成年女人色视频在线观看网站_一本久精品无码免费_亚洲成a人片在线观看无码专区_开心婷婷五月综合基地六月

定積分證明題方法總結(jié)

時(shí)間:2022-08-21 20:39:06 總結(jié) 投訴 投稿

定積分證明題方法總結(jié)5篇

  總結(jié)就是把一個(gè)時(shí)間段取得的成績、存在的問題及得到的經(jīng)驗(yàn)和教訓(xùn)進(jìn)行一次全面系統(tǒng)的總結(jié)的書面材料,它能幫我們理順知識結(jié)構(gòu),突出重點(diǎn),突破難點(diǎn),因此我們要做好歸納,寫好總結(jié)。你想知道總結(jié)怎么寫嗎?下面是小編為大家整理的定積分證明題方法總結(jié),歡迎大家借鑒與參考,希望對大家有所幫助。

定積分證明題方法總結(jié)5篇

定積分證明題方法總結(jié)1

  1、原函數(shù)存在定理

  ●定理如果函數(shù)f(x)在區(qū)間I上連續(xù),那么在區(qū)間I上存在可導(dǎo)函數(shù)F(x),使對任一x∈I都有F’(x)=f(x);簡單的說連續(xù)函數(shù)一定有原函數(shù)。

  ●分部積分法

  如果被積函數(shù)是冪函數(shù)和正余弦或冪函數(shù)和指數(shù)函數(shù)的乘積,就可以考慮用分部積分法,并設(shè)冪函數(shù)和指數(shù)函數(shù)為u,這樣用一次分部積分法就可以使冪函數(shù)的冪降低一次。如果被積函數(shù)是冪函數(shù)和對數(shù)函數(shù)或冪函數(shù)和反三角函數(shù)的乘積,就可設(shè)對數(shù)和反三角函數(shù)為u。

  2、對于初等函數(shù)來說,在其定義區(qū)間上,它的原函數(shù)一定存在,但原函數(shù)不一定都是初等函數(shù)。

  定積分

  1、定積分解決的典型問題

  (1)曲邊梯形的面積(2)變速直線運(yùn)動(dòng)的路程

  2、函數(shù)可積的充分條件

  ●定理設(shè)f(x)在區(qū)間[a,b]上連續(xù),則f(x)在區(qū)間[a,b]上可積,即連續(xù)=>可積。

  ●定理設(shè)f(x)在區(qū)間[a,b]上有界,且只有有限個(gè)間斷點(diǎn),則f(x)在區(qū)間[a,b]上可積。

  3、定積分的若干重要性質(zhì)

  ●性質(zhì)如果在區(qū)間[a,b]上f(x)≥0則∫abf(x)dx≥0。

  ●推論如果在區(qū)間[a,b]上f(x)≤g(x)則∫abf(x)dx≤∫abg(x)dx。

  ●推論|∫abf(x)dx|≤∫ab|f(x)|dx。

  ●性質(zhì)設(shè)M及m分別是函數(shù)f(x)在區(qū)間[a,b]上的最大值和最小值,則m(b-a)≤∫abf(x)dx≤M(b-a),該性質(zhì)說明由被積函數(shù)在積分區(qū)間上的最大值及最小值可以估計(jì)積分值的`大致范圍。

  ●性質(zhì)(定積分中值定理)如果函數(shù)f(x)在區(qū)間[a,b]上連續(xù),則在積分區(qū)間[a,b]上至少存在一個(gè)點(diǎn),使下式成立:∫abf(x)dx=f()(b-a)。

  4、關(guān)于廣義積分

  設(shè)函數(shù)f(x)在區(qū)間[a,b]上除點(diǎn)c(a

  定積分的應(yīng)用

  1、求平面圖形的面積(曲線圍成的面積)

  ●直角坐標(biāo)系下(含參數(shù)與不含參數(shù))

  ●極坐標(biāo)系下(r,θ,x=rcosθ,y=rsinθ)(扇形面積公式S=R2θ/2)

  ●旋轉(zhuǎn)體體積(由連續(xù)曲線、直線及坐標(biāo)軸所圍成的面積繞坐標(biāo)軸旋轉(zhuǎn)而成)(且體積V=∫abπ[f(x)]2dx,其中f(x)指曲線的方程)

  ●平行截面面積為已知的立體體積(V=∫abA(x)dx,其中A(x)為截面面積)

  ●功、水壓力、引力

  ●函數(shù)的平均值(平均值y=1/(b-a)*∫abf(x)dx)

定積分證明題方法總結(jié)2

  一、不定積分的概念和性質(zhì)

  若F(x)f(x),則f(x)dxF(x)C, C為積分常數(shù)不可丟!

  性質(zhì)1f(x)dxf(x)或 df(x)dxf(x)dx或

  df(x)dxf(x) dx

  性質(zhì)2F(x)dxF(x)C或dF(x)F(x)C

  性質(zhì)3[f(x)g(x)]dx

  或[f(x)g(x)]dx

  二、基本積分公式或直接積分法

  基本積分公式 f(x)dxg(x)dx g(x)dx;kf(x)dxkf(x)dx. f(x)dx

  kdxkxC

  xxdx1x1C(為常數(shù)且1)1xdxlnxC ax

  edxeCadxlnaC xx

  cosxdxsinxCsinxdxcosxC

  dxdx22tanxCsecxdxcsccos2xsin2xxdxcotxC

  secxtanxdxsecxCcscxcotxdxcscxC

  dxarctanxCarccotx

  C()1x2arcsinxC(arccosxC)

  直接積分法:對被積函數(shù)作代數(shù)變形或三角變形,化成能直接套用基本積分公式。 代數(shù)變形主要是指因式分解、加減拆并等;三角變形主要是指三角恒等式。

  三、換元積分法:

  1.第一類換元法(湊微分法)

  g(x)dxf((x))(x)dxf((x))d(x)

  注 (1)常見湊微分:

  u(x)f(u)du[F(u)C]u(x).

  111dxd(axc), xdxd(x2c),2dc), dxd(ln|x|

  c) a2x1dxd(arctanx)d(arccotxd(arcsinx)d(arccosx) 1+x2

  (2)適用于被積函數(shù)為兩個(gè)函數(shù)相乘的情況:

  若被積函數(shù)為一個(gè)函數(shù),比如:e2xdxe2x1dx, 若被積函數(shù)多于兩個(gè),比如:sinxcosx1sin4xdx,要分成兩類;

  (3)一般選擇“簡單”“熟悉”的'那個(gè)函數(shù)寫成(x);

  (4)若被積函數(shù)為三角函數(shù)偶次方,降次;奇次方,拆項(xiàng);

  2.第二類換元法

  f(x)dxx(t)f((t))(t)dtf((t))(t)dtt1(x)G(t)Ct1(x) 常用代換類型:

  (1) 對被積函數(shù)直接去根號;

  (2) 到代換x1; t

  (3) 三角代換去根號

  x

  atantxasect、

  xasint(orxacost)

  f(xdx,t

  f(xx,x

  asect

  f(xx,xasint

  f(xx,xatant f(ax)dx,ta

  x

  f(xx,t

  三、分部積分法:uvdxudvuvvduuvuvdx.

  注 (1)u的選取原則:按“ 反對冪三指” 的順序,誰在前誰為u,后面的為v;

  (2)uvdx要比uvdx容易計(jì)算;

  (3)適用于兩個(gè)異名函數(shù)相乘的情況,若被積函數(shù)只有一個(gè),比如:

  arcsinx1dx,

  u

  v

  (4)多次使用分部積分法: uu求導(dǎo) vv積分(t;

定積分證明題方法總結(jié)3

  摘要:結(jié)合實(shí)例分析介紹了不定積分的四種基本計(jì)算方法。為使學(xué)生熟練掌握,靈活運(yùn)用積分方法,本文將高等數(shù)學(xué)中計(jì)算不定積分的常用方法,簡單進(jìn)行了整理歸類。

  關(guān)鍵詞:積分方法 第一類換元法第二類換元法 分部積分法 不定積分是高等數(shù)學(xué)中積分學(xué)的基礎(chǔ),對不定積分的理解與掌握的好壞直接影響到該課程的學(xué)習(xí)和掌握。熟練掌握不定積分的理論與運(yùn)算方法,不但能使學(xué)生進(jìn)一步鞏固前面所學(xué)的導(dǎo)數(shù)與微分的知識,而且也將為學(xué)習(xí)定積分,微分方程等相關(guān)知識打好基礎(chǔ)。在高等數(shù)學(xué)中,函數(shù)的概念與定義與初等數(shù)學(xué)相比發(fā)生了很多的變化,從有限到無限,從確定到不確定,計(jì)算結(jié)果也可能不唯一,但計(jì)算方法與計(jì)算技巧顯得更加重要。這些都在不定積分的計(jì)算中體會(huì)的淋漓盡致。對不定積分的`求解方法進(jìn)行簡單的歸類,不但使其計(jì)算方法條理清楚,而且有助于對不定積分概念的理解,提高學(xué)習(xí)興趣,對學(xué)好積分具有一定的促進(jìn)作用。

  1 直接積分法

  直接積分法就是利用不定積分的定義,公式與積分基本性質(zhì)求不定積分的方法。直接積分法重要的是把被積函數(shù)通過代數(shù)或三角恒等式變形,變?yōu)榉e分表中能直接計(jì)算的公式,利用積分運(yùn)算法則,在逐項(xiàng)積分。

  一、原函數(shù)與不定積分的概念

  定義1.設(shè)f(x)是定義在某區(qū)間的已知函數(shù),若存在函數(shù)F(x),使得F(x)或dF

  f(x)

  (x)f(x)dx

  ,則稱F(x)為f(x)的一個(gè)原函數(shù)

  定義2.函數(shù)

  f(x)的全體原函數(shù)F(x)C叫做f(x)的不定積分,,記為:

  f(x)dxF(x)C

  f(x)叫做被積函數(shù) f(x)dx叫做被積表達(dá)式C叫做積分常數(shù)

  “

  其中

  ”叫做積分號

  二、不定積分的性質(zhì)和基本積分公式

  性質(zhì)1. 不定積分的導(dǎo)數(shù)等于被積函數(shù),不定積分的微分等于被積表達(dá)式,即

  f(x)dxf(x);df(x)dxf(x)dx.

  性質(zhì)2. 函數(shù)的導(dǎo)數(shù)或微分的不定積分等于該函數(shù)加上一個(gè)任意函數(shù),即

  f(x)dxf(x)C,

  或df(x)f(x)C

  性質(zhì)3. 非零的常數(shù)因子可以由積分號內(nèi)提出來,即

  kf(x)dxkf(x)dx

  (k0).

  性質(zhì)4. 兩個(gè)函數(shù)的代數(shù)和的不定積分等于每個(gè)函數(shù)不定積分的代數(shù)和,即

  f(x)g(x)dxf(x)dxg(x)dx

  基本積分公式

  (1)kdxkxC(k為常數(shù))

  (2)xdx

  1

  1

  x

  1

  C

  (1)

  1

  (3)xlnxC

  x

  (4)exdxexC

  (6)cosxdxsinxC (8)sec2xdxtanxC (10)secxtanxdxsecxC (12)secxdxlnsecxtanxC (14)(16)

  11x

  11x

  2

  (5)a

  x

  dx

  a

  x

  lna

  C

  (7)sinxdxcosxC (9)csc2xdxcotxC

  (11)

  cscxcotxdxcscxC

  (13)cscxdxlncscxcotxC (15)

  1x

  2

  2

  xarctanxC

  xarcsinxC

  xarcsinxC

  三、換元積分法和分部積分法

  定理1. 設(shè)(x)可導(dǎo),并且f(u)duF(u)C. 則有

  f[(x)](x)dxF(u)C

  湊微分

  f[(x)]d(x)

  令u(x)

  f(u)du

  代回u(x)

  F((x))C

  該方法叫第一換元積分法(integration by substitution),也稱湊微分法. 定理2.設(shè)x數(shù)F

  (t)是可微函數(shù)且(t)0,若f((t))(t)具有原函

  (t),則

  xt換元

  fxdx

  fttdt

  積分

  FtC

  t

  1

  x

  回代

  1

  FxC.

  該方法叫第二換元積分法

定積分證明題方法總結(jié)4

  一、不定積分計(jì)算方法

  1.湊微分法

  2.裂項(xiàng)法

  3.變量代換法

  1)三角代換

  2)根冪代換

  3)倒代換

  4.配方后積分

  5.有理化

  6.和差化積法

  7.分部積分法(反、對、冪、指、三)

  8.降冪法

  二、定積分的計(jì)算方法

  1.利用函數(shù)奇偶性

  2.利用函數(shù)周期性

  3. 參考不定積分計(jì)算方法

  三、定積分與極限

  1.積和式極限

  2.利用積分中值定理或微分中值定理求極限

  3.洛必達(dá)法則

  4.等價(jià)無窮小

  四、定積分的估值及其不等式的應(yīng)用

  1.不計(jì)算積分,比較積分值的大小

  1)比較定理:若在同一區(qū)間[a,b]上,總有

  f(x)>=g(x),則>= ()dx

  2)利用被積函數(shù)所滿足的不等式比較之a(chǎn))

  b)當(dāng)0

  2.估計(jì)具體函數(shù)定積分的`值

  積分估值定理:設(shè)f(x)在[a,b]上連續(xù),且其最大值為M,最小值為m則

  M(b-a)<= <=M(b-a)

  3.具體函數(shù)的定積分不等式證法

  1)積分估值定理

  2)放縮法

  3)柯西積分不等式

  ≤ %

  4.抽象函數(shù)的定積分不等式的證法

  1)拉格朗日中值定理和導(dǎo)數(shù)的有界性

  2)積分中值定理

  3)常數(shù)變易法

  4)利用泰勒公式展開法

  五、變限積分的導(dǎo)數(shù)方法

  1、經(jīng)驗(yàn)總結(jié)

  (1)定積分的定義:分割—近似代替—求和—取極限

  (2)定積分幾何意義:

 、賔(x)dx(f(x)0)表示y=f(x)與x軸,x=a,x=b所圍成曲邊梯形的面積ab

  ②f(x)dx(f(x)0)表示y=f(x)與x軸,x=a,x=b所圍成曲邊梯形的面積的相a

  反數(shù)

  (3)定積分的基本性質(zhì):

 、賙f(x)dx=kf(x)dx aabb

 、赱f1(x)f2(x)]dx=f1(x)dxf2(x)dx aaa

 、踗(x)dx=f(x)dx+f(x)dx aac

  (4)求定積分的方法:baf(x)dx=limf(i)xi ni=1nbbbbbcb

 、俣x法:分割—近似代替—求和—取極限②利用定積分幾何意義

  ’③微積分基本公式f(x)F(b)-F(a),其中F(x)=f(x) ba

定積分證明題方法總結(jié)5

  一、原函數(shù)

  定義1 如果對任一xI,都有

  F(x)f(x) 或 dF(x)f(x)dx

  則稱F(x)為f(x)在區(qū)間I 上的原函數(shù)。

  例如:(sinx)cosx,即sinx是cosx的原函數(shù)。 [ln(xx2)

  原函數(shù)存在定理:如果函數(shù)f(x)在區(qū)間I 上連續(xù),則f(x)在區(qū)間I 上一定有原函數(shù),即存在區(qū)間I 上的可導(dǎo)函數(shù)F(x),使得對任一xI,有F(x)f(x)。

  注1:如果f(x)有一個(gè)原函數(shù),則f(x)就有無窮多個(gè)原函數(shù)。

  設(shè)F(x)是f(x)的原函數(shù),則[F(x)C]f(x),即F(x)C也為f(x)的原函數(shù),其中C為任意常數(shù)。

  注2:如果F(x)與G(x)都為f(x)在區(qū)間I 上的原函數(shù),則F(x)與G(x)之差為常數(shù),即F(x)G(x)C(C為常數(shù))

  注3:如果F(x)為f(x)在區(qū)間I 上的一個(gè)原函數(shù),則F(x)C(C為任意常數(shù))可表達(dá)f(x)的任意一個(gè)原函數(shù)。

  1x2,即ln(xx2)是1x2的原函數(shù)。

  二、不定積分

  定義2 在區(qū)間I上,f(x)的帶有任意常數(shù)項(xiàng)的原函數(shù),成為f(x)在區(qū)間I上的'不定積分,記為f(x)dx。

  如果F(x)為f(x)的一個(gè)原函數(shù),則

  f(x)dxF(x)C,(C為任意常數(shù))

  三、不定積分的幾何意義

  圖 5—1 設(shè)F(x)是f(x)的一個(gè)原函數(shù),則yF(x)在平面上表示一條曲線,稱它為f(x)f(x)的不定積分表示一族積分曲線,它們是由f(x)的某一條積分曲線沿著y軸方向作任意平行移動(dòng)而產(chǎn)生的所有積分曲線組成的.顯然,族中的每一條積分曲線在具有同一橫坐標(biāo)x的點(diǎn)處有互相平行的切線,其斜率都等于f(x).

  在求原函數(shù)的具體問題中,往往先求出原函數(shù)的一般表達(dá)式y(tǒng)F(x)C,再從中確定一個(gè)滿足條件 y(x0)y0 (稱為初始條件)的原函數(shù)yy(x).從幾何上講,就是從積分曲線族中找出一條通過點(diǎn)(x0,y0)的積分曲線.

  四、不定積分的性質(zhì)(線性性質(zhì))

  [f(x)g(x)]dxf(x)dxg(x)dx

  k為非零常數(shù)) kf(x)dxkf(x)dx(

  五、基本積分表

  ∫ a dx = ax + C,a和C都是常數(shù)

  ∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a為常數(shù)且 a ≠ -1 ∫ 1/x dx = ln|x| + C

  ∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

  ∫ e^x dx = e^x + C

  ∫ cosx dx = sinx + C

  ∫ sinx dx = - cosx + C

  ∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

  ∫ tanx dx = - ln|cosx| + C = ln|secx| + C

  ∫ secx dx =ln|cot(x/2)| + C

  = (1/2)ln|(1 + sinx)/(1 - sinx)| + C

  = - ln|secx - tanx| + C = ln|secx + tanx| + C

  ∫ cscx dx = ln|tan(x/2)| + C

  = (1/2)ln|(1 - cosx)/(1 + cosx)| + C

  = - ln|cscx + cotx| + C = ln|cscx - cotx| + C

  ∫ sec^2(x) dx = tanx + C

  ∫ csc^2(x) dx = - cotx + C

  ∫ secxtanx dx = secx + C

  ∫ cscxcotx dx = - cscx + C

  ∫ dx/(a^2 + x^2) = (1/a)arctan(x/a) + C

  ∫ dx/√(a^2 - x^2) = arcsin(x/a) + C

  ∫ dx/√(x^2 + a^2) = ln|x + √(x^2 + a^2)| + C

  ∫ dx/√(x^2 - a^2) = ln|x + √(x^2 - a^2)| + C

  ∫ √(x^2 - a^2) dx = (x/2)√(x^2 - a^2) - (a^2/2)ln|x + √(x^2 - a^2)| + C ∫ √(x^2 + a^2) dx = (x/2)√(x^2 + a^2) + (a^2/2)ln|x + √(x^2 + a^2)| + C ∫ √(a^2 - x^2) dx = (x/2)√(a^2 - x^2) + (a^2/2)arcsin(x/a) + C

  六、第一換元法(湊微分)

  設(shè)F(u)為f(u)的原函數(shù),即F(u)f(u) 或 f(u)duF(u)C 如果 u(x),且(x)可微,則 dF[(x)]F(u)(x)f(u)(x)f[(x)](x) dx

  即F[(x)]為f[(x)](x)的原函數(shù),或

  f[(x)](x)dxF[(x)]C[F(u)C]u(x)[f(u)du]因此有

  定理1 設(shè)F(u)為f(u)的原函數(shù),u(x)可微,則

  f[(x)](x)dx[f(u)du]

  公式(2-1)稱為第一類換元積分公式。 u(x)u(x) (2-1)

  f[(x)](x)dxf[(x)]d(x)[f(u)du]u(x)

  1f(axb)d(axb)1[f(u)du]f(axb)dxuaxb

【定積分證明題方法總結(jié)】相關(guān)文章:

定積分證明題方法總結(jié)02-15

定積分計(jì)算方法總結(jié)12-28

《定積分的概念》教學(xué)反思05-14

定目標(biāo)作文02-05

基金定投標(biāo)語12-28

證明的方法總結(jié)07-03

世事滄桑心事定作文04-11

學(xué)習(xí)方法總結(jié)11-08

高三物理方法總結(jié)12-09