)應(yīng)相等,兩三角形相似;
(2)兩邊對(duì)應(yīng)成比例,且夾角相等,兩三角形相似;
(3)三邊對(duì)應(yīng)成比例,兩三角形相似;
(4)如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似。
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納4
二元一次方程組
1、定義:含有兩個(gè)未知數(shù),并且未知項(xiàng)的次數(shù)是1的整式方程叫做二元一次方程。
2、二元一次方程組的解法
(1)代入法
由一個(gè)二次方程和一個(gè)一次方程所組成的方程組通常用代入法來解,這是基本的消元降次方法。
(2)因式分解法
在二元二次方程組中,至少有一個(gè)方程可以分解時(shí),可采用因式分解法通過消元降次來解。
(3)配方法
將一個(gè)式子,或一個(gè)式子的某一部分通過恒等變形化為完全平方式或幾個(gè)完全平方式的和。
(4)韋達(dá)定理法
通過韋達(dá)定理的逆定理,可以利用兩數(shù)的和積關(guān)系構(gòu)造一元二次方程。
(5)消常數(shù)項(xiàng)法
當(dāng)方程組的兩個(gè)方程都缺一次項(xiàng)時(shí),可用消去常數(shù)項(xiàng)的方法解。
解一元二次方程
解一元二次方程的基本思想方法是通過“降次”將它化為兩個(gè)一元一次方程。
1、直接開平方法:
用直接開平方法解形如(x-m)2=n(n≥0)的方程,其解為x=±m(xù).
直接開平方法就是平方的逆運(yùn)算.通常用根號(hào)表示其運(yùn)算結(jié)果.
2、配方法
通過配成完全平方式的方法,得到一元二次方程的根的方法。這種解一元二次方程的方法稱為配方法,配方的依據(jù)是完全平方公式。
(1)轉(zhuǎn)化:將此一元二次方程化為ax^2+bx+c=0的形式(即一元二次方程的一般形式)
(2)系數(shù)化1:將二次項(xiàng)系數(shù)化為1
(3)移項(xiàng):將常數(shù)項(xiàng)移到等號(hào)右側(cè)
(4)配方:等號(hào)左右兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方
(5)變形:將等號(hào)左邊的代數(shù)式寫成完全平方形式
(6)開方:左右同時(shí)開平方
(7)求解:整理即可得到原方程的根
3、公式法
公式法:把一元二次方程化成一般形式,然后計(jì)算判別式△=b2-4ac的值,當(dāng)b2-4ac≥0時(shí),把各項(xiàng)系數(shù)a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
代數(shù)式
1、代數(shù)式與有理式
用運(yùn)算符號(hào)把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。單獨(dú)的一個(gè)數(shù)或字母也是代數(shù)式。
整式和分式統(tǒng)稱為有理式。
2、整式和分式
含有加、減、乘、除、乘方運(yùn)算的代數(shù)式叫做有理式。
沒有除法運(yùn)算或雖有除法運(yùn)算但除式中不含有字母的有理式叫做整式。
有除法運(yùn)算并且除式中含有字母的.有理式叫做分式。
3、單項(xiàng)式與多項(xiàng)式
沒有加減運(yùn)算的整式叫做單項(xiàng)式。(數(shù)字與字母的積-包括單獨(dú)的一個(gè)數(shù)或字母)
幾個(gè)單項(xiàng)式的和,叫做多項(xiàng)式。
說明:
、俑鶕(jù)除式中有否字母,將整式和分式區(qū)別開;根據(jù)整式中有否加減運(yùn)算,把單項(xiàng)式、多項(xiàng)式區(qū)分開。
、谶M(jìn)行代數(shù)式分類時(shí),是以所給的代數(shù)式為對(duì)象,而非以變形后的代數(shù)式為對(duì)象。
4、同類項(xiàng)及其合并
條件:①字母相同;②相同字母的指數(shù)相同
合并依據(jù):乘法分配律。
5、根式
表示方根的代數(shù)式叫做根式。
含有關(guān)于字母開方運(yùn)算的代數(shù)式叫做無理式。
6、同類二次根式、最簡(jiǎn)二次根式、分母有理化
化為最簡(jiǎn)二次根式以后,被開方數(shù)相同的二次根式叫做同類二次根式。
滿足條件:
①被開方數(shù)的因數(shù)是整數(shù),因式是整式;
②被開方數(shù)中不含有開得盡方的因數(shù)或因式。
把分母中的根號(hào)劃去叫做分母有理化。
【初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納】相關(guān)文章:
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納12-29
高二知識(shí)點(diǎn)數(shù)學(xué)總結(jié)歸納10-17
高二知識(shí)點(diǎn)數(shù)學(xué)總結(jié)歸納02-02
小升初的數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納12-09
數(shù)學(xué)高二知識(shí)點(diǎn)總結(jié)歸納12-29
高三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)04-20
高二知識(shí)點(diǎn)數(shù)學(xué)總結(jié)歸納15篇10-17