成年女人色视频在线观看网站_一本久精品无码免费_亚洲成a人片在线观看无码专区_开心婷婷五月综合基地六月

七年級下冊數學教學設計

時間:2024-07-16 03:19:03 教學資源 投訴 投稿

七年級下冊數學教學設計

  在教學工作者實際的教學活動中,總不可避免地需要編寫教學設計,編寫教學設計有利于我們科學、合理地支配課堂時間。那么教學設計應該怎么寫才合適呢?下面是小編為大家整理的七年級下冊數學教學設計,希望對大家有所幫助。

七年級下冊數學教學設計

七年級下冊數學教學設計1

  二元一次方程組是一元一次方程教學的延續(xù)與深化。很多一元一次方程應用題均可用二元一次方程組來解決而得以簡化,如:數學課外興趣小組成員去建設工地參加實踐活動,男同學戴白色安全帽,女同學戴紅色安全帽,在每個男同學看來,紅白安全帽一樣多,而在女同學看來,白色安全帽是紅色安全帽的2倍,問男女同學各是多少名?——這個問題若用一元一次方程來解,有兩種解法:(1)可設男同學x名,則女同學(x—1)名,根據“男同學人數=2(女同學人數—1)”這個等量關系可列方程:x=2×[(x—1)—1];(2)設女同學y名,則男同學2(y—1)名,根據“男同學人數—1=女同學人數”這個等量關系可列方程:2(y—1)—1=y。如此解決問題比較“繞”,數學的特點是“趨簡”、“趨明了”,于是促生了“尋找另外的簡捷的辦法”的`欲望。

  由于本題有兩個等量關系:男同學人數=2(女同學人數—1)、男同學人數—1=女同學人數;兩個未知數:男生人數、女生人數,如果設男生x人,女生y人,可以得到兩個方程:(1)x—1=y,(2)x=2(y—1),要解決這個問題,就須尋找滿足兩個方程的x、y值,于是就延伸到了解二元一次方程組的問題。

  由于學生已經學會了用一元一次方程解決這個問題,一旦提及求二元一次方程組的解,學生自然會隱隱約約地想到它們之間必然存在某種聯系,于是引導學生觀察、聯系、聯想,可以“化歸”為一元一次方程解決這個問題:

  從而實現問題的解決。

  課程結束后,還要引導學生對所學知識進行升華:列一元一次方程解應用題,與列二元一次方程組解應用題,有什么特點?學生們經過思考爭辯,最終達成如下意見即可視為完成教學任務:(1)列一元一次方程時,需要將其中的一個量用含有另一個量的式子表示出來,也就是說,尋找相等關系容易,列方程要相對困難一些。(2)列二元一次方程組時,只要找出相等關系(2個)設未知數(2個),就可以較容易地列出方程組,所以列方程(組)相對簡單,而解方程組要難一些,順著這種感覺,可以引導學生研究如何便捷地解方程組就成為當務之急了。

七年級下冊數學教學設計2

  一、教材分析

  分析本節(jié)課在教材中的地位和作用,以及在分析數學大綱的基礎上確定本節(jié)課的教學目標 、重點和難點。首先來看一下本節(jié)課在教材中的地位和作用。

  1、多項式除以單項式在整式的運算中的地位和作用是很重要的。初中階段要培養(yǎng)學生的運算能力、邏輯思維能力和空間想象能力以及讓學生根據一些現實模型,把它轉化成數學問題,從而培養(yǎng)學生的數學意識,增強學生對數學的理解和解決實際問題的能力,在解決問題的過程中了解數學的價值,發(fā)展“用數學”的信心。運算能力的培養(yǎng)主要是在初一階段完成。多項式除以單項式作為整式的運算的一部分,它是整式運算的重要內容之一,它是整個初中代數的重要部分。

  2、就第一章而言, 多項式除以單項式是本章的一個重點。整式的運算這一章,多項式除以單項式是很重要的一塊,整式的混合運算是這一章的難點,但混合運算是以各種基本運算為基礎的。在整式范圍內進行的各種運算:加、減法可以統(tǒng)一成為加法,乘法、除法和乘方可以統(tǒng)一成乘法,因此乘法的運算是本章的關鍵,而除法又是學生接觸到的較復雜的整式的運算,學生能否接受和形成在整式的運算中轉化思考方式及推理的方法等,都在本節(jié)中。

  從以上兩點不難看出它的地位和作用都是很重要的。

  接下來,介紹本節(jié)課的教學目標 、重點和難點。

  新課程標準是我們確定教學目標 ,重點和難點的依據。重點是多項式除以單項式的法則及其應用。多項式除以單項式,其基本方法與步驟是化歸為單項式除以單項式,因此多項式除以單項式的運算關鍵是將它轉化為單項式除法的運算,再準確應用相關的運算法則。

  難點是理解法則導出的根據。根據除法是乘法的逆運算可知,多項式除以單項式的運算法則的`實質是把多項式除以單項式的的運算轉化為單項式的除法運算。由于 ,故多項式除以單項式的法則也可以看做是乘法對加法的分配律的應用。

  二、教材處理

  本節(jié)課是在前面學習了單項式除以單項式的基礎上進行的,學生已經掌握同底數冪的乘法、冪的乘方、積的乘方、同底數冪的除法等知識,因此我沒有把時間過多地放在復習這些舊知識上,而是利用學生的好奇心,采用生動形象的課件引例,讓學生自主參與,親身參加探索發(fā)現,從而獲取知識。在法則的得出過程中,我引進了現代化的教學工具微機,讓學生在微機演示的一種動態(tài)變化中自己發(fā)現規(guī)律歸納總結,這不但增加了課堂的趣味性提高了學生的能力。而且直接地向學生滲透了數形結合的思想。在法則的應用這一環(huán)節(jié)我又選配了一些變式練習,通過書上的基本練習達到訓練雙基的目的,通過變式練習達到發(fā)展智力、提高能力的目的。這些我將在教學過程 的設計中具體體現。而且在做練習的過程中讓學生互相提問,使課堂在學生的參與下積極有序的進行。

  三、教學方法

  在教學過程中,我注重體現教師的導向作用和學生的主體地位,。本節(jié)是新課內容的學習,教學過程 中盡力引導學生成為知識的發(fā)現者,把教師的點撥和學生解決問題結合起來,為學生創(chuàng)設情境,從而不斷激發(fā)學生的求知欲望和學習興趣,使學生輕松愉快地學習不斷克服學生學習中的被動情況,使其在教學過程 中在掌握知識同時、發(fā)展智力、受到教育。

  四、教學過程 的設計。

  1、回顧與思考,通過單項式除以單項式法則的復習,完成四道單項式除以單項式的練習題,為本節(jié)課探索規(guī)律,概括多項式除以單項式的法則做好鋪墊。

  2、探索規(guī)律:法則的得出重要體現知識的發(fā)生,發(fā)展,形成過程。我通過了一個嘗試練習啟發(fā)學生自主解答,使學生該過程中體會多項式除以單項式規(guī)律。由于采用了較靈活的教學手段,學生能夠積極的投入到思考問題中去,讓學生親身參加了探索發(fā)現,獲取知識和技能的全過程。最后由學生對規(guī)律進行歸納總結補充,從而得出多項式除以單項式的法則。

  3、例題解析,通過課件生動形象的課件,引導學生嘗試完成例題,加深對多項式除以單項式的法則的理解與應用。

  4、鞏固練習:再習題的配備上,我注意了學生的思維是一個循序漸進的過程,所以習題的配備由易而難,使學生在練習的過程中能夠逐步的提高能力,得到發(fā)展。并且采用小組合作交流形式,使課堂氣氛活躍,充分調動學生的積極性。使學生在一種比較活躍的氛圍中,解決各種問題。

  5、歸納總結:歸納總結由學生完成,并且做適當的補充。最后教師對本節(jié)的課進行說明。

  以上是我對本節(jié)課的理解和設計。希望各位老師批評指正,以達到提高個人教學能力的目的。教學目標 :

  1.理解和掌握多項式除以單項式的運算法則。

  2.運用多項式除以單項式的法則,熟練、準確地進行計算.

  3.通過總結法則,培養(yǎng)學生的抽象概括能力.訓練學生的綜合解題能力和計算能力.

  4.培養(yǎng)學生耐心細致、嚴謹的數學思維品質.

七年級下冊數學教學設計3

  教學目標

  會進行單項式與多項式相乘的運算。

  理解單項式與多項式相乘的算理,體會乘法對加法的分配律的作用和轉化的數學思想。

  在探索單項式與多項式相乘的過程中,體會利用乘法分配律化未知為已知的轉化的數學思想。

  使學生獲得成就感,培養(yǎng)學習數學的興趣。

  重點難點

  重點

  單項式與多項式相乘的運算法則及其運用

  難點

  靈活地運用單項式與多項式相乘的運算解決數學問題。

  教學過程

  一、復習導入

  1. 計算單項式乘單項式時,要把系數和同底數冪分別相乘,這樣做的依據是什么?體現了怎樣的數學思想?

  2. 你能用字母表示乘法的分配律嗎?

  3. 類似的,對于單項式乘以多項式,比如

  你能將它轉化成已經學過的單項式乘單項式來計算嗎?

  二、新課講解

  探究新知

  1.怎樣計算 ?

  學生在已有的.知識經驗基礎上,想到運用乘法分配律將問題進行轉化:

  教師指出,可以把單項式看成一個數,把多項式看成3個數的和。

  2. 下面的運算該如何轉化成單項式乘單項式呢?請你試一試:

 。1) ;(2)

  利用變式,進一步強化學生對算理的理解。學生互相交流后,教師板書,強調轉化的過程中要把一個項(包括項前的符號)整個的看成一個數,這樣能避免符號錯誤。

  3. 你能根據上面的運算,用文字敘述一下單項式乘多項式的方法嗎?

  引導學生用自己的話敘述上面的運算過程,然后師生共同總結:

  單項式與多項式相乘,先用單項式成多項式中的每一項,再把所得的積相加。

  通過乘法分配律,把單項式乘多項式轉化成已經解決了的單項式乘單項式問題,這里體現了轉化的數學思想。

  三、典例剖析

  例1. 計算:

 。1) ; (2)

  學生解答各題,教師巡回指導,發(fā)現學生解題中存在的共同錯誤并點評,注意強調:

  單項式乘以多項式要特別重視轉化的過程,初學時這一步不要省略,以后熟練了可以逐步省略。

  例2 求 的值,其中

  提問學生,可以直接把 帶進式子運算嗎?如果覺得運算很繁瑣,你有其它的建議嗎?

  引導學生觀察思考后,讓學生嘗試解答,之后教師板書示范,共同總結出方法:

  計算代數式的值的一般步驟是先化簡,再求值。

  四、課堂練習

  基礎練習:

  1.計算:

  (1) ; (2) ;

 。3) ; (4)

  2.先化簡,再求值:

  ,其中

  學生練習,教師巡視,注意發(fā)現學生的錯誤,組織學生對錯誤進行分析,切實夯實基本運算能力。

  提高練習

  3.已知 ,求代數式 的值。

  4.已知 ,求 的值。

  讓學生自己分析,相互討論,豐富解決數學問題的經驗。

  五、小結

  師生共同回顧單項式乘以多項式的運算法則,體會轉化的數學思想所起的作用,交流解答運算題的經驗。教師對課堂上學生掌握不夠牢固的知識進行辨析、強調與補充,學生也可以談一談個人的學習感受。

  六、布置作業(yè)

  P41 第7題

七年級下冊數學教學設計4

  教學目標

  掌握冪的乘方法則,并能夠運用法則進行計算。

  會進行簡單的冪的混合運算。

  在推導法則的過程中,培養(yǎng)學生觀察、概括與抽象的能力;在運用法則的過程中培養(yǎng)學生思維的靈活性,以及應用“轉化”的數學思想方法的能力。

  讓學生通過參與探索過程,培養(yǎng)合作、探索問題的能力,以及質疑、獨立思考的習慣。

  重點難點

  重點

  冪的乘方法則的運用。

  難點

  冪的乘方法則的推導以及冪的混合運算。

  教學過程

  一、復習導入

  1.表示什么意義?表示什么意思呢?

  2.同底數冪乘法法則是什么,它是怎樣推導的?

  通過討論,使學生正確讀出式子并理解式子所表達的運算,指出這種式子表達的是冪的乘方運算,怎樣進行冪的乘方運算呢?

  二、新課講解

  探究新知

  1.思考:

 、僬埜鶕囊饬x計算出它的結果,并想一想每一步計算的依據是什么?

  ②你能說出、的意義嗎?

 、壅埬阌嬎恪,并想一想每一步計算的依據是什么?

 。ü膭顚W生站起來回答,培養(yǎng)學生數學表達的能力)

  2.發(fā)現:

 、購纳厦娴挠嬎阒心惆l(fā)現了這幾道題的運算結果有什么共同之處嗎?從中你能發(fā)現運算的方法嗎?猜一猜的結果是什么?

  ②驗證猜想,得出結論

  ===(m,n都是正整數)

  用語言敘述為:冪的乘方,底數不變,指數相乘。

  三、典例剖析

  例1計算:

 。1);(2);(3)(m是正整數);(4)(n是正整數)

  要求學生讀出式子并按法則運算,提高符號演算的能力。注意(2)應讀成a的3次冪的4次方的相反數(或者-1乘以a的3次冪的4次方),強調求相反數是運算的最后一步,訓練學生在計算式子前先正確理解式子的良好習慣。

  例2計算:

  學生獨立思考后進行交流,交流時要求學生按照先讀式子,再分析式子的步驟給全班同學講解。重視數學的表達和交流能促進學生養(yǎng)成良好的思維能力和思維習慣。

  四、課堂練習

  基礎練習

  1.填空:

 。1);(2);

  2.下面的計算對不對?如果不對,應怎樣改正?

  教師要注意發(fā)現學生的錯誤,組織學生對錯誤進行分析,對于第2題可以引導學生分析導致錯誤的原因,(1)是混淆了冪的乘法運算,(2)是把兩個指數理解成了3的2次方。強調正確記憶法則,仔細分析式子里的運算。

  提高訓練:

  3.對比同底數冪的乘法法則和冪的乘方法則,你有好的方法來記憶嗎?

  引導學生觀察兩種運算的共同點。冪的這兩種運算最終都轉化成了對指數的運算,其中冪的乘法轉化成了指數的加法,冪的乘方轉化成了指數的.乘法,初一看兩個法則截然不同,但從轉化的角度來看,它們又有共同之處,那就是都將原來的冪的運算降了一級,乘法變了加法,乘方變了乘法。

  4.自編兩道同底數冪的乘法、冪的乘方混合運算題,并與同學交流計算過程與結果。

  學生活動后,教師選取編的好的題向全班展示,提高學生的興趣。

  5.已知,求的值。

  逆向運用冪的運算性質,能培養(yǎng)學生思維的靈活性。由,我們不能求出m,n的值,但我們可以從入手,觀察到,從而可以通過整體代入來求解。

  五、小結

  師生共同回顧冪的運算法則,互相交流解答運算題的經驗,教師對課堂上學生掌握不夠牢固的知識進行辨析、強調與補充,學生也可以談一談個人的學習感受。

  六、布置作業(yè)

  1.P40第2題

  2.自編兩道同底數冪的乘法、冪的乘方混合運算題,并計算。

七年級下冊數學教學設計5

  教學目標

  1.會用代入法解二元一次方程組;

  2.體會解二元一次方程組的 “消元思想”和“化未知數為已知”的化歸思想.

  3.通過對方程中未知數特點的觀察和分析明,確解二元一次方程組的主要思路 是 “消元思想”和“化二元為一元”的化歸思想.

  教學重難點

  1.熟練的用代入法解二元一次方程組。

  2.探索如何用代入法將“二元”轉化為“一元”的消元過程。

  教學過程

  一、創(chuàng)設問題,引入新課

  1.問題1:籃球聯賽中,每場比賽都要分出勝負,每隊勝一場得2分,負一場得1分.某隊為了爭取較好的名次,想在全部20場比賽中得到38分,那么這個隊勝、負場數分別是多少?

  解:設勝場數是x則負的場數是20-x 列方程為:2x+(20-x)=38.解得x=18,則負的場數為

  20-x=20-18=2

  2.問題2:在上述問題中,我們可以設出兩個未知數,列出二元一次方程組,若設勝的場數是x,負的場數是y,則

  x+y=20

  2x+y=38

  那么怎樣求解二元一次方程組呢?上面的二元一次方程組和一元一次方程有什么關系呢?

  設計意圖:通過創(chuàng)設同一問題分別列出一元一次方程與二元一次方程組 ,引導學生對兩者關聯認識,為后續(xù)代入消元法解二元一次方程作鋪墊。

  二、學生探索,嘗試解決

  交流問題2:可以發(fā)現,二元一次方程組中第一個方程x+y=20可的到y(tǒng)=20-x,將第2個方程2x+y=38中y換為20-x,這個方程就化為一元一次方程2x+(20-x)=38.

  歸納:

  二元一次方程組中有兩個未知數,如果消去其中一個未知數,將二元一次方程組轉化為我們熟悉的一元一次方程,我們就可以先解出一個未知數,然后再設法求另一個未知數.這種將未知數的個數由多化少、逐一解決的思想方法,叫做消元思想.

  歸納小結:上面的解法,是把二元一次方程組中一個方程中的.一個未知數用含另一個未知數的式子表示出來,再代入另一個方程,實現消元,進而求得這個二元一次方程組的 解.這種方法叫做代入消元法,簡稱代入法.

  設計意圖:通過交流問題2,引導學生將心中所想顯現出來,代入消元法的步驟和功效逐步顯現出來。

  三、典例交流,揭示規(guī)律

  例1:用代入法解二元一次方程組x=y+3(1)

  3x-8y=14(2)

  解:把①代入②,得3(y+3)-8y=14,解得y=-1.把y=-1代人①,解得x=2,

  所以這個方程組的解是 x=2,

  y=-1

  思考下列問題

  (1)選擇哪個方程代入另一個方程?目的是什么?

 。2)為什么能代入?目的達到了嗎?

  (3)只求出 y=-1 ,方程組解完了嗎? 把y=-1 代入哪個方程求x的值較簡單?

  (4)怎樣知道你運算的結果是否正確?

  反思:需檢驗,將 x=2,y=-1分別代入方程①②,看方程的左右兩邊是否相等,可以口算,也可以在 草稿紙上驗算.【例2】用代入法解二元一次方程組x-y=3(1)

  3x-8y=14(2)

  思考:

  (1)例1與例2有什么不同?(例1是用①直接代入②的,而例2的兩個方程都不具備這樣的條件.)

  (2)如何變形?(把其中一個方程變形為例1中①的形式.)

  (3)選擇哪個方程變形較簡單?(方程①中的x的系數為1,故可以將方程①變形得x=3+y.)

 。▽W生口述,教師板書完成)

  用代入消元法解二元一次方程組的步驟:

  (1)從方程組中選取一個系數比較簡單的方程,把其中的某一個未知數用含另一個未知數的式子表示出來.(變)

  (2)把(1)中所得的方程代入另一個方程,消去一個未知數.(代)

  (3)解所得到的一元一次方程,求得一個未知數的值.(求)

  (4)把所求得的一個未知數的值代入(1)中求得的方程,求出另一個未知數的值,從而確定方程組的解.(解)

  設計意圖:進一步加強利用代入消元法解方程,逐步抽象出代入消元法解方程的一般步驟提高學生的分析能力。

  四、變式訓練,深化提高

  用代入法解下面方程組

  設計意圖:通過學生演練展示,幫助學生鞏固用代入法解二元一次方程組的步驟。

  五、師生共進,反思小結1、本節(jié)主要學習用代入法解二元一次方程組

  2、主要的解題思想方法是消元思想。

  3、代入消元法解二元一次方程組需要注意的問題.

  (1)用代入法解二元一次方程組時,常選用系數比較簡單的方程變形,這有利于正確、簡捷地消元.

  (2)由一個方程變形得到的只含有一個未知數的代數式必須代入到另一個方程中去,否則會出現一個恒等式.

  (3)方程組解的表示方法,應該用大括號把一對未知數的值連在一起,表示同時成立,不要寫成x=?y=?

  六、布置作業(yè):

  習題8.2 1,2題

  七、板書設計

七年級下冊數學教學設計6

  1、教學資源分析

  采用多媒體課件,導學案進行教學。

  2、教學內容分析

  在初中階段,不等式位于一次方程(組)之后,它是進一步探究現實世界數量關系的重要內容。不等式的研究從最簡單的一元一次不等式開始,一元一次不等式及其相關概念是本章的基礎知識。解任何一個代數不等式(組)最終都要化歸為解一元一次不等式,因而解一元一次不等式是一項基本技能。另外,不等式解集的數軸表示從形的角度描述了不等式的解集,并為解不等式組做了準備。本節(jié)內容是進一步學習其他不等式(組)的基礎。

  解一元一次不等式與解一元一次方程在本質上是相同的,即依據不等式的性質,逐漸將不等式化為x>a或x

  ●重點

  一元一次不等式的解法。

  ●難點

  不等式性質3在解不等式中的運用是難點

  3、教學目標分析

  ●目標

  1.使學生了解一元一次不等式的概念;

  2.使學生掌握一元一次不等式的解法,并能在數軸上表示其解集。

  3.經歷探究一元一次不等式解法的過程,培養(yǎng)學生獨立思考的習慣和合作交流的意識。

  ●目標解析

  達到目標1的標志是:學生能說出一元一次不等式的特征,會解一元一次不等式,并能在數軸上表示出解集。

  達到目標2的標志是:學生能通過類比解一元一次方程的過程,獲得解一元一次不等式的思路,即依據不等式的性質,將一元一次不等式逐步化簡為x>a或x

  達到目標3的標志是:學生能夠獨立思考后積極參與學習中去,在輕松,沒有負擔在氛圍中完成對新知的學習。

  4、學習者特征分析

  本節(jié)課是在學生了解不等式的解和解集的意義,了解不等式解集的數軸表示方法,能利用不等式的性質對不等式進行簡單變形的基礎上學習本課的,F在學生已經具備了一定的自主學習的能力,本節(jié)的學習中我以問題串的形式貫穿整個教學過程,引導學生對比一元一次不等式和一元一次方程的有關內容,尤其是一元一次不等式和一元一次方程解法的比較,有利于對新知識的掌握,同時培養(yǎng)了學生類比的學習方法。

  5、教學過程設計

  <一>、問題導入,探索新知1

  問題1:舉出一元一次方程的例子?

  【設計意圖】復習一元一次方程的概念,便于對比探索一元一次不等式概念。這不僅有助于對舊知識的復習和鞏固,同時還可以培養(yǎng)學生的類比和探究能力。

  問題2:

  將學生舉出的一元一次方程中的等號改寫成不等號。請學生觀察有哪些共同的特征?

  通過以上問題歸納得到一元一次不等式的概念:只含一個未知數,未知數的次數是1的不等式,叫做一元一次不等式。

  【設計意圖】問題2采用自主發(fā)現的教學方法引導學生從眾多的不等式中,通過歸納其共同特點,得到一元一次不等式的概念,培養(yǎng)了學生觀察、歸納和語言表達能力。

  問題3:學生舉一元一次不等式的例子,學生判斷。

  師:判斷下列各式是否是一元一次不等式?

  ①②③④⑤

 、

  【設計意圖】此題讓學生運用概念識別一元一次不等式,考察學生是否達成教學目標1。

  <二>、探索新知2

  通過前面的學習,我們知道解不等式的目的,就是將不等式變形成x>a或x

  【設計意圖】讓學生明白不管一元一次不等式有多復雜,最終都可以轉化為x>a或x

  師:那怎么來解一元一次不等式呢?有具體的解法嗎?請看下題

  (1)解方程解不等式

  2(1+x)=3 (1) 2(1+x)<3>

  學生回答不等式含有分母

  師:怎樣變形使不等式不含分母?

  師生共同去分母解(2)題

  師:通過(1)、(2)題的學習你有什么發(fā)現?

  生:解一元一次不等式的解題步驟和解一元一次方程的解題步驟相同,都是:去分母,去括號,移項,合并同類項,系數化為1.

  師:在解(1)和(2)題的過程中注意些什么?

  生:系數化為1時,注意未知數系數的符號,未知數的系數是正數,則不等號的方向不變,若未知數的系數是負數,則不等號的`方向改變。

  【設計意圖】根據學生已經會解一元一次方程的實際情況,學生主動地參“探究——討論——交流——總結”等數學活動,把一元一次方程和一元一次不等式進行了對比,實現了知識的自然遷移,使學生在自主探索和合作交流的過程中不知不覺地學到了新知識,理解并掌握了解一元一次不等式的一般步驟,教學重點得以基本達成,教學難點也取得相應突破。

  練習小明解不等式的過程如下,請找出錯誤之處,并說明錯誤的原因。

  解:2x-2+2<3x>

  2x-3x<-2+2

  -x<0>

  本節(jié)課你學會了些什么?

  解一元一次不等式和解一元一次方程有哪些相同和不同之處?

  【設計意圖】通過問題引導學生再次回顧本節(jié)課。

  <四>布置作業(yè)

  教科書習題9.2第1,2,3,題

  <五>目標檢測

  解一元一次不等式?,并把它的解集在數軸上表示出來.

  6、教學評價的設計

  本節(jié)課主要以問題串的形式貫穿整個教學過程,學生任務明確。教師在每一個教學環(huán)節(jié)中灰滲透了類別的學習思想,這使學生在學習新知的過程中利用正遷移,在輕松的氛圍中完成了對新知的學習。課上回答的問題及解題在正確率以小組的得分的形式計入到小組教學成績日常評比中。

七年級下冊數學教學設計7

  教學目標

  理解兩個完全平方公式的結構,靈活運用完全平方公式進行運算。

  在運用完全平方公式的過程中,進一步發(fā)展學生的符號演算的能力,提高運算能力。

  培養(yǎng)學生在獨立思考的基礎上,積極參與對數學問題的討論,敢于發(fā)表自己的見解。

  重點難點

  重點

  完全平方公式的比較和運用

  難點

  完全平方公式的結構特點和靈活運用。

  教學過程

  一、復習導入

  1. 說出完全平方公式的內容及作用。

  2. 計算 ,除了直接用兩數差的完全平方公式外,還有別的方法嗎?

  學生思考后回答:由于兩數差可以轉化成兩數和,所以還可以用兩數和的`完全平方公式計算,把“ ”看成加數,按照兩數和的完全平方公式計算,結果是一樣的。

  教師歸納:當我們對差與和加以區(qū)分時,兩個公式是有區(qū)別的,區(qū)別是其結果的中間項一個是“減”一個是“加”,注意到區(qū)別有助于計算的準確;另一方面,當我們對差與和不加區(qū)分,全部理解成“加項”時,那么兩個公式從結構上來看就是一致的了,其結構都是“兩項和的平方,等于它們的平方和,加上它們的積的兩倍!弊⒁獾剿鼈兊慕y(tǒng)一性,有于我們更深刻地理解公式特點,提高運算的靈活性。

  我們學習運算,除了要重視結果,還要重視過程,平時注意訓練運算方法的多樣性,可以加深對算理的理解和運用,提高運算過程的合理性和靈活性,從而真正的提高運算能力。

  二、新課講解

  溫故知新

  與 , 與 相等嗎?為什么?

  學生討論交流,鼓勵學生從不同的角度進行說理,共同歸納總結出兩條判斷的思路:

  1.對原式進行運算,利用運算的結果來判斷;

  2.不對原式進行運算,只做適當變形后利用整體的方法來判斷。

  思考:與 , 與 相等嗎?為什么?

  利用整體的方法判斷,把 看成一個數,則 是它的相反數,相反數的奇次方是相反的,所以它們不相等。

  總結歸納得到: ;

  三、典例剖析

  例1運用完全平方公式計算:

  (1) ; (2)

  鼓勵學生用多種方法計算,只要言之成理,只要是自己動腦筋發(fā)現的,都要給予肯定,同時還要引導學生評價哪種算法最簡潔。

  例2計算:

 。1) ; (2) .

  例3 計算:

 。1) ; (2)

  訓練學生熟練地、靈活地運用完全平方公式進行運算,進一步滲透整體和轉化的思想方法。

  四、課堂練習

  1.運用完全平方公式計算:

  (1) ; (2) ;

 。3) ; (4)

  2.計算:

 。1) ;(2) .

  3. 計算:

 。1) ; (2)

  學生解答,教師巡視,注意學生的計算過程是否合理,組織學生對錯誤進行分析和點評。

  五、小結

  師生共同回顧完全平方公式的結構特點,體會公式的作用,交流計算的經驗。教師對課堂上學生掌握不夠牢固的知識進行辨析、強調與補充,學生也可以談一談個人的學習感受。

  六、布置作業(yè)

  P50第2(3)、(4),3題

七年級下冊數學教學設計8

  6.3.1實數

  第一課時

  【教學目標】

  知識與技能:

 、倭私鉄o理數和實數的概念以及實數的分類;

  ②知道實數與數軸上的點具有一一對應的關系。

  過程與方法:

  在數的開方的基礎上引進無理數的概念,并將數從有理數的范圍擴充到實數的范圍,從而總結出實數的分類,接著把無理數在數軸上表示出來,從而得到實數與數軸上的點是一一對應的關系。

  情感態(tài)度與價值觀:

 、偻ㄟ^了解數系擴充體會數系擴充對人類發(fā)展的作用;

  ②敢于面對數學活動中的困難,并能有意識地運用已有知識解決新問題。

  教學重點:

 、倭私鉄o理數和實數的概念;

  ②對實數進行分類。

  教學難點:對無理數的認識。

  【教學過程】

  一、復習引入無理數:

  利用計算器把下列有理數3,,34795,,寫成小數的形式,它們有什么特征? 58119

  發(fā)現上面的有理數都可以寫成有限小數或無限循環(huán)小數的形式即:33.0,34791,50.5 0.6,5.875,0.858119

  歸納:任何一個有理數(整數或分數)都可以寫成有限小數或者無限循環(huán)小數的形式,

  反過來,任何有限小數或者無限循環(huán)小數也都是有理數。

  通過前面的學習,我們知道有很多數的平方根或立方根都是無限不循環(huán)小數,

  把無限不循環(huán)小數叫做無理數。比如,5,等都是無理數。3.14159265也是無理數。

  二、實數及其分類:

  1、實數的概念:有理數和無理數統(tǒng)稱為實數。

  2、實數的分類:

  按照定義分類如下:

  整數小數)有理數(有限小數或無限循環(huán)實數分數數)無理數(無限不循環(huán)小

  按照正負分類如下:

  正有理數正實數負無理數實數零

  負有理數負實數負無理數

  3、實數與數軸上點的關系:

  我們知道每個有理數都可以用數軸上的點來表示。物理是合乎是否也可以用數軸上的點表示出來嗎?

  活動1:直徑為1個單位長度的圓其周長為π,把這個圓放在數軸上,圓從原點沿數軸向右滾動一周,圓上的一點由原點到達另一個點,這個點的坐標就是π,由此我們把無理數π用數軸上的點表示了出來。

  活動2:在數軸上,以一個單位長度為邊長畫一個正方形,則其對角線的長度就是2以原點為圓心,正方形的對角線為半徑畫弧,與正半軸的交點就表示2,與負半軸的交點就是

  可以把每一個無理數都在數軸上表示出來,即數軸上有些點表示無理數。

  歸納:①實數與數軸上的點是一一對應的。即沒一個實數都可以用數軸上的點來表示;

  反過來,數軸上的每一個點都表示一個實數。

 、趯τ跀递S上的任意兩個點,右邊的點所表示的實數總比左邊的.點表示的實數大。

  三、應用:

  例1、下列實數中,無理數有哪些? 2。事實上通過這種做法,我們

  2,2,3.14,,0,10.12112111211112,π,(4)2。 3,0.717

  解:無理數有:2,5,π

  2注:①帶根號的數不一定是無理數,比如(4),它其實是有理數4;

 、跓o限小數不一定是無理數,無限不循環(huán)小數一定是無理數。

  比如10.12112111211112。

  例2、把無理數5在數軸上表示出來。分析:類比2的表示方法,我們需要構造出長度為的線段,從而以它為半徑畫弧,與數軸正半軸的交點就表示5。

  解:如圖所示,OA2,AB1,

  由勾股定理可知:OB5,以原點O與數軸的正半軸交于點C,則點C就表示5。

  四、隨堂練習:

  1、判斷下列說法是否正確:

 、艧o限小數都是無理數;

  ⑵無理數都是無限小數;

 、菐Ц柕臄刀际菬o理數; ⑷所有的有理數都可以用數軸上的點來表示,反過來,數軸上所有的點都表示有理數;

 、伤袑崝刀伎梢杂脭递S上的點來表示,反過來,數軸上的所有的點都表示實數。

  2、把下列各數分別填在相應的集合里:

  有理數集合無理數集合

  22, 3.1415926,7,8,2,0.6,0,,,0.313113111。 73

  3、比較下列各組實數的大。(1)4,(2)π,3.1416 (3)32,

  五、課堂小結

  1、無理數、實數的意義及實數的分類. 2、實數與數軸的對應關系.

  六、布置作業(yè)

  P57習題6.3第1、2、3題;

七年級下冊數學教學設計9

  教學目標

  1.使學生正確理解數軸的意義,掌握數軸的三要素;

  2.使學生學會由數軸上的已知點說出它所表示的數,能將有理數用數軸上的點表示出來;

  3.使學生初步理解數形結合的思想方法.

  教學重點和難點

  重點:初步理解數形結合的思想方法,正確掌握數軸畫法和用數軸上的點表示有理數.

  難點:正確理解有理數與數軸上點的對應關系.

  課堂教學過程 設計

  一、從學生原有認知結構提出問題

  1.小學里曾用“射線”上的點來表示數,你能在射線上表示出1和2嗎?

  2.用“射線”能不能表示有理數?為什么?

  3.你認為把“射線”做怎樣的改動,才能用來表示有理數呢?

  待學生回答后,教師指出,這就是我們本節(jié)課所要學習的內容——數軸.

  二、講授新課

  讓學生觀察掛圖——放大的溫度計,同時教師給予語言指導:利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標有讀數,根據溫度計的液面的不同位置就可以讀出不同的數,從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.

  與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零.具體方法如下(邊說邊畫):

  1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數,也可偏向左邊)用這點表示0(相當于溫度計上的0℃);

  2.規(guī)定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);

  3.選取適當的長度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…

  提問:我們能不能用這條直線表示任何有理數?(可列舉幾個數)

  在此基礎上,給出數軸的定義,即規(guī)定了原點、正方向和單位長度的直線叫做數軸.

  進而提問學生:在數軸上,已知一點P表示數-5,如果數軸上的原點不選在原來位置,而改選在另一位置,那么P對應的數是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?

  通過上述提問,向學生指出:數軸的三要素——原點、正方向和單位長度,缺一不可.

  三、運用舉例 變式練習

  例1 畫一個數軸,并在數軸上畫出表示下列各數的點:

  例2 指出數軸上A,B,C,D,E各點分別表示什么數.

  課堂練習

  示出來.

  2.說出下面數軸上A,B,C,D,O,M各點表示什么數?

  最后引導學生得出結論:正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,零用原點表示.

  四、小結

  指導學生閱讀教材后指出:數軸是非常重要的數學工具,它使數和直線上的點建立了對應關系,它揭示了數和形之間的內在聯系,為我們研究問題提供了新的方法.

  本節(jié)課要求同學們能掌握數軸的三要素,正確地畫出數軸,在此還要提醒同學們,所有的有理數都可用數軸上的點來表示,但是反過來不成立,即數軸上的點并不是都表示有理數,至于數軸上的哪些點不能表示有理數,這個問題以后再研究.

  五、作業(yè)

  1.在下面數軸上:

  (1)分別指出表示-2,3,-4,0,1各數的'點.

  (2)A,H,D,E,O各點分別表示什么數?

  2.在下面數軸上,A,B,C,D各點分別表示什么數?

  3.下列各小題先分別畫出數軸,然后在數軸上畫出表示大括號內的一組數的點:

  (1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};

  課堂教學設計說明

  從學生已有知識、經驗出發(fā)研究新問題,是我們組織教學的一個重要原則.小學里曾學過利用射線上的點來表示數,為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數?伴以溫度計為模型,引出數軸的概念.教學中,數軸的三要素中的每一要素都要認真分析它的作用,使學生從直觀認識上升到理性認識.直線、數軸都是非常抽象的數學概念,當然對初學者不宜講的過多,但適當引導學生進行抽象的思維活動還是可行的例如,向學生提問:在數軸上對應一億萬分之一的點,你能畫出來嗎?它是不是存在等.

七年級下冊數學教學設計10

  學習目標:

  了解平移的概念,會進 行點的平移,理解平移的性質,能解決簡單的平移問題

  重點:

  平移的概念和作圖方法。

  難點:

  平移的作圖。

  一、預習導學

  預習課本P27—P29,并完成以下練習

  1、觀察上面圖形,我們發(fā)現他們都有一個局部和其他部分重復,如果給你一個局部,你能復制他們嗎?

  2如何在一張半透明的紙上,畫出一排形狀和大小如圖的雪人?

  2、在平面內,將一個圖形沿某個方向___一定的距離,這樣的圖形運動稱為平移,平移改變的是圖形的_____。平移不改變圖形的____和____。

  3、圖形的平移是由_____和_____決定的。

  4、經過平移所得的圖形與原來的圖形的對應線段_______,對應角____,對應點所連的線段____。

  5、如圖1,△ABC平移到△DEF,圖中相等的線段有_____________,相等的角有____________,平行的線段有______________。

  6、把一個△ABC沿東南方向平移3cm,則AB邊上的中點P沿___方向平移了 __cm。

  7、如圖,△ABC是由四個形狀大小相同的三角形拼成的,則可以看成是△ADF平移得到的小三角形是___________。

  8、如圖,△DEF是由△ABC先向右平移__格,再向___平移___格而得到的。

  11、如圖,有一條小船,若把小船平移,使點A平移到點B,請你在圖中畫出平移后的小船。

  12、如圖,平移三角形ABC,使點A運動到A`,畫出平移后的三角形A`B`C`。

  二、課堂學習研討

 。ㄒ唬┢揭频母拍

  1、一個圖形________________________叫做平移變換,簡稱平移。

  2、下列各組圖形中,可以經過平移變換由一個圖形得到另一個圖形的是( )

  3、如圖,O是正六邊形ABCDEF的中心,下列圖形中可由△OBC平移得到的是( )

  A △OCD B △OAB

  C △OAF D △OEF

  (二)平移的性質

  1、平移后的圖形與原圖形_____、______完全相同,新圖形中的每一個點,都是由____________ _______移動后得到的,這兩個點是對應點,連接各組對應點的'線段______且________或__________,對應角_______。

  2、如圖,將梯形ABCD的腰AB沿AD平移,平移長度等于AD的長,則下列說法不正確的是( )

  A AB∥DE且AB=DE B ∠DEC=∠B

  C AD∥EC且AD=EC D BC=AD+EC

  3、△ABC沿B C的方向平移到△DEF的位置,(1)若∠B=260,∠F=740,則∠1=_______,∠2=______,∠A=_______,∠D=______

  (2)若AB=4c m,AC=5cm,BC=4。5 cm,EC=3。5cm,則平移的距離等于________,DF=_______,CF=_________。

  ( 三)平移作圖

  1、△ABC在網格中如圖所示,請根據下列提示作圖

  (1)向上平移2個單位長度。

 。2) 再向右移3個單位長度。

  2、已知三角形ABC、點D,D為A的對應點。過點D作三角形ABC平移后的 圖形。

  三、隨堂小測

  (一)選擇題

  1、下列哪個圖形是由左圖平移得到的( )

  2、如圖所示,△FDE經過怎樣的平 移可得到△ABC。( )

  A、沿射線EC的方向移動DB長;

  B、B沿射線EC的方向移動CD長

  C、沿射線BD的方向移動BD長;

  D、D。沿射線BD的方向移動DC長

  3、下列四組圖形中,有一組中的兩個圖形經過平移其中一個能得到另一個,這組圖形是( )

  4、如圖所示,△DEF經過平移可以得到△ABC,那么∠C

  的對應角和ED的對應邊分別是( )

  A、∠F,AC B。∠BOD,BA; C。∠F,BA D!螧OD,AC

  5、在平移過程中,對應線段( )

  A、互相平行且相等; B;ハ啻怪鼻蚁嗟 C;ハ嗥叫校ɑ蛟谕粭l直線上)且相等

  (二)填空題

  1、在平移 過程中,平移后的圖形與原來的圖形________和_________都相同,因此對應線段和對應角都________。

  2、如圖所示,平移△ABC可得到△DEF,如果∠A=50°,∠C=60°, 那么∠E=____度,∠EDF=_______度,∠F=______度,∠DOB=_______度。

 。ㄈ┙獯痤}

  1、如圖所示,將△ABC平移,可以得到△DEF,點B的對應點為點E,請畫出點A的對應點D、點C的對應點F的位置。

  2、如圖所示,請將圖中的“蘑菇”向左平移6個格,再向下平移2個格。

  3、如圖所示,畫出平行四邊形ABCD向上平移1厘米后的圖形。

  4、如圖,將△ABC沿水平方向平移3cm。

  5、直角△ABC中,AC=3c m,BC=4cm,AB=5cm,將△ABC沿CB方向平移3cm,則邊AB所經過的平面面積為____cm2。

  6、一個長方形竹園長20米,寬12米,竹園有一條橫向寬度都為 1。5米的小徑(如圖)。你能求出這個竹園中竹子的種植面積嗎(除去小徑的面積)?請說明理由。

七年級下冊數學教學設計11

  教學目標:

  1.會用代入法解二元一次方程組。

  2.初步體會解二元一次方程組的基本思想――“消元”。

  3.通過研究解決問題的方法,培養(yǎng)學生合作交流意識與探究精神。

  重點:

  用代入消元法解二元一次方程組。

  難點:

  探索如何用代入法將“二元”轉化為“一元”的消元過程。

  教學過程:

  復習提問:

  籃球聯賽中,每場比賽都要分出勝負,每隊勝一場得2分。負一場得1分,某隊為了爭取較好的名次,想在全部20場比賽中得到38分,那么這個隊勝負場數分別是多少?

  解:設這個隊勝x場,根據題意得

  解得

  x=18

  則 20-x=2

  答:這個隊勝18場,負2場。

  新課:

  在上述問題中,我們可以設出兩個未知數,列出二元一次方程組

  設勝的場數是x,負的場數是y,

  x+y=20

  2x+y=38

  那么怎樣求解二元一次方程組呢?上面的二元一次方程組和一元一次方程有什么關系?可以發(fā)現,二元一次方程組中第1個方程x+y=20說明y=20-x,將第2個方程

  2x+y=38的y換為20-x,這個方程就化為一元一次方程。

  二元一次方程組中有兩個未知數,如果消去其中一個未知數,將二元一次方程組轉化為我們熟悉的一元一次方程,我們就可以先解出一個未知數,然后再設法求另一未知數。這種將未知數的個數由多化少、逐一解決的想法,叫做消元思想。

  歸納:

  上面的解法,是由二元一次方程組中一個方程,將一個未知數用含另一未知數的式子表示出來,再代入另一方程,實現消元,進而求得這個二元一次方程組的解。這種方法叫做代入消元法,簡稱代入法。

  例1 把下列方程寫成用含x的式子表示y的形式:

  (1)2x-y=3 (2)3x+y-1=0

  例2 用代入法解方程組

  x-y=3 ①

  3x-8y=14 ②

  例3 根據市場調查,某種消毒液的大瓶裝(500g)和小瓶裝(250g)兩種產品的銷售數量比(按瓶計算)為2:5。某廠每天生產這種消毒液22。5噸,這些消毒液應該分裝大、小瓶裝兩種產品各多少瓶?

  用代入消元法解二元一次方程組的步驟:

  (1)從方程組中選取一個系數比較簡單的方程,把其中的某一個未知數用含另一個未知數的'式子表示出來。

  (2)把(1)中所得的方程代入另一個方程,消去一個未知數。

 。3)解所得到的一元一次方程,求得一個未知數的值。

 。4)把所求得的一個未知數的值代入(1)中求得的方程,求出另一個未知數的值,從而確定方程組的解。

  作業(yè):

  教科書第98頁第3題

  第4題

【七年級下冊數學教學設計】相關文章:

七年級數學下冊教學設計08-27

七年級數學下冊教學設計精品02-26

七年級下冊歷史教學設計11-09

七年級生物下冊教學設計05-17

七年級下冊政治教學設計07-05

七年級語文下冊《臺階》教學設計11-28

數學七年級上冊教學設計12-05

七年級數學教學設計04-14

七年級下冊數學教學總結05-16