四年級數(shù)學“三角形內角和”教學設計
作為一名教職工,就難以避免地要準備教學設計,教學設計以計劃和布局安排的形式,對怎樣才能達到教學目標進行創(chuàng)造性的決策,以解決怎樣教的問題。那么大家知道規(guī)范的教學設計是怎么寫的嗎?以下是小編幫大家整理的四年級數(shù)學“三角形內角和”教學設計,希望對大家有所幫助。
四年級數(shù)學“三角形內角和”教學設計1
教學目標:
1、通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內角的度數(shù)和等于180度。
2、已知三角形兩個角的度數(shù),會求第三個角的度數(shù)。
3、培養(yǎng)學生合作交流的能力,體驗學習數(shù)學的快樂。
教學過程:
教學設想
學生活動
備注
一、 創(chuàng)設情境
1、故事導入
有一天,兩個三角形吵了起來,大三角形說自己的個頭大,所以內角比小三角形大?尚∪切握f別看自己個頭小,但角卻不小。他們爭得不可開交,始終爭論不出結果。到底誰的內角大,誰的內角小,請大家?guī)兔ο雮辦法,好嗎?
生:可以用三角板量一量每個內角的度數(shù),也就求出三角形內角的和,就知道誰大誰小了。
這節(jié)課,我們就來研究三角形的內角和。
二、合作交流
量一量
(1)師:同學們,你們的書上有許多三角形,現(xiàn)在就請你們選擇喜歡的三角形,到小組里量出每個角的度數(shù)。再計算出三角形內角的和,并填好小組活動記錄表。
(2)各小組匯報記錄結果,并說說有什么發(fā)現(xiàn)?
生:每個三角形的三個內角和接近180度。
師:三角形的內角和就是180度。接近180度的是在測量過程中出現(xiàn)了一點小的誤差。
(3)除了用測量的.方法能計算出三角形的內角和等于180度外,還有許多好的方法呢!
撕一撕
引導學生把一個三角形的三個角撕一下,拼一拼。
折一折
自己試著折一折,也會發(fā)現(xiàn)利用折一折,可以知道三角形內角和是180度。
師小結:剛才,同學們用量、撕、折的方法知道了三角形內角和是180度,現(xiàn)在你們可以告訴這兩個三角形不要吵了,它們的內角是一樣大的。
算一算
這兩個三角形很感謝同學們,你們看,它們的好朋友也來了,它們只知道自己兩個角的度數(shù),你們能幫它們算出另外一個角的度數(shù)嗎?
嘗試:閱讀與思考第1、2題
反饋交流
三、鞏固練習
完成練習與應用第1、2題
小組活動開始
小組活動記錄表第()組
四年級數(shù)學“三角形內角和”教學設計2
教學目標:
1、通過測量,撕拼,折疊等方法。探索和發(fā)現(xiàn)三角形三個內角和的度數(shù)等于180°。
2、引導學生動手實驗,經歷知識的生長過程培養(yǎng)學生的探索意識和動手能力,初步感受數(shù)學研究方法。
3、能運用三角形內角和知識解決一些簡單的問題。
教學重點:
探索和發(fā)現(xiàn)“三角形內角和是180°”。
教學難點:
驗證“三角形內角和是180°,以及對這一知識的靈活運用!
教具準備:
三角形,多媒體課中。
教學過程設計:
一、創(chuàng)設情境:故事引入,森林王國里住著平面圖形和立體圖形兩大家族,一天平面圖形的三角形家庭傳出一片吵鬧聲,大三角形與小三角形在爭論:聽大三角形說:“我的內角和比你大”,小三角形不服氣,可又不知如何反駁,同學們,你們知道到底誰的內角和大嗎?
二、探究新知:
。ㄒ唬⒘恳涣浚核娜艘恍〗M,分別測量本組準備的三角形的.內角,并求出和。
你們發(fā)現(xiàn)三角形的內角和是多少?匯報,提出疑問,三角形的內角和是不是剛好等于180°
。ǘ、拼一拼
引導學生獨立完成,撕下二個角與第三個角拼在在一起,發(fā)現(xiàn)了什么?
引導學生得出:三角形內角和等于180°
。ㄈ┱垡徽
引導學生同桌互相幫助完成,發(fā)現(xiàn)三個角形的三個內角折在一起是平角。
回答大小三角形的爭論:大三角形與小三角形的內角形誰大?并說出理由。
三、鞏固拓展
1、填一填
①直角形三角形的兩個銳角和是()度。
、谥苯侨切蔚囊粋銳角是45°,另一個銳角是()度。
③鈍角三角形的兩上內角分別是20°,60°;則第三個角是()
2、火眼金晴
、兮g角三角形的兩個鈍角和大于90°()。
、谥苯侨切蔚膬蓚銳角之和正好等于90°()。
、厶詺猱嬃艘粋三個角分別是50°,70°,50°的三角形()
、軆蓚銳角是60°的三角形是等邊三角形()
、蓍L方形的內角和等于360°()。
3、猜一猜:四邊形的內角和是多少度?
五邊形的內角和是多少度?
四、小結,今天學習了什么?你有什么收獲?
四年級數(shù)學“三角形內角和”教學設計3
設計思路
遵循由特殊到一般的規(guī)律進行探究活動是這節(jié)課設計的主要特點之一。學生對三角尺上每個角的度數(shù)比較熟悉,就從這里入手。先讓學生算出每塊三角尺三個內角的和是180°,引發(fā)學生的猜想:其它三角形的內角和也是180°嗎?接著,引導學生小組合作,任意畫出不同類型的三角形,用通過量一量、算一算,得出三角形的內角和是180°或接近180°(測量誤差),再引導學生通過剪拼的方法發(fā)現(xiàn):各類三角形的三個內角都可以拼成一個平角。再利用課件演示進一步驗證,由此獲得三角形的內角和是180°的結論。這一系列活動潛移默化地向學生滲透了“轉化”數(shù)學思想,為后繼學習奠定了必要的基礎。
最后讓學生運用結論解決實際問題,練習的安排上,注意練習層次,共安排三個層次,逐步加深。練習形式具有趣味性,激發(fā)了學生主動解題的積極性。第一個練習從知識的直接應用到間接應用,數(shù)學信息的出現(xiàn)從比較顯現(xiàn)到較為隱藏。這些題檢測不同層次的學生是否掌握所學知識應該達到的基本要求,顧及到智力水平發(fā)展較慢和中等的同學,第3個練習設計了開放性的練習,在小組內完成。由一個同學出題,其它三個同學回答。先給出三角形兩個內角的度數(shù),說出另外一個內角。有唯一的答案。訓練多次后,只給出三角形一個內角,說出其它兩個內角,答案不唯一,可以得出無數(shù)個答案。讓學生在游戲中消除疲倦激發(fā)興趣,拓展學生思維。兼顧到智力水平發(fā)展較快的同學。在整個教學設計中,本著“學貴在思,思源于疑”的思想,不斷創(chuàng)設問題情境,讓學生去實驗、去發(fā)現(xiàn)新知識的奧妙,從而讓學生在動手操作、積極探索的活動中掌握知識,積累數(shù)學活動經驗,發(fā)展空間觀念和推理能力。
教學目標
1、讓學生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內角和是180°,并會應用這一知識解決生活中簡單的實際問題。
2、讓學生在動手獲取知識的過程中,培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內角和轉化為平角的探究活動,向學生滲透“轉化”數(shù)學思想。
3、使學生體驗成功的喜悅,激發(fā)學生主動學習數(shù)學的興趣。
教材分析
三角形的內角和是三角形的一個重要特征。本課是安排在學習三角形的概念及分類之后進行的,它是學生以后學習多邊形的內角和及解決其它實際問題的基礎。學生在掌握知識方面:已經掌握了三角形的分類,比較熟悉平角等有關知識;能力方面:經過三年多的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的習慣。
因此,教材很重視知識的`探索與發(fā)現(xiàn),安排了一系列的實驗操作活動。教材呈現(xiàn)教學內容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、算、拼等活動,讓學生探索、實驗、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內角和是180°。
教學重點
讓學生經歷“三角形內角和是180°”這一知識的形成、發(fā)展和應用的全過程。
教學準備
多媒體課件、學具。
教學過程
一、激趣引入
。ㄒ唬┱J識三角形內角
師:我們已經認識了什么是三角形,誰能說出三角形有什么特點?
生1:三角形是由三條線段圍成的圖形。
生2:三角形有三個角,……
師:請看屏幕(課件演示三條線段圍成三角形的過程)。
師:三條線段圍成三角形后,在三角形內形成了三個角,(課件分別閃爍三個角及的弧線),我們把三角形里面的這三個角分別叫做三角形的內角。(這里,有必要向學生直觀介紹“內角”。)
(二)設疑,激發(fā)學生探究新知的心理
師:請同學們幫老師畫一個三角形,能做到嗎?(激發(fā)學生主動學習的心理)
生:能。
師:請聽要求,畫一個有兩個內角是直角的三角形,開始。(設置矛盾,使學生在矛盾中去發(fā)現(xiàn)問題、探究問題。)
師:有誰畫出來啦?
生1:不能畫。
生2:只能畫兩個直角。
生3:只能畫長方形。
師(課件演示):是不是畫成這個樣子了?哦,只能畫兩個直角。
師:問題出現(xiàn)在哪兒呢?這一定有什么奧秘?想不想知道?
生:想。
師:那就讓我們一起來研究吧!
。ń沂久,巧妙引入新知的探究)
二、動手操作,探究新知
。ㄒ唬┭芯刻厥馊切蔚膬冉呛
師:請看屏幕。(播放課件)熟悉這副三角板嗎?請拿出形狀與這塊一樣的三角板,并同桌互相指一指各個角的度數(shù)。(課件閃動其中的一塊三角板)
生:90°、60°、30°。(課件演示:由三角板抽象出三角形)
師:也就是這個三角形各角的度數(shù)。它們的和怎樣?
生:是180°。
師:你是怎樣知道的?
生:90°+60°+30°=180°。
師:對,把三角形三個內角的度數(shù)合起來就叫三角形的內角和。
師:(課件演示另一塊三角板的各角的度數(shù)。)這個呢?它的內角和是多少度呢?
生:90°+45°+45°=180°。
師:從剛才兩個三角形內角和的計算中,你發(fā)現(xiàn)什么?
生1:這兩個三角形的內角和都是180°。
生2:這兩個三角形都是直角三角形,并且是特殊的三角形。
(二)研究一般三角形內角和
1、猜一猜。
師:猜一猜其它三角形的內角和是多少度呢?同桌互相說說自己的看法。
生1:180°。
生2:不一定。
……
2、操作、驗證一般三角形內角和是180°。
。1)小組合作、進行探究。
師:所有三角形的內角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?
生:可以先量出每個內角的度數(shù),再加起來。
師:哦,也就是測量計算,是嗎?那就請四人小組共同研究吧!
師:每個小組都有不同類型的三角形。每種類型的三角形都需要驗證,先討論一下,怎樣才能很快完成這個任務。(課前每個小組都發(fā)有銳角三角形、直角三角形、鈍角三角形,指導學生選擇解決問題的策略,進行合理分工,提高效率。)
(2)小組匯報結果。
師:請各小組匯報探究結果。
生1:180°。
生2:175°。
生3:182°。
(三)繼續(xù)探究
師:沒有得到統(tǒng)一的結果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?
生1:有。
生2:用拼合的辦法,就是把三角形的三個內角放在一起,可以拼成一個平角。
師:怎樣才能把三個內角放在一起呢?
生:把它們剪下來放在一起。
1、用拼合的方法驗證。
師:很好,請用不同的三角形來驗證。
師:小組內完成,仍然先分工怎樣才能很快完成任務,開始吧。
2、匯報驗證結果。
師:先驗證銳角三角形,我們得出什么結論?
生1:銳角三角形的內角拼在一起是一個平角,所以銳角三角形的內角和是180°。
生2:直角三角形的內角和也是180°。
生3:鈍角三角形的內角和還是180°。
3、課件演示驗證結果。
師:請看屏幕,老師也來驗證一下,是不是跟你們得到的結果一樣?(播放課件)
師:我們可以得出一個怎樣的結論?
生:三角形的內角和是180°。
(教師板書:三角形的內角和是180°學生齊讀一遍。)
師:為什么用測量計算的方法不能得到統(tǒng)一的結果呢?
生1:量的不準。
生2:有的量角器有誤差。
師:對,這就是測量的誤差。
四年級數(shù)學“三角形內角和”教學設計4
課題
三角形的內角和
手 記
教學目標
1.讓學生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內角和是180°,并會應用這一知識解決生活中簡單的實際問題。
2.在學生在動手獲取知識的過程中,培養(yǎng)學生的實踐能力,并通過動手操作把三角形內角和轉化為平角的探究活動,向學生滲透“轉化”數(shù)學思想。
3.使學生體驗成功的喜悅,激發(fā)學生主動學習數(shù)學的興趣。
重點難點
重點:讓學生經歷“三角形內角和是180°”這一知識的形成、發(fā)展和應用過程。
難點:探索、驗證三角形內角和是180°的過程。
過程
資源
體驗目標
“學”與“教”
創(chuàng)設問題情境
課件出示:兩個三角板
遵循由特殊到一般的規(guī)律進行探究,引發(fā)學生的猜想后,引導學生探討所有的三角形的內角和是不是也是180°。
這是同學們熟悉的三角尺,請同學們說一說這兩個三角尺的三個內角分別是多少度?
生: 45°、90°、45°。
生: 30°、90°、60°。
師:仔細觀察,算一算這兩個三角形的內角和是多少度?
生:90°+45°+45°=180°。
生:90°+60°+30°=180°。
師:通過剛才的`算一算,我們得到這兩個三角形的內角和是180°,由此你想到了什么?
生:直角三角形內角和是180°,銳角三角形、鈍角三角形內角和也是180°。
師:這只是我們的一種猜想,三角形的內角和是否真的等于180°,還需要我們去驗證。
構建
模型
每個組準備六個三角形(銳角三角形2個、直角三角形2個、鈍角三角形2個)
課件
學生自己剪的一個任意三角形
大膽放手讓學生通過有層次的自主操作活動,幫助學生結合已有的知識經驗,探究驗證三角形內角和的不同方法。
讓學生在經歷“提出猜想—實驗驗證—得出結論”中感悟、體驗知識的形成過程,將“三角形內角和是180°”一點一滴,浸入學生大腦,融入已有認知結構。
這一系列活動同時還潛移默化地向學生滲透了“轉化”的數(shù)學思想,為后繼學習奠定了必要的基礎。
師:之前老師為每個同學準備了①-⑥六個三角形,下面請組長分發(fā)給每個三角形,拿到手后,先別著急,先想一想你準備用什么方法去驗證三角形內角和?
學生動手操作驗證
師:匯報時,請先說一說是幾號三角形?然后說一說這個三角形是什么三角形?
學生匯報:
生1:③號三角形是直角三角形,內角和是180°。
生2:②號三角形是銳角三角形,內角和是180°。
生3:⑤號三角形是鈍角三角形,內角和是180°。
生4:④號三角形是直角三角形,內角和是180°。
生5:①號三角形是鈍角三角形,內角和是180°。
生6:⑥號三角形是銳角三角形,內角和是180°。
師:除了量的方法外,還有其他方法驗證三角形內角和嗎?
生1:分別剪下三角形三個角拼成平角,平角是180°,所以推理得出三角形內角和是180°。
生2:分別撕下三角形三個角拼成平角,平角是180°,所以推理得出三角形內角和是180°。
生3:把三角形的三個角折成平角,平角是180°,所以推理得出三角形內角和是180°。
這些方法都驗證了:三角形的內角和是180°。
師:觀察這些三角形的內角和是多少度?這些三角形的內角和都是180°,這是不是老師故意安排好的呢?
師:有沒有人質疑,用什么方法驗證?
生用自己剪的任意三角形再次驗證三角形內角和是否180°。
生:得出內角和還是180°。
師:不管是老師提供的三角形,還是你們自己準備的三角形,通過我們的算一算、拼一拼、折一折,都得出了三角形的內角和是180°。
師:我們已經學習了三角形的分類,三角形可以分成銳角三角形、直角三角形、鈍角三角形。這些三角形的內角和是180°,我們能把它們概括成一句話嗎?
生:三角形的內角和是180°。
師:看來我們的猜想是正確的。
師:早在2000多年前著名數(shù)學家歐幾里得就已經得到這個結論,到了初中以后同學們還會用更加嚴密的方法證明三角形的內角和是180°。
解釋
運用拓展
課件
正方形紙
讓學生更深的對所學的新知加以鞏固,從而促使學生綜合運用知識,解決問題的能力。同時在練習中發(fā)展學生的觀察、歸納、概括能力和初步的空間想象力。
1.∠1=40°,∠2=48°,求∠3有多少度?
2.算出下面三角形∠3的度數(shù)。
、拧1=42°,∠2=38°,∠3=?
、啤1=28°,∠2=62°,∠3=?
、恰1=80°,∠2=56°,∠3=?
師:你是怎樣算的?這三個三角形各是什么三角形?
提問:在一個三角形中最多有幾個鈍角?
在一個三角形中最多有幾個直角?
3.游戲:將準備的正方形紙對折成一個三角形?
師:這個三角形的內角和是多少度?再對折一次,現(xiàn)在內角和是多少度?如果繼續(xù)折下去,越折越小,三角形的內角和會是多少度?
說明:三角形大小變了,內角和不變。
4.有兩個完全一樣的三角尺拼成一個三角形,這個三角形的內角和是多少度?
說明:三角形形狀變了,內角和不變。
5.根據(jù)所學知識,你能想辦法求出下面圖形的內角和嗎?
板書
設計
三角形內角和
、偬 鈍角三角形 內角和180°
、谔 銳角三角形 內角和180°
三角形內角和是180°
、厶 直角三角形 內角和180°
、芴 直角三角形 內角和180°
、萏 鈍角三角形 內角和180°
、尢 銳角三角形 內角和180°
學具教具準備
課件三角形紙片量角器正方形紙
四年級數(shù)學“三角形內角和”教學設計5
教學內容:
義務教育課程表準教科書數(shù)學(人教版)四年級下冊85頁.例題5.
教學目標:
1.讓學生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內角和是180°,并會應用這一知識解決生活中簡單的實際問題。
2.讓學生在動手獲取知識的過程中,培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內角和轉化為平角的探究活動,向學生滲透“轉化”數(shù)學思想。
3.使學生體驗成功的喜悅,激發(fā)學生主動學習數(shù)學的興趣。
教學重點:
讓學生經歷“三角形內角和是180°”這一知識的形成、發(fā)展和應用的全過程。
教學準備:
多媒體課件、學具。
教學過程:
一、激趣引入
(一)認識三角形內角
1.我們已經認識了三角形,什么是三角形?誰能說三角形按角分類,可以分成哪幾類?(學生回答問題.)
2.請看屏幕(課件演示三條線段圍成三角形的過程)。
三條線段圍成三角形后,在三角形內形成了三個角,(課件分別出現(xiàn)三個角的弧線),我們把三角形里面的這三個角分別叫做三角形的內角。
(二)設疑,激發(fā)學生探究新知的心理
1.請同學們幫老師畫一個三角形,能做到嗎?(激發(fā)學生主動學習的心理)請聽要求,畫一個有兩個內角是直角的三角形,開始。(設置矛盾,使學生在矛盾中去發(fā)現(xiàn)問題、探究問題。)
學生安要求畫三角形.
2.問:有誰畫出來啦?
(課件演示):是不是畫成這個樣子了?只能畫兩個直角。問題出現(xiàn)在哪兒呢?這一定有什么奧秘?那就讓我們一起來研究吧!
二、動手操作,探究新知
(一)研究特殊三角形的內角和
1.請看屏幕。(播放課件)熟悉這副三角板嗎?(課件閃動其中的一塊三角板)
學生回答:90°、45°、45°。(課件演示:由三角板抽象出三角形)
這個三角形各角的度數(shù)。它們的和是多少?
學生回答:是180°。
追問:你是怎樣知道的?
生:90°+45°+45°=180°。
把三角形三個內角的度數(shù)合起來就叫三角形的內角和。
板題:三角形內角和
2.(課件演示另一塊三角板的各角的度數(shù)。)這個呢?它的.內角和是多少度呢?
90°+60°+30°=180°。
3.從剛才兩個三角形內角和的計算中,你發(fā)現(xiàn)什么?
這兩個三角形的內角和都是180°。這兩個三角形都是直角三角形,并且是特殊的三角形。
(二)研究一般三角形內角和
1.猜一猜。
猜一猜其它三角形的內角和是多少度呢?同桌互相說說自己的看法。
2.操作、驗證一般三角形內角和是180°。
(1)小組合作、進行探究。
1.所有三角形的內角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?那就請四人小組共同研究吧!
2.每個小組都有不同類型的三角形。每種類型的三角形都需要驗證,小組活動的要求如下:課件顯示
組長負責填寫表格,組員每人負責量一個三角形的每個內角,并記錄下來,最后算出這個三角形的內角和,把結果告訴組長.
量一量,完成表格.
三角形的名稱
內角和的度數(shù)
銳角三角形
直角三角形
(2)小組匯報結果。
請各小組匯報探究結果。
(三)繼續(xù)探究
沒有得到統(tǒng)一的結果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?
引導學生用拼合的辦法,就是把三角形的三個內角放在一起,可以拼成一個平角。
1.用拼合的方法驗證。
小組內完成,活動的要求同上.
拼一拼,完成表格.
三角形的名稱
是否可以拼成平角
銳角三角形
直角三角形
對角三角形
2.匯報驗證結果。
先驗證銳角三角形,我們得出什么結論?
(銳角三角形的內角拼在一起是一個平角,所以銳角三角形的內角和是180°。
直角三角形的內角和也是180°。
鈍角三角形的內角和還是180°)。
3.課件演示驗證結果。
請看屏幕,老師也來驗證一下,是不是跟你們得到的結果一樣?(播放課件)
我們可以得出一個怎樣的結論?
(三角形的內角和是180°。)
(教師板書:三角形的內角和是180°學生齊讀一遍。)
為什么用測量計算的方法不能得到統(tǒng)一的結果呢?
(量的不準。有的量角器有誤差。)
三、解決疑問。
現(xiàn)在誰能說說不能畫出有兩個直角的一個三角形的原因?(讓學生體驗成功的喜悅)
(因為三角形的內角和是180°,在一個三角形中如果有兩個直角,它的內角和就大于180°。)
在一個三角形中,有沒有可能有兩個鈍角呢?
(不可能。)
追問:為什么?
(因為兩個銳角和已經超過了180°。)
問:那有沒有可能有兩個銳角呢?
(有,在一個三角形中最少有兩個內角是銳角。)
四、應用三角形的內角和解決問題。
1.看圖求出未知角的度數(shù)。(知識的直接運用,數(shù)學信息很淺顯)
2.85頁做一做:
在一個三角形中,∠1=140度,∠3=35度,求∠2的度數(shù).
3.88頁第9.10題(數(shù)學信息較為隱藏和生活中的實際問題)
4.89頁16題.思考題
板書設計:
三角形內角和
180°180°180°
三角形內角和180°
【四年級數(shù)學“三角形內角和”教學設計】相關文章:
三角形內角和教學設計09-19
三角形內角和教學設計04-12
三角形內角和教學設計03-09
《三角形內角和》的教學設計10-07
《三角形內角和》教學設計10-07
《三角形的內角和〉教學設計10-07
《三角形的內角和》教學設計03-14
三角形的內角和教學設計03-01
《三角形內角和》教學設計04-07