成年女人色视频在线观看网站_一本久精品无码免费_亚洲成a人片在线观看无码专区_开心婷婷五月综合基地六月

《圓與圓的位置關(guān)系》教學(xué)設(shè)計(jì)

時(shí)間:2022-10-07 04:40:27 教學(xué)資源 投訴 投稿
  • 相關(guān)推薦

《圓與圓的位置關(guān)系》教學(xué)設(shè)計(jì)

  作為一位兢兢業(yè)業(yè)的人民教師,常常要根據(jù)教學(xué)需要編寫教學(xué)設(shè)計(jì),借助教學(xué)設(shè)計(jì)可以更大幅度地提高學(xué)生各方面的能力,從而使學(xué)生獲得良好的發(fā)展。那要怎么寫好教學(xué)設(shè)計(jì)呢?下面是小編為大家整理的《圓與圓的位置關(guān)系》教學(xué)設(shè)計(jì),僅供參考,歡迎大家閱讀。

《圓與圓的位置關(guān)系》教學(xué)設(shè)計(jì)

  《圓與圓的位置關(guān)系》教學(xué)設(shè)計(jì)1

  教學(xué)目標(biāo):

  1.掌握?qǐng)A與圓的五種位置關(guān)系的定義、性質(zhì)及判定方法;兩圓連心線的性質(zhì);

  2.通過兩圓的位置關(guān)系,培養(yǎng)學(xué)生的分類能力和數(shù)形結(jié)合能力;

  3.通過演示兩圓的位置關(guān)系,培養(yǎng)學(xué)生用運(yùn)動(dòng)變化的觀點(diǎn)來分析和發(fā)現(xiàn)問題的能力.

  教學(xué)重點(diǎn):

  兩圓的五種位置與兩圓的半徑、圓心距的數(shù)量之間的關(guān)系.

  教學(xué)難點(diǎn):

  兩圓位置關(guān)系及判定.

  (一)復(fù)習(xí)、引出問題

  1.復(fù)習(xí):直線和圓有幾種位置關(guān)系?各是怎樣定義的.?

  (教師主導(dǎo),學(xué)生回憶、回答)直線和圓有三種位置關(guān)系,即直線和圓相離、相切、相交.各種位置關(guān)系是通過直線與圓的公共點(diǎn)的個(gè)數(shù)來定義的

  2.引出問題:平面內(nèi)兩個(gè)圓,它們作相對(duì)運(yùn)動(dòng),將會(huì)產(chǎn)生什么樣的位置關(guān)系呢?

  (二)觀察、分類,得出概念

  1、讓學(xué)生觀察、分析、比較,分別得出兩圓:外離、外切、相交、內(nèi)切、內(nèi)含(包括同心圓)這五種位置關(guān)系,準(zhǔn)確給出描述性定義:

  (1)外離:兩個(gè)圓沒有公共點(diǎn),并且每個(gè)圓上的點(diǎn)都在另一個(gè)圓的外部時(shí),叫做這兩個(gè)圓外離.(圖(1))

  (2)外切:兩個(gè)圓有唯一的公共點(diǎn),并且除了這個(gè)公共點(diǎn)以外,每個(gè)圓上的點(diǎn)都在另一個(gè)圓的外部時(shí),叫做這兩個(gè)圓外切.這個(gè)唯一的公共點(diǎn)叫做切點(diǎn).(圖(2))

  (3)相交:兩個(gè)圓有兩個(gè)公共點(diǎn),此時(shí)叫做這兩個(gè)圓相交.(圖(3))

  (4)內(nèi)切:兩個(gè)圓有唯一的公共點(diǎn),并且除了這個(gè)公共點(diǎn)以外,一個(gè)圓上的點(diǎn)都在另一個(gè)圓的內(nèi)部時(shí),叫做這兩個(gè)圓內(nèi)切.這個(gè)唯一的公共點(diǎn)叫做切點(diǎn).(圖(4))

  (5)內(nèi)含:兩個(gè)圓沒有公共點(diǎn),并且一個(gè)圓上的點(diǎn)都在另一個(gè)圓的內(nèi)部時(shí),叫做這兩個(gè)圓內(nèi)含(圖(5)).兩圓同心是兩圓內(nèi)含的一個(gè)特例.(圖(6))

  2、歸納:

  (1)兩圓外離與內(nèi)含時(shí),兩圓都無公共點(diǎn).

  (2)兩圓外切和內(nèi)切統(tǒng)稱兩圓相切,即外切和內(nèi)切的共性是公共點(diǎn)的個(gè)數(shù)唯一

  (3)兩圓位置關(guān)系的五種情況也可歸納為三類:相離(外離和內(nèi)含);相交;相切(外切和內(nèi)切).

  教師組織學(xué)生歸納,并進(jìn)一步考慮:從兩圓的公共點(diǎn)的個(gè)數(shù)考慮,無公共點(diǎn)則相離;有一個(gè)公共點(diǎn)則相切;有兩個(gè)公共點(diǎn)則相交.除以上關(guān)系外,還有其它關(guān)系嗎?可能不可能有三個(gè)公共點(diǎn)?

  結(jié)論:在同一平面內(nèi)任意兩圓只存在以上五種位置關(guān)系.

  (三)分析、研究

  1、相切兩圓的性質(zhì).

  讓學(xué)生觀察連心線與切點(diǎn)的關(guān)系,分析、研究,得到相切兩圓的連心線的性質(zhì):

  如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上.

  這個(gè)性質(zhì)由圓的軸對(duì)稱性得到,有興趣的同學(xué)課下可以考慮如何對(duì)這一性質(zhì)進(jìn)行證明

  2、兩圓位置關(guān)系的數(shù)量特征.

  設(shè)兩圓半徑分別為R和r.圓心距為d,組織學(xué)生研究?jī)蓤A的五種位置關(guān)系,r和d之間有何數(shù)量關(guān)系.(圖形略)

  兩圓外切d=R+r;

  兩圓內(nèi)切d=R-r(R>r);

  兩圓外離d>R+r;

  兩圓內(nèi)含dr);

  兩圓相交R-r

  說明:注重“數(shù)形結(jié)合”思想的教學(xué).

  (四)應(yīng)用、練習(xí)

  例1:如圖,⊙O的半徑為5厘米,點(diǎn)P是⊙O外一點(diǎn),OP=8厘米

  求:(1)以P為圓心作⊙P與⊙O外切,小圓⊙P的半徑是多少?

  (2)以P為圓心作⊙P與⊙O內(nèi)切,大圓⊙P的半徑是多少?

  解:(1)設(shè)⊙P與⊙O外切與點(diǎn)A,則

  PA=PO-OA

  ∴PA=3cm.

  (2)設(shè)⊙P與⊙O內(nèi)切與點(diǎn)B,則

  PB=PO+OB

  ∴PB=13cm.

  例2:已知:如圖,△ABC中,∠C=90°,AC=12,BC=8,以AC為直徑作⊙O,以B為圓心,4為半徑作.

  求證:⊙O與⊙B相外切.

  證明:連結(jié)BO,∵AC為⊙O的直徑,AC=12,

  ∴⊙O的半徑,且O是AC的中點(diǎn)

  ∴,∵∠C=90°且BC=8,

  ∴,

  ∵⊙O的半徑,⊙B的半徑,

  ∴BO=,∴⊙O與⊙B相外切.

  《圓與圓的位置關(guān)系》教學(xué)設(shè)計(jì)2

  一、教學(xué)目標(biāo):

  根據(jù)學(xué)生已有的認(rèn)知的基礎(chǔ)及本課的教材的地位、作用,依據(jù)教學(xué)大綱的確定本課的教學(xué)目標(biāo)為:

 。1)知識(shí)目標(biāo):

  a、知道直線和圓相交、相切、相離的定義。

  b、根據(jù)定義來判斷直線和圓的位置關(guān)系,

  會(huì)根據(jù)直線和圓相切的定義畫出已知圓的切線。

  c、根據(jù)圓心到直線的距離與圓的半徑之間的數(shù)量關(guān)系揭示直線和圓的位置。

  2)能力目標(biāo):

  讓學(xué)生通過觀察、看圖、列表、分析、對(duì)比,能找出圓心到直線的距離和圓的半徑之間的數(shù)量關(guān)系,揭示直線和圓的關(guān)系。此外,通過直線與圓的相對(duì)運(yùn)動(dòng),培養(yǎng)學(xué)生運(yùn)動(dòng)變化的辨證唯物主義觀點(diǎn),通過對(duì)研究過程的反思,進(jìn)一步強(qiáng)化對(duì)分類和歸納的思想的認(rèn)識(shí)。

  3)情感目標(biāo):

  在解決問題中,教師創(chuàng)設(shè)情境導(dǎo)入新課,以觀察素材入手,像一輪紅日從海平面升起的圖片,提出問題,讓學(xué)生結(jié)合學(xué)過的知識(shí),把它們抽象出幾何圖形,再表示出來。讓學(xué)生感受到實(shí)際生活中,存在的直線和圓的三種位置關(guān)系,便于學(xué)生用運(yùn)動(dòng)的觀點(diǎn)觀察圓與直線的位置關(guān)系,有利于學(xué)生把實(shí)際的問題抽象成數(shù)學(xué)模型,也便于學(xué)生觀察直線和圓的公共點(diǎn)的變化。

  二、教材的重點(diǎn)難點(diǎn)

  直線和圓的三種位置關(guān)系是重點(diǎn),本課的難點(diǎn)是直線和圓的三種位置關(guān)系的性質(zhì)與判定的應(yīng)用。

  三、教學(xué)重點(diǎn)和難點(diǎn)

  解決重點(diǎn)的方法主要是:(1)由學(xué)生觀察老師展示的一輪紅日從海平面升起的照片提出問題,能不能我們學(xué)過的知識(shí)把它們抽象出幾何圖形再展示出來(讓學(xué)生嘗試通過日出的`情境畫出幾種情況),(2)把直線在圓的上下移動(dòng),引導(dǎo)學(xué)生用運(yùn)動(dòng)的觀點(diǎn)觀察直線和圓的位置關(guān)系,并讓他們發(fā)現(xiàn)直線與圓的公共點(diǎn)的個(gè)數(shù),揭示直線和圓相交、相切、相離的定義,歸納直線和圓的三種位置關(guān)系。是什么?)。

  在說直線與圓的位置關(guān)系時(shí),如何突破這個(gè)難點(diǎn):(1)突破直線和圓不能有兩個(gè)以上的公共點(diǎn),讓學(xué)生討論,最后明確否定(因?yàn)橹本和圓有三個(gè)或三個(gè)以上的公共點(diǎn),那么這與不在同一條直線上的三點(diǎn)就可以作一個(gè)圓,相矛盾)。

  (2)把直線在圓的上下移動(dòng),引導(dǎo)學(xué)生用運(yùn)動(dòng)的觀點(diǎn)觀察直線和圓的位置關(guān)系,并讓他們發(fā)現(xiàn)直線與圓的公共點(diǎn)的個(gè)數(shù),揭示直線和圓相交、相切、相離的定義,歸納直線和圓的三種位置關(guān)系。

  (3)突破直線和圓有唯一一個(gè)公共點(diǎn)是直線和圓相切(指直線與圓有一個(gè)并且只有一個(gè)公共點(diǎn),它與有一個(gè)公共點(diǎn)的含義不同)。

 。4)突破直線和圓的位置關(guān)系的(如果圓O的半徑為r,圓心到直線的距離為d,

  1.直線l與圓 O相交<=> d<r

  3.直線l與圓 O相離<=> d>r

  式子的左邊反映是兩個(gè)圖形(直線和圓)的位置關(guān)系的性質(zhì),右邊是反映直線和圓的位置關(guān)系的判定。

  四、教學(xué)程序

  [提問] 通過觀察、演示,你知道直線和圓有幾種位置關(guān)系?

  [討論] 一輪紅日從海平面升起的照片

  [新授] 給出相交、相切、相離的定義。

  [類比] 復(fù)習(xí)點(diǎn)與圓的位置關(guān)系,討論它們的數(shù)量關(guān)系。通過類比,從而得出直線與圓的位置關(guān)系的性質(zhì)定理及判定方法。

【《圓與圓的位置關(guān)系》教學(xué)設(shè)計(jì)】相關(guān)文章:

直線和圓位置關(guān)系教學(xué)設(shè)計(jì)05-07

圓和圓的位置關(guān)系教案02-26

《24.2直線與圓的位置關(guān)系》教學(xué)反思10-06

《圓的面積》教學(xué)設(shè)計(jì)02-07

《圓的周長(zhǎng)》教學(xué)設(shè)計(jì)03-07

《認(rèn)識(shí)圓》教學(xué)設(shè)計(jì)03-18

圓的認(rèn)識(shí)教學(xué)設(shè)計(jì)12-31

圓的周長(zhǎng)教學(xué)設(shè)計(jì)01-25

圓的認(rèn)識(shí)教學(xué)設(shè)計(jì)10-06

《圓的認(rèn)識(shí)》教學(xué)設(shè)計(jì)03-29