高中數(shù)學(xué)知識(shí)點(diǎn)必修總結(jié)
總結(jié)在一個(gè)時(shí)期、一個(gè)年度、一個(gè)階段對(duì)學(xué)習(xí)和工作生活等情況加以回顧和分析的一種書面材料,它可以幫助我們有尋找學(xué)習(xí)和工作中的規(guī)律,不如靜下心來好好寫寫總結(jié)吧。那么你知道總結(jié)如何寫嗎?以下是小編整理的高中數(shù)學(xué)知識(shí)點(diǎn)必修總結(jié),僅供參考,大家一起來看看吧。
高中數(shù)學(xué)知識(shí)點(diǎn)必修總結(jié)1
一、直線與方程高考考試內(nèi)容及考試要求:
考試內(nèi)容:
1.直線的傾斜角和斜率;直線方程的點(diǎn)斜式和兩點(diǎn)式;直線方程的一般式;
2.兩條直線平行與垂直的條件;兩條直線的交角;點(diǎn)到直線的距離;
考試要求:
1.理解直線的傾斜角和斜率的概念,掌握過兩點(diǎn)的直線的斜率公式,掌握直線方程的點(diǎn)斜式、兩點(diǎn)式、一般式,并能根據(jù)條件熟練地求出直線方程;
2.掌握兩條直線平行與垂直的條件,兩條直線所成的角和點(diǎn)到直線的距離公式能夠根據(jù)直線的方程判斷兩條直線的位置關(guān)系;
二、直線與方程
課標(biāo)要求:
1.在平面直角坐標(biāo)系中,結(jié)合具體圖形,探索確定直線位置的幾何要素;
2.理解直線的傾斜角和斜率的概念,經(jīng)歷用代數(shù)方法刻畫直線斜率的過程,掌握過兩點(diǎn)的直線斜率的計(jì)算公式;
3.根據(jù)確定直線位置的幾何要素,探索并掌握直線方程的幾種形式(點(diǎn)斜式、兩點(diǎn)式及一般式),體會(huì)斜截式與一次函數(shù)的關(guān)系;
4.會(huì)用代數(shù)的方法解決直線的有關(guān)問題,包括求兩直線的交點(diǎn),判斷兩條直線的位置關(guān)系,求兩點(diǎn)間的距離、點(diǎn)到直線的距離以及兩條平行線之間的距離等。
要點(diǎn)精講:
1.直線的傾斜角:當(dāng)直線l與x軸相交時(shí),取x軸作為基準(zhǔn),x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角。特別地,當(dāng)直線l與x軸平行或重合時(shí),規(guī)定α= 0°.
傾斜角α的取值范圍:0°≤α<180°. 當(dāng)直線l與x軸垂直時(shí), α= 90°.
2.直線的斜率:一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的'斜率,斜率常用小寫字母k表示,也就是k = tanα
。1)當(dāng)直線l與x軸平行或重合時(shí),α=0°,k = tan0°=0;
。2)當(dāng)直線l與x軸垂直時(shí),α= 90°,k 不存在。
由此可知,一條直線l的傾斜角α一定存在,但是斜率k不一定存在。
3.過兩點(diǎn)p1(x1,y1),p2(x2,y2)(x1≠x2)的直線的斜率公式:
(若x1=x2,則直線p1p2的斜率不存在,此時(shí)直線的傾斜角為90°)。
4.兩條直線的平行與垂直的判定
(1)若l1,l2均存在斜率且不重合:
①;②
注: 上面的等價(jià)是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個(gè)前提,結(jié)論并不成立。
。2)
若A1、A2、B1、B2都不為零。
注意:若A2或B2中含有字母,應(yīng)注意討論字母=0與0的情況。
兩條直線的交點(diǎn):兩條直線的交點(diǎn)的個(gè)數(shù)取決于這兩條直線的方程組成的方程組的解的個(gè)數(shù)。
5.直線方程的五種形式
確定直線方程需要有兩個(gè)互相獨(dú)立的條件,確定直線方程的形式很多,但必須注意各種形式的直線方程的適用范圍。
直線的點(diǎn)斜式與斜截式不能表示斜率不存在(垂直于x 軸)的直線;兩點(diǎn)式不能表示平行或重合兩坐標(biāo)軸的直線;截距式不能表示平行或重合兩坐標(biāo)軸的直線及過原點(diǎn)的直線。
6.直線的交點(diǎn)坐標(biāo)與距離公式
(1)兩直線的交點(diǎn)坐標(biāo)
一般地,將兩條直線的方程聯(lián)立,得方程組
若方程組有唯一解,則兩條直線相交,解即為交點(diǎn)的坐標(biāo);若方程組無解,則兩條直線無公共點(diǎn),此時(shí)兩條直線平行。
(2)兩點(diǎn)間距離
兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離公式
特別地:軸,則、軸,則
。3)點(diǎn)到直線的距離公式
點(diǎn)到直線的距離為:
。4)兩平行線間的距離公式:
若,則:
注意點(diǎn):x,y對(duì)應(yīng)項(xiàng)系數(shù)應(yīng)相等。
高中數(shù)學(xué)知識(shí)點(diǎn)必修總結(jié)2
總體和樣本
、僭诮y(tǒng)計(jì)學(xué)中,把研究對(duì)象的全體叫做總體。
、诎衙總(gè)研究對(duì)象叫做個(gè)體。
、郯芽傮w中個(gè)體的總數(shù)叫做總體容量。
、転榱搜芯靠傮w的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:x1,x2,....,x-x研究,我們稱它為樣本.其中個(gè)體的個(gè)數(shù)稱為樣本容量。
簡(jiǎn)單隨機(jī)抽樣
也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類、排隊(duì)等,完全隨。
機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨(dú)立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡(jiǎn)單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ),高三。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。
簡(jiǎn)單隨機(jī)抽樣常用的方法
、俪楹灧
、陔S機(jī)數(shù)表法
③計(jì)算機(jī)模擬法
、苁褂媒y(tǒng)計(jì)軟件直接抽取。
在簡(jiǎn)單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:
、倏傮w變異情況;
、谠试S誤差范圍;
③概率保證程度。
抽簽法
、俳o調(diào)查對(duì)象群體中的每一個(gè)對(duì)象編號(hào);
、跍(zhǔn)備抽簽的工具,實(shí)施抽簽;
、蹖(duì)樣本中的`每一個(gè)個(gè)體進(jìn)行測(cè)量或調(diào)查。
拓展閱讀:高二數(shù)學(xué)學(xué)習(xí)方法
一、提高聽課的效率是關(guān)鍵
課前預(yù)習(xí)能提高聽課的針對(duì)性。預(yù)習(xí)中發(fā)現(xiàn)的難點(diǎn),就是聽課的重點(diǎn);對(duì)預(yù)習(xí)中遇到的沒有掌握好的有關(guān)的舊知識(shí),可進(jìn)行補(bǔ)缺,以減少聽課過程中的困難;有助于提高思維能力,預(yù)習(xí)后把自己理解了的東西與老師的講解進(jìn)行比較、分析即可提高自己思維水平;預(yù)習(xí)還可以培養(yǎng)自己的自學(xué)能力。其次就是聽課要全神貫注。
二、做好復(fù)習(xí)和總結(jié)工作
做好及時(shí)的復(fù)習(xí)。課完課的當(dāng)天,必須做好當(dāng)天的復(fù)習(xí)。復(fù)習(xí)的有效方法不是一遍遍地看書或筆記,而是采取回憶式的復(fù)習(xí),然后打開筆記與書本,對(duì)照一下還有哪些沒記清的,把它補(bǔ)起來,就使得當(dāng)天上課內(nèi)容鞏固下來,同時(shí)也就檢查了當(dāng)天課堂聽課的效果如何,也為改進(jìn)聽課方法及提高聽課效果提出必要的改進(jìn)措施。
三、指導(dǎo)做一定量的練習(xí)題
做題的目的在于檢查你學(xué)的知識(shí),方法是否掌握得很好。如果你掌握得不準(zhǔn),甚至有偏差,那么多做題的結(jié)果,反而鞏固了你的缺欠,因此,要在準(zhǔn)確地把握住基本知識(shí)和方法的基礎(chǔ)上做一定量的練習(xí)是必要的。而對(duì)于中檔題,尢其要講究做題的效益,這就需要在做題后進(jìn)行一定的“反思”,思考一下本題所用的基礎(chǔ)知識(shí),把它們聯(lián)系起來,你就會(huì)得到更多的經(jīng)驗(yàn)和教訓(xùn),更重要的是養(yǎng)成善于思考的好習(xí)慣,這將大大有利于你今后的學(xué)習(xí)。
高中數(shù)學(xué)知識(shí)點(diǎn)必修總結(jié)3
一、集合、簡(jiǎn)易邏輯
1、集合;
2、子集;
3、補(bǔ)集;
4、交集;
5、并集;
6、邏輯連結(jié)詞;
7、四種命題;
8、充要條件。
二、函數(shù)
1、映射;
2、函數(shù);
3、函數(shù)的單調(diào)性;
4、反函數(shù);
5、互為反函數(shù)的函數(shù)圖象間的關(guān)系;
6、指數(shù)概念的擴(kuò)充;
7、有理指數(shù)冪的運(yùn)算;
8、指數(shù)函數(shù);
9、對(duì)數(shù);
10、對(duì)數(shù)的運(yùn)算性質(zhì);
11、對(duì)數(shù)函數(shù)。
12、函數(shù)的應(yīng)用舉例。
三、數(shù)列(12課時(shí),5個(gè))
1、數(shù)列;
2、等差數(shù)列及其通項(xiàng)公式;
3、等差數(shù)列前n項(xiàng)和公式;
4、等比數(shù)列及其通頂公式;
5、等比數(shù)列前n項(xiàng)和公式。
四、三角函數(shù)
1、角的概念的推廣;
2、弧度制;
3、任意角的三角函數(shù);
4、單位圓中的三角函數(shù)線;
5、同角三角函數(shù)的基本關(guān)系式;
6、正弦、余弦的誘導(dǎo)公式;
7、兩角和與差的正弦、余弦、正切;
8、二倍角的正弦、余弦、正切;
9、正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);
10、周期函數(shù);
11、函數(shù)的奇偶性;
12、函數(shù)的圖象;
13、正切函數(shù)的圖象和性質(zhì);
14、已知三角函數(shù)值求角;
15、正弦定理;
16、余弦定理;
17、斜三角形解法舉例。
五、平面向量
1、向量;
2、向量的加法與減法;
3、實(shí)數(shù)與向量的積;
4、平面向量的坐標(biāo)表示;
5、線段的定比分點(diǎn);
6、平面向量的數(shù)量積;
7、平面兩點(diǎn)間的距離;
8、平移。
六、不等式
1、不等式;
2、不等式的'基本性質(zhì);
3、不等式的證明;
4、不等式的解法;
5、含絕對(duì)值的不等式。
七、直線和圓的方程
1、直線的傾斜角和斜率;
2、直線方程的點(diǎn)斜式和兩點(diǎn)式;
3、直線方程的一般式;
4、兩條直線平行與垂直的條件;
5、兩條直線的交角;
6、點(diǎn)到直線的距離;
7、用二元一次不等式表示平面區(qū)域;
8、簡(jiǎn)單線性規(guī)劃問題;
9、曲線與方程的概念;
10、由已知條件列出曲線方程;
11、圓的標(biāo)準(zhǔn)方程和一般方程;
12、圓的參數(shù)方程。
八、圓錐曲線
1、橢圓及其標(biāo)準(zhǔn)方程;
2、橢圓的簡(jiǎn)單幾何性質(zhì);
3、橢圓的參數(shù)方程;
4、雙曲線及其標(biāo)準(zhǔn)方程;
5、雙曲線的簡(jiǎn)單幾何性質(zhì);
6、拋物線及其標(biāo)準(zhǔn)方程;
7、拋物線的簡(jiǎn)單幾何性質(zhì)。
九、直線、平面、簡(jiǎn)單何體
1、平面及基本性質(zhì);
2、平面圖形直觀圖的畫法;
3、平面直線;
4、直線和平面平行的判定與性質(zhì);
5、直線和平面垂直的判定與性質(zhì);
6、三垂線定理及其逆定理;
7、兩個(gè)平面的位置關(guān)系;
8、空間向量及其加法、減法與數(shù)乘;
9、空間向量的坐標(biāo)表示;
10、空間向量的數(shù)量積;
11、直線的方向向量;
12、異面直線所成的角;
13、異面直線的公垂線;
14、異面直線的距離;
15、直線和平面垂直的性質(zhì);
16、平面的法向量;
17、點(diǎn)到平面的距離;
18、直線和平面所成的角;
19、向量在平面內(nèi)的射影;
20、平面與平面平行的性質(zhì);
21、平行平面間的距離;
22、二面角及其平面角;
23、兩個(gè)平面垂直的判定和性質(zhì);
24、多面體;
25、棱柱;
26、棱錐;
27、正多面體;
28、球。
十、排列、組合、二項(xiàng)式定理
1、分類計(jì)數(shù)原理與分步計(jì)數(shù)原理;
2、排列;
3、排列數(shù)公式;
4、組合;
5、組合數(shù)公式;
6、組合數(shù)的兩個(gè)性質(zhì);
7、二項(xiàng)式定理;
8、二項(xiàng)展開式的性質(zhì)。
十一、概率
1、隨機(jī)事件的概率;
2、等可能事件的概率;
3、互斥事件有一個(gè)發(fā)生的概率;
4、相互獨(dú)立事件同時(shí)發(fā)生的概率;
5、獨(dú)立重復(fù)試驗(yàn)。
必修一函數(shù)重點(diǎn)知識(shí)整理
1、函數(shù)的奇偶性
。1)若f(x)是偶函數(shù),那么f(x)=f(—x);
。2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));
(3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(—x)=0或(f(x)≠0);
(4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性;
。5)奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;
2、復(fù)合函數(shù)的有關(guān)問題
。1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。
。2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;
3、函數(shù)圖像(或方程曲線的對(duì)稱性)
(1)證明函數(shù)圖像的對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的`對(duì)稱點(diǎn)仍在圖像上;
。2)證明圖像C1與C2的對(duì)稱性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在C2上,反之亦然;
(3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=—x+a)的對(duì)稱曲線C2的方程為f(y—a,x+a)=0(或f(—y+a,—x+a)=0);
(4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線C2方程為:f(2a—x,2b—y)=0;
(5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a—x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱;
。6)函數(shù)y=f(x—a)與y=f(b—x)的圖像關(guān)于直線x=對(duì)稱;
4、函數(shù)的周期性
。1)y=f(x)對(duì)x∈R時(shí),f(x +a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);
。2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為2︱a︱的周期函數(shù);
(3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為4︱a︱的周期函數(shù);
。4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱,則f(x)是周期為2的周期函數(shù);
。5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);
(6)y=f(x)對(duì)x∈R時(shí),f(x+a)=—f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);
5、方程k=f(x)有解k∈D(D為f(x)的值域);
6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;
7、(1)(a>0,a≠1,b>0,n∈R+);
。2)l og a N=(a>0,a≠1,b>0,b≠1);
。3)l og a b的符號(hào)由口訣“同正異負(fù)”記憶;
。4)a log a N= N(a>0,a≠1,N>0);
8、判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):
。1)A中元素必須都有象且唯一;
。2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9、能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。
10、對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論:
(1)定義域上的單調(diào)函數(shù)必有反函數(shù);
。2)奇函數(shù)的反函數(shù)也是奇函數(shù);
(3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);
。4)周期函數(shù)不存在反函數(shù);
。5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;
。6)y=f(x)與y=f—1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A)。
11、處理二次函數(shù)的問題勿忘數(shù)形結(jié)合;二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對(duì)稱軸與所給區(qū)間的相對(duì)位置關(guān)系;
12、依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類參數(shù)的范圍問題
13、恒成立問題的處理方法:
。1)分離參數(shù)法;
。2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解。
拓展閱讀:高中數(shù)學(xué)復(fù)習(xí)方法
1、把答案蓋住看例題
例題不能帶著答案去看,不然會(huì)認(rèn)為自己就是這么,其實(shí)自己并沒有理解透徹。
所以,在看例題時(shí),把解答蓋住,自己去做,做完或做不出時(shí)再去看。這時(shí)要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。
經(jīng)過上面的訓(xùn)練,自己的思維空間擴(kuò)展了,看問題也全面了。如果把題目徹底搞清了,在題后精煉幾個(gè)批注,說明此題的“題眼”及巧妙之處,收獲會(huì)更大。
2、研究每題都考什么
數(shù)學(xué)能力的提高離不開做題,“熟能生巧”這個(gè)簡(jiǎn)單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),而是要通過一題聯(lián)想到很多題。
3、錯(cuò)一次反思一次
每次業(yè)及考試或多或少會(huì)發(fā)生些錯(cuò)誤,這并不可怕,要緊的是避免類似的錯(cuò)誤再次重現(xiàn)。因此平時(shí)注意把錯(cuò)題記下來。
學(xué)生若能將每次考試或練習(xí)中出現(xiàn)的錯(cuò)誤記錄下來分析,并盡力保證在下次考試時(shí)不發(fā)生同樣錯(cuò)誤,那么以后人生中最重要的高考也就能避免犯錯(cuò)了。
4、分析試卷總結(jié)經(jīng)驗(yàn)
每次考試結(jié)束試卷發(fā)下來,要認(rèn)真分析得失,總結(jié)經(jīng)驗(yàn)教訓(xùn)。特別是將試卷中出現(xiàn)的錯(cuò)誤進(jìn)行分類。
高中數(shù)學(xué)知識(shí)點(diǎn)必修總結(jié)4
一、平面的基本性質(zhì)與推論
1、平面的基本性質(zhì):
公理1如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在這個(gè)平面內(nèi);
公理2過不在一條直線上的三點(diǎn),有且只有一個(gè)平面;
公理3如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線。
2、空間點(diǎn)、直線、平面之間的位置關(guān)系:
直線與直線—平行、相交、異面;
直線與平面—平行、相交、直線屬于該平面(線在面內(nèi),最易忽視);
平面與平面—平行、相交。
3、異面直線:
平面外一點(diǎn)A與平面一點(diǎn)B的連線和平面內(nèi)不經(jīng)過點(diǎn)B的直線是異面直線(判定);
所成的角范圍(0,90)度(平移法,作平行線相交得到夾角或其補(bǔ)角);
兩條直線不是異面直線,則兩條直線平行或相交(反證);
異面直線不同在任何一個(gè)平面內(nèi)。
求異面直線所成的角:平移法,把異面問題轉(zhuǎn)化為相交直線的夾角
二、空間中的平行關(guān)系
1、直線與平面平行(核心)
定義:直線和平面沒有公共點(diǎn)
判定:不在一個(gè)平面內(nèi)的一條直線和平面內(nèi)的一條直線平行,則該直線平行于此平面(由線線平行得出)
性質(zhì):一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,則這條直線就和兩平面的交線平行
2、平面與平面平行
定義:兩個(gè)平面沒有公共點(diǎn)
判定:一個(gè)平面內(nèi)有兩條相交直線平行于另一個(gè)平面,則這兩個(gè)平面平行
性質(zhì):兩個(gè)平面平行,則其中一個(gè)平面內(nèi)的直線平行于另一個(gè)平面;如果兩個(gè)平行平面同時(shí)與第三個(gè)平面相交,那么它們的交線平行。
3、常利用三角形中位線、平行四邊形對(duì)邊、已知直線作一平面找其交線
三、空間中的垂直關(guān)系
1、直線與平面垂直
定義:直線與平面內(nèi)任意一條直線都垂直
判定:如果一條直線與一個(gè)平面內(nèi)的兩條相交的.直線都垂直,則該直線與此平面垂直
性質(zhì):垂直于同一直線的兩平面平行
推論:如果在兩條平行直線中,有一條垂直于一個(gè)平面,那么另一條也垂直于這個(gè)平面
直線和平面所成的角:【0,90】度,平面內(nèi)的一條斜線和它在平面內(nèi)的射影說成的銳角,特別規(guī)定垂直90度,在平面內(nèi)或者平行0度
2、平面與平面垂直
定義:兩個(gè)平面所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點(diǎn)為端點(diǎn),在兩個(gè)半平面內(nèi)分別作垂直于棱的兩條射線所成的角)
判定:一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直
性質(zhì):兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直
【高中數(shù)學(xué)知識(shí)點(diǎn)必修總結(jié)】相關(guān)文章:
高中數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)09-29
高中數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)4篇09-29
高中數(shù)學(xué)知識(shí)點(diǎn)必修總結(jié)4篇01-05
生物必修二知識(shí)點(diǎn)總結(jié)11-18
生物必修三知識(shí)點(diǎn)總結(jié)12-27
生物必修三知識(shí)點(diǎn)總結(jié)04-21