成年女人色视频在线观看网站_一本久精品无码免费_亚洲成a人片在线观看无码专区_开心婷婷五月综合基地六月

三角形內(nèi)角和教案

時間:2023-02-19 16:09:57 教案 投訴 投稿

三角形內(nèi)角和教案

  在教學(xué)工作者開展教學(xué)活動前,常常需要準(zhǔn)備教案,編寫教案有利于我們準(zhǔn)確把握教材的重點與難點,進(jìn)而選擇恰當(dāng)?shù)慕虒W(xué)方法。那么問題來了,教案應(yīng)該怎么寫?下面是小編幫大家整理的三角形內(nèi)角和教案,歡迎閱讀與收藏。

三角形內(nèi)角和教案

三角形內(nèi)角和教案1

  【教學(xué)目標(biāo)】

  1、利用電子白板,借助生活情景,通過“量一量”,“算一算”,“拼一拼”,“折一折”的方法,推想歸納出三角形內(nèi)角和是180°,并能應(yīng)用這一知識解決一些簡單問題。

  2、經(jīng)歷猜測——驗證——得出結(jié)論——解釋與應(yīng)用的過程,體驗“歸納”、“轉(zhuǎn)化”等數(shù)學(xué)思想方法。

  3、通過數(shù)學(xué)活動使學(xué)生獲得成功的體驗,增強自信心,培養(yǎng)學(xué)生的創(chuàng)新意識,探索精神和實踐能力。

  【教學(xué)重、難點】

  教學(xué)重點:引導(dǎo)學(xué)生發(fā)現(xiàn)三角形內(nèi)角和是180°。 教學(xué)難點:用不同方法驗證三角形的內(nèi)角和是180°。 【教學(xué)過程】

  一、創(chuàng)設(shè)情景,提出問題

  小游戲:猜一猜藏在信封后面的是什么三角形。(出示)

  師:三角形的這三個角究竟存在什么奧秘呢,我們一起來研究研究。

  【設(shè)計意圖:運用電子白板,游戲引入,激起學(xué)生對于三角形已有知識的回憶,為下面探求新的知識作好鋪墊。創(chuàng)設(shè)疑問,引出要探討的問題,調(diào)動學(xué)生學(xué)習(xí)的興趣。】

  二、動手實踐、自主探究

  師:什么是內(nèi)角?內(nèi)角和是什么意思?三角形的內(nèi)角和是多少度呢?

  1.從特殊入手——計算直角三角板的內(nèi)角和。

  (1)師生拿出30度直角三角板

  師:這是什么?是什么三角形?這個角是多少度?它的內(nèi)角和是多少度,請口算?

  (2)再拿出45度直角三角板。

  師:這是什么三角形?這個角是多少度?它的內(nèi)角和是多少度?

  (3)師:通過剛才的計算,你有什么發(fā)現(xiàn)?

  生:這兩個三角形內(nèi)角和都是180°。

  【設(shè)計意圖:這一環(huán)節(jié)先讓學(xué)生在明確三角形內(nèi)角和的概念基礎(chǔ)上,先借助電子白板出示特殊三角形——“直角三角形”,讓學(xué)生初步感知三角形的內(nèi)角和,通過計算學(xué)生很容易發(fā)現(xiàn)直角三角形的內(nèi)角和是180度,為學(xué)生作進(jìn)一步猜想奠定理論基礎(chǔ)!

  2、由特殊到一般——猜想驗證,發(fā)現(xiàn)規(guī)律。

 。1)提出猜想

  師:其他所有三角形的內(nèi)角和是否也是180°?

  生:是、 不是……

  師:有的說是,有的說不是,我們的猜想對不對呢,需要驗證。

 。ǔ鍪拘〗M調(diào)查表。)

  (2)驗證猜想(生測量計算,師巡視指導(dǎo),收集回報的素材)

  師:哪個小組愿意將您們組的發(fā)現(xiàn)與大家分享一下?

  生上臺展示:我們小組研究的是直角三角形(銳角三角形、鈍角三角形),我們測量它的三個角分別是 度 度 度,內(nèi)角和是180°,我們發(fā)現(xiàn)直角三角形(銳角三角形、鈍角三角形)的內(nèi)角和是180°)

  師:研究銳角三角形(銳角三角形、鈍角三角形)的小組請舉手,你們的結(jié)論和他們一樣嗎?請你們小組來談?wù)勀銈兊陌l(fā)現(xiàn)!

  【設(shè)計意圖:實物投影儀在這個環(huán)節(jié)發(fā)揮了重要的作用,學(xué)生充分展示自己的想法。在初步感知的基礎(chǔ)上,教師讓學(xué)生猜測是否所有的三角形的內(nèi)角和都一樣呢?這個問題為后面的猜測和驗證進(jìn)行鋪墊,引發(fā)思考,激發(fā)學(xué)習(xí)興趣。然后再通過算出特殊的三角形的內(nèi)角和推廣到猜測所有三角形的內(nèi)角和,引導(dǎo)學(xué)生從特殊三角形過渡到一般三角形的驗證規(guī)律!

 。3)揭示規(guī)律

  師:通過計算我們發(fā)現(xiàn)直角三角形的內(nèi)角和是180°,銳角三角形的`內(nèi)角和是——180度,鈍角三角形的內(nèi)角和也是——180度,這就驗證了我們的猜想,F(xiàn)在我們可以說所有的三角形的內(nèi)角和是(完善課題180°)。

  注:學(xué)生的匯報中可能會出現(xiàn)答案不是唯一的情況,如:180°、179°、181°等。(板書)(分別對這幾個數(shù)進(jìn)行統(tǒng)計)

  師:觀察這些測量結(jié)果你能發(fā)現(xiàn)什么?(三角形內(nèi)角和大約是180°左右)

 。4)方法提升。

  師:我們從直角三角形——銳角三角形——鈍角三角形——推出所有三角形的內(nèi)角和,這種由個別到一般的推理方法,在數(shù)學(xué)上叫歸納推理(板書)歸納推理是重要的推理方法。

  【設(shè)計意圖:通過度量、比較這一活動,讓學(xué)生在實踐中充分感知三角形的內(nèi)角和大小。但由于測量本身有差異,教師并沒有直接告知三角形內(nèi)角和的結(jié)論,而是讓學(xué)生去另辟蹊徑想辦法驗證前面的猜想,想一想有沒有別的方法來求三角形的內(nèi)角和,讓思維真正“展翅高飛”,充分調(diào)動學(xué)生學(xué)習(xí)的積極性、自主性!

  3、剪拼法再次驗證——轉(zhuǎn)化思想的運用。

  師:剛才我們通過測量發(fā)現(xiàn)了三角形的內(nèi)角和是180°,現(xiàn)在我們不用量角器測量了,你能想辦法證明三角形的內(nèi)角和是180°嗎?先思考再動手做。

  生探究,師巡視指導(dǎo),收集匯報素材。(呈現(xiàn)作品——說方法——統(tǒng)計點評)

  班內(nèi)交流,匯報撕拼法、折疊法。

  師:將三角形的內(nèi)角通過剪拼、折疊,轉(zhuǎn)化成平角,你們應(yīng)用了一種重要的數(shù)學(xué)思想——轉(zhuǎn)化(板書),轉(zhuǎn)化就是將我們不會直接解決的新問題,變成已會的舊知識,進(jìn)而解決。

  【設(shè)計意圖:孩子的智慧來自于動手,電子白板適時演示,讓學(xué)生通過“剪一剪,拼一拼,折一折”等操作方法,猜想、驗證得出結(jié)論:三角形的內(nèi)角和是180°,并利用語言概括出結(jié)論,提高語言表達(dá)能力!

  4.展示——再次強化。

  師:現(xiàn)在大家知道這幾個三角形的內(nèi)角和是多少度嗎?

  師:我們可以請電腦來給我們驗證一下。

  (引入白板,通過拖動演示三角形從小到大度數(shù)的不斷變化)

  結(jié)論:不論三角形的大小、形狀怎樣變化,任何三角形的內(nèi)角和都是180°。

  【設(shè)計意圖:讓學(xué)生在白板上親眼觀看到拖拉出類別不同的三角形,讓學(xué)生在拖動的過程中觀察、體驗。學(xué)生興趣盎然,學(xué)習(xí)氣氛熱烈,學(xué)生不僅感受到這3個三角形的內(nèi)角和是180°,還隨著電子白板上這個三角形的任意拖動,發(fā)現(xiàn)三角形的3個角的度數(shù)在不斷的變化,而三角形的內(nèi)角和則始終沒有變化,仍然是180°,深刻地理解了任意三角形的內(nèi)角和都是180°。而這,恰恰就是本課的教學(xué)重點和難點。傳統(tǒng)課中不容易突破的教學(xué)重難點輕而易舉的攻破。抽象的知識變得直觀、具體,促進(jìn)學(xué)生知識內(nèi)化的過程!

  三、鞏固應(yīng)用,內(nèi)化提高

  1.介紹科學(xué)家帕斯卡(白板出示帕斯卡的資料)

  2.練習(xí)

 。1). 做一做:在一個三角形中,∠1=140度, ∠3=25度,求∠2的度數(shù)。

 。2). 求出下列三角形中各個角的度數(shù)。(書88頁第9題)

  (3). 算一算(書88頁第10題):爸爸給小紅買了一個等腰三角形的風(fēng)箏。它的一個底角是70°,它的頂角是多少度?

  【設(shè)計意圖:練習(xí)中使用白板的交互性,學(xué)生更愿意參與,得出結(jié)果也更有成就感。素質(zhì)教育要求我們要面向全體學(xué)生。為此,根據(jù)問題的不同難度,教學(xué)時兼顧到不同層次的學(xué)生,使每位學(xué)生都有所收獲,都有機會體會到成功的喜悅。設(shè)計練習(xí)有新意,同時也注意了坡度。既有基本練習(xí),也有發(fā)展性練習(xí),盡最大努力體現(xiàn)因材施教。】

  四、課后思考、拓展延伸

  同學(xué)們,數(shù)學(xué)奧妙無窮,三角形是邊數(shù)最少的封閉平面圖形,那么,四邊形五邊形六邊形(出圖示)……的內(nèi)角和是多少度,他們又有什么規(guī)律呢?有興趣的同學(xué)下課之后可繼續(xù)研究,下課。

三角形內(nèi)角和教案2

  一、教學(xué)目標(biāo)

  1.知識目標(biāo):通過測量、撕拼(剪拼)、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180°這一規(guī)律,并能實際應(yīng)用。

  2.能力目標(biāo):培養(yǎng)學(xué)生主動探索、動手操作的能力。使學(xué)生養(yǎng)成良好的合作習(xí)慣。

  3.情感目標(biāo):讓學(xué)生體會幾何圖形內(nèi)在的結(jié)構(gòu)美。并充分體會到學(xué)習(xí)數(shù)學(xué)的快樂。

  二、教學(xué)過程

 。ㄒ唬﹦(chuàng)設(shè)情境,導(dǎo)入新課

  1、師:我們已經(jīng)認(rèn)識了三角形,你知道哪些關(guān)于三角形的知識?

 。▽W(xué)生暢所欲言。)

  2、師:我們在討論三角形知識的時候,三角形中的三個好朋友卻吵了起來,想知道是怎么回事嗎?讓我們一起去看看吧!

  師口述:一個大的直角三角形說:“我的個頭大,我的內(nèi)角和一定比你們大!币粋鈍角三角形說:“我有一個鈍角,我的內(nèi)角和才是最大的)一個小的銳角三角形很委屈的樣子說“是這樣嗎?”。

  3、到底誰說的對呢?今天我們就來研究有關(guān)三角形內(nèi)角和的知識。(板書課題:三角形內(nèi)角和)

 。ǘ┳灾魈骄,發(fā)現(xiàn)規(guī)律

  1、認(rèn)識什么是三角形的內(nèi)角和。

  師:你知道什么是三角形的內(nèi)角和嗎?

  通過學(xué)生討論,得出三角形的內(nèi)角和就是三角形三個內(nèi)角的度數(shù)和。

  2、探究三角形內(nèi)角和的特點。

 、僮寣W(xué)生想一想、說一說怎樣才能知道三角形的內(nèi)角和?

  學(xué)生會想到量一量每個三角形的內(nèi)角,再相加的方法來得到三角形的內(nèi)角和。(如果學(xué)生想到別的方法,只要合理的,教師就給予肯定,并鼓勵他們對自己想到的方法進(jìn)行)

 、谛〗M合作。

  通過小組合作后交流,匯報。(教師同時板書出幾個小組匯報的結(jié)果)讓學(xué)生們發(fā)現(xiàn)每個三角形的內(nèi)角和都在180°左右。

  引導(dǎo)學(xué)生推測出三角形的內(nèi)角和可能都是180°。

  3、驗證推測。

  讓學(xué)生動腦筋想一想,怎樣才能驗證自己的推想是否正確,學(xué)生可能會想到用折拼或剪拼的方法來看一看三角形的三個角和起來是不是180°,也就是說三角形的三個角能不能拼成一個平角。

  (小組合作驗證,教師參與其中。)

  4、全班交流,共同發(fā)現(xiàn)規(guī)律。

  當(dāng)學(xué)生匯報用折拼或剪拼的方法的時候,指名學(xué)生上黑板展示結(jié)果。

  學(xué)生交流、師生共同總結(jié)出三角形的內(nèi)角和等于180°。教師同時板書(三角形內(nèi)角和等于180°。)

  5、師談話:三個三角形討論的問題現(xiàn)在能解決了嗎?你現(xiàn)在想對這三個三角形說點什么嗎?(讓學(xué)生暢所欲言,對得出的三角形內(nèi)角和是180°做系統(tǒng)的整理。)

 。ㄈ╈柟叹毩(xí),拓展應(yīng)用

  根據(jù)發(fā)現(xiàn)的三角形的新知識來解決問題。

  1、完成“試一試”

  讓學(xué)生獨立完成后,集體交流。

  2、游戲:選度數(shù),組三角形。

  請選出三個角的度數(shù)來組成一個三角形。

  150°10°15°18°20°32°

  35°50°52°54°56°58°

  130°70°72°75°60°

  學(xué)生回答的同時,教師操作課件,把學(xué)生選擇的度數(shù)拖入方框內(nèi),通過電腦計算相加是否等于180°,來驗證學(xué)生的選擇是否正確。驗證學(xué)生選的對了以后,再讓學(xué)生判斷選擇的度數(shù)所組成的三角形按角的大小分類,屬于哪種三角形。并說出理由。

  3、“想想做做”第1題

  生獨立完成,集體訂正,并說說解題方法。

  4、“想想做做”第2題

  提問:為什么兩個三角形拼成一個三角形后,內(nèi)角和還是180度?

  5、“想想做做”第3題

  生動手折折看,填空。

  提問:三角形的內(nèi)角和與三角形的大小有關(guān)系嗎?三角形越大,內(nèi)角和也越大嗎?

  6、“想想做做”第5題

  生獨立完成,說說不同的解題方法。

  7、“想想做做”第6題

  學(xué)生說說自己的想法。

  8、思考題

  教師拿一個大三角形,提問學(xué)生內(nèi)角和是多少?用剪刀剪成兩個三角形,提問學(xué)生內(nèi)角和是多少?為什么?再剪下一個小三角形,提問學(xué)生內(nèi)角和是多少?為什么?最后建成一個四邊形,提問學(xué)生內(nèi)角和是多少?你能推導(dǎo)

  出四邊形的內(nèi)角和公式嗎?

 。ㄋ模┱n堂總結(jié)

  本節(jié)課我們學(xué)習(xí)了哪些內(nèi)容?(生自由說),同學(xué)們說得真好,我們要勇于從事實中尋找規(guī)律,再將規(guī)律運用到實踐當(dāng)中去。

  三、教后反思:

  “三角形的內(nèi)角和”是小學(xué)數(shù)學(xué)教材第八冊“認(rèn)識圖形”這一單元中的一個內(nèi)容。通過鉆研教材,研究學(xué)情和學(xué)法,與同組老師交流,我將本課的教學(xué)目標(biāo)確定為:

  1、通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180度。

  2、已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。

  本節(jié)教學(xué)是在學(xué)生在學(xué)習(xí)“認(rèn)識三角形”的基礎(chǔ)上進(jìn)行的,“三角形內(nèi)角和等于180度”這一結(jié)論學(xué)生早知曉,但為什么三角形內(nèi)角和會一樣?這也正是本節(jié)課要與學(xué)生共同研究的問題。所以我將這節(jié)課教學(xué)的重難點設(shè)定為:通過動手操作驗證三角形的內(nèi)角和是180°。教學(xué)方法主要采用了實驗法和演示法。學(xué)生的折、拼、剪等實踐活動,讓學(xué)生找到了自己的驗證方法,使他們體驗了成功,也學(xué)會了學(xué)習(xí)。下面結(jié)合自己的教學(xué),談幾點體會。

 。ㄒ唬﹦(chuàng)設(shè)情景,激發(fā)興趣

  俗話說:“良好的開端是成功的一半”。一堂課的開頭雖然只有短短幾分鐘,但它卻往往影響一堂課的成敗。因此,教師必須根據(jù)教學(xué)內(nèi)容和學(xué)生實際,精心設(shè)計每一節(jié)課的開頭導(dǎo)語,用別出心裁的導(dǎo)語來激發(fā)學(xué)生的`學(xué)習(xí)興趣,讓學(xué)生主動地投入學(xué)習(xí)。本節(jié)課先創(chuàng)設(shè)畫角質(zhì)疑的情景,當(dāng)學(xué)生畫不出來含有兩個直角的三角形時,學(xué)生想說為什么又不知怎么說,學(xué)生探究的興趣因此而油然而生。

 。ǘ┙o學(xué)生空間,讓他們自主探究

  “給學(xué)生一些權(quán)利,讓他們自己選擇;給學(xué)生一個條件,讓他們自己去鍛煉;給學(xué)生一些問題,讓他們自己去探索;給學(xué)生一片空間,讓他們自己飛翔。”我記不清這是誰說過的話,但它給我留下深刻的印象。它正是新課改中學(xué)生主體性的表現(xiàn),是以人為本新理念的體現(xiàn)。所以在本節(jié)課中我注重創(chuàng)設(shè)有助于學(xué)生自主探究的機會,通過“想辦法驗證三角形內(nèi)角和是180度”這一核心問題,引發(fā)學(xué)生去思考、去探究。我讓他們將課前準(zhǔn)備好的三角形拿出來進(jìn)行研究,學(xué)生通過折一折、拼一拼、剪一剪等活動找到自己的驗證方法。學(xué)生拿著他們手中的三角形,在講臺上講述自己的驗證方法,雖然有的方法很不成熟,但也可以看出這個過程中,滲透了他們發(fā)現(xiàn)的樂趣。這樣,學(xué)生在經(jīng)歷“再創(chuàng)造”的過程中,完成了對新知識的構(gòu)建和創(chuàng)造。

 。ㄈ┮詫W(xué)定教,注重教學(xué)的有效性

  新課表指出:數(shù)學(xué)教學(xué)活動必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識經(jīng)驗基礎(chǔ)之上。要把學(xué)生的個人知識、直接經(jīng)驗和現(xiàn)實世界作為數(shù)學(xué)教學(xué)的重要資源,即以學(xué)定教,注重每個教學(xué)環(huán)節(jié)的有效性。本課中當(dāng)我提出“為什么一個三角形中不能有兩個角是直角”時,有學(xué)生指出如果有兩個直角,它就拼不成了一個三角形;也有學(xué)生說如果有兩個直角,它就趨向于長方形或正方形!盀槭裁磿@樣呢”?學(xué)生沉默片刻后,忽然有個學(xué)生舉手了:“因為三角形的內(nèi)角和是180度,兩個直角已經(jīng)有180度了,所以不可能有兩個角是直角!边@樣的回答把本來設(shè)計的教學(xué)環(huán)節(jié)打亂了,此時我靈機把問題拋給學(xué)生,“你們理解他說的話嗎、你怎么知道內(nèi)角和是180度、誰都知道三角形的內(nèi)角和是180度”等,當(dāng)我看到大多數(shù)的已經(jīng)知道這一知識時,我就把學(xué)生直接引向主題“想不想自己研究證明一下三角形的內(nèi)角和是不是180度!奔ぐl(fā)了學(xué)生探究的興趣,使學(xué)生馬上投入到探究之中。

  在練習(xí)的時候,由于形式多樣,所以學(xué)生的興趣非常高漲,效果很好。通過多邊形內(nèi)角和的思考以及驗證,發(fā)展了學(xué)生的空間想象力,使課堂的知識得以延伸。

三角形內(nèi)角和教案3

  一、學(xué)生知識狀況分析

  學(xué)生技能基礎(chǔ):學(xué)生在以前的幾何學(xué)習(xí)中,已經(jīng)學(xué)習(xí)過平行線的判定定理與平行線的性質(zhì)定理以及它們的嚴(yán)格證明,也熟悉三角形內(nèi)角和定理的內(nèi)容,而本節(jié)課是建立在學(xué)生掌握了平行線的性質(zhì)及嚴(yán)格的證明等知識的基礎(chǔ)上展開的,因此,學(xué)生具有良好的基礎(chǔ)。

  活動經(jīng)驗基礎(chǔ): 本節(jié)課主要采取的 活動形式是學(xué)生非常熟悉的自主探究與合作交流的學(xué)習(xí)方式,學(xué)生具有較熟悉的活動經(jīng)驗.

  二、教學(xué)任務(wù)分析

  上一節(jié)課的學(xué)習(xí)中,學(xué)生對于平行線的判定定理和性質(zhì)定理以及與平行線相關(guān)的簡單幾何證明是比較熟悉的,他們已經(jīng)具有初步的幾何意識,形成了一定的邏輯思維能力和推理能力,本節(jié)課安排《三角形內(nèi)角和定理的證明》旨在利用平行線的相關(guān)知識來推導(dǎo)出新的定理以及靈活運用新的定理解決相關(guān)問題。為此,本節(jié)課的教學(xué)目標(biāo)是:

  知識與技能:(1)掌握三角形內(nèi)角和定理的證明及簡單應(yīng)用。

  (2)靈活運用三角形內(nèi)角和定理解決相關(guān)問題。

  數(shù)學(xué)能力:用多種方法證明三角形定理,培養(yǎng)一題多解的能力。

  情感與態(tài)度:對比過去撕紙等探索過程,體會思維實驗和符號化 的理性作用.

  三、教學(xué)過程分析

  本節(jié)課的設(shè)計分為四個環(huán)節(jié):情境引入探索新知反饋練習(xí)課堂小結(jié)

  第一環(huán)節(jié):情境引入

  活動內(nèi)容:(1)用折紙的方法驗證三角形內(nèi)角和定理.

  實驗1:先將紙片三角形一角折向其對邊,使頂點落在對邊上,折線與對邊平行(圖6-38(1))然后把另外兩角相向?qū)φ,使其頂點與已折角的頂點相嵌合(圖(2)、(3)),最后得圖(4)所示的結(jié)果

  (1) (2) (3) (4)

  試用自己的語言說明這一結(jié)論的證明思路。想一想,還有其它折法嗎?

  (2)實驗2:將紙片三角形三頂角剪下,隨意將它們拼湊在一起。

  試用自己的語言說明這一結(jié)論的證明思路。想一想,如果只剪下一個角呢?

  活動目的:

  對比過去撕紙等探索過程,體會思維實驗和符號化的理性作用。將自己的操作轉(zhuǎn)化為符號語言對于學(xué)生來說還存在一定困難,因此需要一個臺階,使學(xué)生逐步過渡到嚴(yán)格的證明.

  教學(xué)效果:

  說理過程是學(xué)生所熟悉的,因此,學(xué)生能比較熟練地說出用撕紙的`方法可以驗證三角形內(nèi)角和定理的原因。

  第二環(huán)節(jié):探索新知

  活動內(nèi)容:

 、 用嚴(yán)謹(jǐn)?shù)淖C明來論證三角形內(nèi) 角和定理.

 、 看哪個同學(xué)想的方法最多?

  方法一:過A點作DE∥BC

  ∵DE∥BC

  DAB=B,EAC=C(兩直線平行,內(nèi)錯角相等)

  ∵DAB+BAC+EAC=180

  BAC+ C=180(等量代換)

  方法二:作BC的延長線CD,過點C作射線CE∥BA.

  ∵CE∥BA

  ECD(兩直線平行,同位角相等)

  ACE(兩直線平行,內(nèi)錯角相等)

  ∵BCA+ACE+ECD=180

  B+ACB=180(等量代換)

  活動目的:

  用平行線的判定定理及性質(zhì)定理來推導(dǎo)出新的定理,讓學(xué)生再次體會幾何證明的嚴(yán)密性和數(shù)學(xué)的嚴(yán)謹(jǐn),培養(yǎng) 學(xué)生的邏輯推理能力。

  教學(xué)效果:

  添輔助線不是盲目的,而是為了證明某一結(jié)論,需要引用某個定義、公理、定理,但原圖形不具備直接使用它們的條件,這時就需要添輔助線創(chuàng)造條件,以達(dá)到 證明的目的.

  第三環(huán)節(jié):反饋練習(xí)

  活動內(nèi)容:

  (1)△ABC中可以有3個銳角嗎? 3個直角呢? 2個直角呢?若有1個直角另外兩角有什么特點?

  (2)△ABC中 ,C=90,A=30,B=?

  (3)A=50,C,則△ABC中B=?

  (4)三角形的三個內(nèi)角中,只能有____個直角或____個鈍角.

  (5)任何一個三角形中,至少有____個銳角;至多有____個銳角.

  (6)三角形中三角之比 為1∶2∶3,則三個角各為多少度?

  (7)已知:△ABC中,B=2A。

  (a)求B的度數(shù);

  (b)若BD是AC邊上的高,求 DBC的度數(shù)?

  活動目的:

  通過學(xué)生的 反饋練習(xí),使教師能全面了解學(xué)生對三角形內(nèi)角和定理的概念是否清楚,能否靈活運用三角形內(nèi)角和定理,以便教師能及時地進(jìn)行查缺補漏.

  教學(xué)效果:

  學(xué)生對于三角形內(nèi)角和定理的掌握是非常熟練,因此,學(xué)生能較好地解決與三角形內(nèi)角和定理相關(guān)的問題。

  第四環(huán)節(jié):課堂小結(jié)

  活動內(nèi)容:

 、 證明三角形內(nèi)角和定理有哪幾種方法?

  ② 輔助線的作法技巧.

 、 三 角形內(nèi)角和定理的簡單應(yīng)用.

  活動目的:

  復(fù)習(xí)鞏固本課知識,提高學(xué)生的掌握程度.

  教學(xué)效果:

  學(xué)生對于三角形內(nèi)角和定理的幾種不同的證明方法的理解比較深刻,并能熟練運用三角形內(nèi)角和定理進(jìn)行相關(guān)證明.

  課后練習(xí):課本第239頁隨堂練習(xí);第241頁習(xí)題6.6第1,2,3題

  四、教學(xué)反思

  三角形的有關(guān)知識是空間與圖形中最為核心、最為重要的內(nèi)容,它不僅是最基本的直線型平面圖形,而且?guī)缀跏茄芯克衅渌鼒D形的工具和基礎(chǔ).而三角形內(nèi)角和定理又是三角形中最為基礎(chǔ)的知識,也是學(xué)生最為熟悉且能與小學(xué)、中學(xué)知識相關(guān)聯(lián)的知識,看似簡單,但如果處理不好,會導(dǎo)致學(xué)生有厭煩心理,為此,本節(jié)課的設(shè)計力圖實現(xiàn)以下特點:

  (1) 通過折紙與剪紙等操作讓學(xué)生獲得直接經(jīng)驗,然后從學(xué)生的直接經(jīng)驗出發(fā),逐步轉(zhuǎn)到符號化處理,最后達(dá)到推理論證的要求。

  (2) 充分展示學(xué)生的個性,體現(xiàn)學(xué)生是學(xué)習(xí)的主人這一主題。

  (3) 添加輔助線是教學(xué)中的一個難點, 如何添加輔助線則應(yīng)允許學(xué)生展開思考并爭論,展示學(xué)生的思維過程,然后在老師的引導(dǎo)下達(dá)成共識。

三角形內(nèi)角和教案4

  【設(shè)計理念】

  新課標(biāo)重視讓學(xué)生經(jīng)歷數(shù)學(xué)知識的形成過程,要求教師創(chuàng)設(shè)有效的問題情境激發(fā)學(xué)生的參與欲望,提供足夠的時間和空間讓學(xué)生經(jīng)歷觀察、猜測、驗證、交流反思等過程,使學(xué)生在動手操作、合作交流等活動中親身經(jīng)歷知識的形成過程。這樣,學(xué)生不僅可以掌握知識,而且可以積累探究數(shù)學(xué)問題的活動經(jīng)驗,發(fā)展空間觀念和推理能力。

  【教材內(nèi)容】

  新人教版義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書四年級下冊數(shù)學(xué)第67頁例6、“做一做”及練習(xí)十六的第1、2、3題。

  【教材分析】

  三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在三角形的概念及分類之后教學(xué)的,它是學(xué)生以后學(xué)習(xí)多邊形的內(nèi)角和及解決其它實際問題的基礎(chǔ)。教材很重視知識的探索與發(fā)現(xiàn),安排兩次實驗操作活動。教材呈現(xiàn)教學(xué)內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間和時間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒有直接給出結(jié)論,而是通過量、拼等活動,讓學(xué)生探索、實驗、交流、推理歸納出三角形的內(nèi)角和是180°。

  【學(xué)情分析】

 。、在學(xué)習(xí)本課時,學(xué)生已經(jīng)有了探索三角形內(nèi)角和的知識基礎(chǔ):知道直角和平角的度數(shù),會用量角器度量角的度數(shù);認(rèn)識長方形、正方形,知道他們的四個角都是直角;認(rèn)識了三角形,知道了三角形按角分有銳角三角形、直角三角形和鈍角三角形;已經(jīng)知道了等腰三角形和正三角形。

  2、已經(jīng)有一部分學(xué)生知道了三角形內(nèi)角和是180°,只是知其然而不知所以然。

  【教學(xué)目標(biāo)】

  1通過“量、剪、拼”等活動發(fā)現(xiàn)、驗證三角形的內(nèi)角和是180°,并能運用這個知識解決一些簡單的問題。

  2.在觀察、猜想、操作、合作、分析交流等具體活動中,提高動手操作能力,積累基本的數(shù)學(xué)活動經(jīng)驗,發(fā)展空間觀念和推理能力。

  3.在參與數(shù)學(xué)學(xué)習(xí)活動的過程中,獲得成功的`體驗,感受數(shù)學(xué)探究的嚴(yán)謹(jǐn)與樂趣。

  【教學(xué)重點】

  探索發(fā)現(xiàn)、驗證“三角形內(nèi)角和是180°”,并運用這個知識解決實際問題。

  【教學(xué)難點】

  驗證“三角形的內(nèi)角和是180°”。

  【教(學(xué))具準(zhǔn)備】

  多媒體課件; 銳角三角形、直角三角形、鈍角三角形紙片若干個各類三角形(也包括等邊、等腰)、長方形、正方形若干個;每人一個量角器;一把剪刀;每人一副三角尺。

  【教學(xué)步驟】

  一、復(fù)習(xí)舊知 引出課題

  1、你已經(jīng)知道有關(guān)三角形的哪些知識?

  2、出示課題:三角形的內(nèi)角和

  【設(shè)計意圖:也自然導(dǎo)入新課!

  二、提出問題 引發(fā)猜想

  1、提出問題:看到這個課題,你有什么問題想問的?

  預(yù)設(shè):(1)三角形的內(nèi)角指的是哪些角? (2)三角形的內(nèi)角和是什么意思?

 。3)三角形的內(nèi)角一共是多少度?

  2、引發(fā)猜想

  猜一猜:三角形的內(nèi)角和是多少度?你是怎么猜的?

  【設(shè)計意圖:提出一個問題比解決一個問題更重要。課始在復(fù)習(xí)三角形已學(xué)知識后,引導(dǎo)學(xué)生提出有關(guān)三角形的新問題,讓學(xué)生學(xué)習(xí)自己想研究的內(nèi)容,無疑激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的問題意識。由于學(xué)生在平時使用三角板時已經(jīng)若隱若現(xiàn)地有了特殊的直角三角形的內(nèi)角和是180度這一感覺,因此本環(huán)節(jié),要求學(xué)生猜一猜三角形的內(nèi)角和是多少,并說說是怎么猜的,以激發(fā)學(xué)生已有知識經(jīng)驗,并體會到猜想要合理且有根據(jù),同時也為推理驗證的引出作必要的鋪墊。】

  三、操作驗證 形成結(jié)論

  1、交流驗證方法:

 。1)用什么方法證明三角形的內(nèi)角和是180度呢?

  預(yù)設(shè): ①量算法 ②剪拼法 ③折拼法等

 。2)三角形的個數(shù)有無數(shù)個,驗證哪些三角形可以代表所有的三角形?我們的操作過程怎么分工才會做到省時又高效?

  2、動手驗證

  3、全班匯報交流

  4、小結(jié):剛才通過大家的動手操作驗證了三角形的內(nèi)角和是180 °度。但動手操作會存在一定的誤差,我們的結(jié)論也可能存在偏差。

  5、方法拓展

  推理驗證:用直角三角形的內(nèi)角和來證明其他三角形內(nèi)角和是180 °的方法。

  6、形成結(jié)論:任意三角形的內(nèi)角和是180 °。

  【設(shè)計意圖:

  《標(biāo)準(zhǔn)》指出:“教師應(yīng)激發(fā)學(xué)生的積極性,向?qū)W生提供充分從事數(shù)學(xué)活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗!辈聹y后先獨立思考驗證的方法,再進(jìn)行全班交流,給學(xué)生充分的活動時間和空間,讓學(xué)生動手操作,使學(xué)生在量、剪、拼、折等一系列操作活動中發(fā)現(xiàn)了三角形內(nèi)角和是180°這個結(jié)論。在探索活動前,交流如何使研究樣本具有代表性和全面性與如何分工做到操作省時高效這兩個問題,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)正確的研究態(tài)度,讓學(xué)生在活動中積累基本的數(shù)學(xué)活動經(jīng)驗,為后續(xù)的學(xué)習(xí)提供了經(jīng)驗支撐。】

  四、應(yīng)用結(jié)論 解決問題

  1、鞏固新知:想一想,算一算。

  2、解決問題:等腰三角形風(fēng)箏的頂角是多少度?

  3、辨析訓(xùn)練,完善結(jié)論。

  五、課堂總結(jié),歸納研究方法

  今天這節(jié)課你學(xué)到了哪些知識?你是怎樣得到這些知識的?

  六、課后延伸:用今天所學(xué)的方法繼續(xù)研究四邊形的內(nèi)角和。

  七、板書設(shè)計:

  三角形的內(nèi)角和

  猜測: 三角形的內(nèi)角和是180°?

  驗證: 量 拼

  結(jié)論: 任意三角形的內(nèi)角和是180°

三角形內(nèi)角和教案5

  (一)教材的地位和作用

  《三角形內(nèi)角和》一課是人教版義務(wù)教育課程標(biāo)準(zhǔn)實驗教材四年級下冊第五單元的內(nèi)容,是在學(xué)生學(xué)習(xí)了《三角形的特性》以及《三角形三邊關(guān)系》,《三角形的分類》之后進(jìn)行的,在此之后則是《圖形的拼組》,它是三角形的一個重要特征,也是掌握多邊形內(nèi)角和及解決其他實際問題的基礎(chǔ),因此,學(xué)習(xí),掌握三角形的內(nèi)角和是180°這一規(guī)律具有重要意義。

  (二)教學(xué)目標(biāo)

  基于以上對教材的分析以及對教學(xué)現(xiàn)狀的思考,我從知識與技能,教學(xué)過程與方法,情感態(tài)度價值觀三方面擬定了本節(jié)課的教學(xué)目標(biāo):

  1。通過"量一量","算一算","拼一拼","折一折"的小組活動的方法,探索發(fā)現(xiàn)驗證三角形內(nèi)角和等于180°,并能應(yīng)用這一知識解決一些簡單問題。

  2。通過把三角形的內(nèi)角和轉(zhuǎn)化為平角進(jìn)行探究實驗,滲透"轉(zhuǎn)化"的數(shù)學(xué)思想。

  3。通過數(shù)學(xué)活動使學(xué)生獲得成功的體驗,增強自信心。培養(yǎng)學(xué)生的創(chuàng)新意識,探索精神和實踐能力。

  (三)教學(xué)重,難點

  因為學(xué)生已經(jīng)掌握了三角形的概念,分類,熟悉了鈍角,銳角,平角這些角的知識。對于三角形的內(nèi)角和是多少度,學(xué)生并不陌生,也有提前預(yù)習(xí)的習(xí)慣,學(xué)生幾乎都能回答出三角形的內(nèi)角和是180°。在整個過程中學(xué)生要了解的是"內(nèi)角"的概念,如何驗證得出三角形的內(nèi)角和是180°。因此本節(jié)課我提出的教學(xué)的重點是:驗證三角形的內(nèi)角和是180°。

  二、說教法,學(xué)法

  本節(jié)課主要是通過教師的精心引導(dǎo)和點撥,學(xué)生在小組中合作探索,通過量一量,折一折,撕一撕,畫一畫,選擇不同的一種或者幾種方法來驗證三角形的內(nèi)角和是180°。

  因為《課程標(biāo)準(zhǔn)》明確指出:"要結(jié)合有關(guān)內(nèi)容的教學(xué),引導(dǎo)學(xué)生進(jìn)行觀察,操作,猜想,培養(yǎng)學(xué)生初步的思維能力"。四年級學(xué)生經(jīng)過第一學(xué)段以及本單元的學(xué)習(xí),已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識;具備了初步的`動手操作,主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節(jié)課,我將重點引導(dǎo)學(xué)生從"猜測――驗證"展開學(xué)習(xí)活動,讓學(xué)生感受這種重要的數(shù)學(xué)思維方式。

  三,說教學(xué)過程

  我以引入,猜測,證實,深化和應(yīng)用五個活動環(huán)節(jié)為主線,讓學(xué)生通過自主探究學(xué)習(xí)進(jìn)行數(shù)學(xué)的思考過程,積累數(shù)學(xué)活動經(jīng)驗。

  引入

  呈現(xiàn)情境:出示多個已學(xué)的平面圖形,讓學(xué)生認(rèn)識什么是"內(nèi)角"。( 把圖形中相鄰兩邊的夾角稱為內(nèi)角) 長方形有幾個內(nèi)角 (四個)它的內(nèi)角有什么特點 (都是直角)這四個內(nèi)角的和是多少 (360°)三角形有幾個內(nèi)角呢 從而引入課題。

  【設(shè)計意圖】

  讓學(xué)生整體感知三角形內(nèi)角和的知識,這樣的教學(xué), 將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中, 拓展了三角形內(nèi)角和的數(shù)學(xué)知識背景, 滲透數(shù)學(xué)知識之間的聯(lián)系, 有效地避免了新知識的"橫空出現(xiàn)"。

  猜測

  提出問題:長方形內(nèi)角和是360°,那么三角形內(nèi)角和是多少呢

  【設(shè)計意圖】

  引導(dǎo)學(xué)生提出合理猜測:三角形的內(nèi)角和是180°。

  (三)驗證

  (1)量:請學(xué)生每人畫一個自己喜歡的三角形,接著用量角器量一量,然后把這三個內(nèi)角的度數(shù)加起來算一算,看看得出的三角形的內(nèi)角和是多少度

  (2)撕―拼:利用平角是180°這一特點,啟發(fā)學(xué)生能否也把三角形的三個內(nèi)角撕下來拼在一起,成為一個平角 請學(xué)生同桌合作,從學(xué)具中選出一個三角形,撕下來拼一拼。

 。3)折—拼:把三角形的三個內(nèi)角都向內(nèi)折,把這三個內(nèi)角拼組成一個平角,一個平角是180°,所以得出三角形的內(nèi)角和是180°。

 。4)畫:根據(jù)長方形的內(nèi)角和來驗證三角形內(nèi)角和是180°。

  一個長方形有4個直角,每個直角90°,那么長方形的內(nèi)角和就是360°,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內(nèi)角和就是180°。從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180°。

  【設(shè)計意圖】

  利用已經(jīng)學(xué)過的知識構(gòu)建新的數(shù)學(xué)知識, 這不僅有助于學(xué)生理解新的知識, 而且是一種非常重要的學(xué)習(xí)方法。在探索三角形內(nèi)角和規(guī)律的教學(xué)中,注意引導(dǎo)學(xué)生將三角形內(nèi)角和與平角,長方形四個內(nèi)角的和等知識聯(lián)系起來, 并使學(xué)生在新舊知識的連接點和新知識的生長點上把握好他們之間的內(nèi)在聯(lián)系。在整個探索過程中, 學(xué)生積極思考并大膽發(fā)言, 他們的創(chuàng)造性思維得到了充分發(fā)揮。

  深化

  質(zhì)疑: 大小不同的三角形, 它們的內(nèi)角和會是一樣嗎

  觀察:(指著黑板上兩個大小不同但三個角對應(yīng)相等的三角形并說明原因,三角形變大了, 但角的大小沒有變。)

  結(jié)論: 角的兩條邊長了, 但角的大小不變。因為角的大小與邊的長短無關(guān)。

  實驗: 教師先在黑板上固定小棒, 然后用活動角與小棒組成一個三角形, 教師手拿活動角的頂點處, 往下壓, 形成一個新的三角形, 活動角在變大, 而另外兩個角在變小。這樣多次變化, 活動角越來越大, 而另外兩個角越來越小。最后, 當(dāng)活動角的兩條邊與小棒重合時。

  結(jié)論:活動角就是一個平角180°, 另外兩個角都是0°。

  【設(shè)計意圖】

  小學(xué)生由于年齡小, 容易受圖形或物體的外在形式的影響。教師主要是引導(dǎo)學(xué)生與角的有關(guān)知識聯(lián)系起來,通過讓學(xué)生觀察利用"角的大小與邊的長短無關(guān)"的舊知識來理解說明。

  對于利用精巧的小教具的演示, 讓學(xué)生通過觀察,交流,想象, 充分感受三角形三個角之間的聯(lián)系和變化, 感悟三角形內(nèi)角和不變的原因。

  (五)應(yīng)用

  1。基礎(chǔ)練習(xí):書本練習(xí)十四的習(xí)題9,求出三角形各個角的度數(shù)。

  2。變式練習(xí):一個三角形可能有兩個直角嗎 一個三角形可能有兩個鈍角嗎 你能用今天所學(xué)的知識說明嗎

  3。(1)將兩個完全一樣的直角三角形拼成一個大三角形, 這個大三角形的內(nèi)角和是多少

  (2) 將一個大三角形分成兩個小三角形, 這兩個小三角形的內(nèi)角和分別是多少

  4。智力大挑戰(zhàn): 你能求出下面圖形的內(nèi)角和嗎 書本練習(xí)十四的習(xí)題

  【設(shè)計意圖】

  習(xí)題是溝通知識聯(lián)系的有效手段。在本節(jié)課的四個層次的練習(xí)中, 能充分注意溝通知識之間的內(nèi)在聯(lián)系, 使學(xué)生從整體上把握知識的來龍去脈和縱橫聯(lián)系,逐步形成對知識的整體認(rèn)知, 構(gòu)建自己的認(rèn)知結(jié)構(gòu), 從而發(fā)展思維, 提高綜合運用知識解決問題的能力。

  第一題將三角形內(nèi)角和知識與三角形特征結(jié)合起來,引導(dǎo)學(xué)生綜合運用內(nèi)角和知識和直角三角形,等邊三角形等圖形特征求三角形內(nèi)角的度數(shù)。

  第二題將三角形內(nèi)角和知識與三角形的分類知識結(jié)合起來,引導(dǎo)學(xué)生運用三角形內(nèi)角和的知識去解釋直角三角形,鈍角三角形中角的特征, 較好地溝通了知識之間的聯(lián)系。

  第三題通過兩個三角形的分與合的過程,使學(xué)生感受此過程中三角內(nèi)角的 變化情況, 進(jìn)一步理解三角形內(nèi)角和的知識。

  第四題是對三角形內(nèi)角和知識的進(jìn)一步拓展, 引導(dǎo)學(xué)生進(jìn)一步研究多邊形的內(nèi)角和。教學(xué)中, 學(xué)生能把這些多邊形分成幾個三角形, 將多邊形內(nèi)角和與三角形內(nèi)角和聯(lián)系起來,并逐步發(fā)現(xiàn)多邊形內(nèi)角和的規(guī)律, 以此促進(jìn)學(xué)生對多邊形內(nèi)角和知識的整體構(gòu)建。

三角形內(nèi)角和教案6

  【教學(xué)內(nèi)容】:人教版第八冊第85頁例5及“做一做”和練習(xí)十四的第9、10、12題。

  【課程標(biāo)準(zhǔn)】:認(rèn)識三角形,通過觀察、操作、了解三角形內(nèi)角和是180度。

  【學(xué)情分析】:

  學(xué)生已經(jīng)掌握了三角形的概念、分類,熟悉了鈍角、銳角、平角這些角的知識。對于三角形的內(nèi)角和是多少度,學(xué)生是不陌生的,因為學(xué)生有以前認(rèn)識角、用量角器量三角板三個角的度數(shù)以及三角形的分類的基礎(chǔ),學(xué)生也有提前預(yù)習(xí)的習(xí)慣,很多孩子都能回答出三角形的內(nèi)角和是180度,但是他們卻不知道怎樣才能得出三角形的內(nèi)角和是180度。另外,經(jīng)過三年多的學(xué)習(xí),學(xué)生們已具備了初步的動手操作能力、主動探究能力以及小組合作的能力。

  【學(xué)習(xí)目標(biāo)

  1、結(jié)合具體圖形能描述出三角形的內(nèi)角、內(nèi)角和的含義。

  2、在教師的引導(dǎo)下,通過猜測和計算能說出三角形的內(nèi)角和是180°。

  3、在小組合作交流中,通過動手操作,實驗、驗證、總結(jié)三角形的內(nèi)角和是180°,同時發(fā)展動手動腦及分析推理能力。

  4、能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。

  【評價任務(wù)設(shè)計

  1、利用孩子已有經(jīng)驗,通過教師的提問和引導(dǎo)以及學(xué)生的直觀觀察,說出三角形的內(nèi)角、內(nèi)角和的含義。達(dá)成目標(biāo)1。

  2、在教師的引導(dǎo)下,以游戲的形式學(xué)生通過猜測三角形的內(nèi)角和是多少度,然后通過計算說出三角形的內(nèi)角和是180°的結(jié)論。達(dá)成目標(biāo)2。

  3、在小組合作交流中,通折一折、拼一拼和擺一擺的動手操作、實驗、驗證并歸納總結(jié)出三角形的內(nèi)角和是180°。達(dá)成目標(biāo)3。

  4、能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。通過“做一做”和習(xí)題第9、10、12題達(dá)成目標(biāo)4和目標(biāo)3。

  【重難點

  教學(xué)重點:探索和發(fā)現(xiàn)三角形的內(nèi)角和是180°。

  教學(xué)難點: 充分發(fā)揮學(xué)生的主體作用,自主探索和發(fā)現(xiàn)三角形的內(nèi)角和是180°

  【教學(xué)過程】

  一、復(fù)習(xí)準(zhǔn)備。

  1、三角形按角的不同可以分成哪幾類?

  2、一個平角是多少度?1個平角等于幾個直角?兩個三角板上各個角的度數(shù)?

  二、探究新知

 。ㄒ唬﹦(chuàng)設(shè)情境,生成問題,認(rèn)識三角形的內(nèi)角及內(nèi)角和

  (播放課件)在圖形王國中,有一天,三角形家族里為“三角形內(nèi)角和的大小”爆發(fā)了一場激烈的爭吵。鈍角三角形大聲叫著:“我的鈍角大,我的內(nèi)角和一定比你們的內(nèi)角和大。”銳角三角形也不示弱:“你雖然有一個鈍角,可其它兩個角都很小。但是我的三個角都不是很小。我的內(nèi)角和比你大”。直角三角形說:“別爭了,三角形的內(nèi)角和是180°,我們的內(nèi)角和是一樣大的!

  師:動畫片看完了,請大家想一想,什么是三角形的內(nèi)角和?

  師引導(dǎo)學(xué)生說出三角形三個內(nèi)角的度數(shù)和叫做三角形的內(nèi)角和。

  多媒體展示:三條線段在圍成三角形后,在三角形內(nèi)形成了三個角(課件閃爍三個角的弧線),我們把三角形內(nèi)的這三個角,分別叫做三角形的內(nèi)角(板書:內(nèi)角),這三個內(nèi)角的度數(shù)的和就叫做三角形的內(nèi)角和。

  (達(dá)成目標(biāo)1:利用多媒體播放動畫和孩子已有的經(jīng)驗,通過教師的提問和引導(dǎo),學(xué)生說出什么叫三角形的內(nèi)角及內(nèi)角和達(dá)成目標(biāo)1。多媒體創(chuàng)設(shè)的情景也為目標(biāo)二打好鋪墊

  (二)、引導(dǎo)猜測三角形的內(nèi)角和是180度

  師:在課件展示的直角三角形、鈍角三角形、銳角三角形的對話中,你贊同誰的觀點?

  預(yù)設(shè):學(xué)生回答直角三角形。

  師:你為什么這么認(rèn)為呢?

  生:我是想三角板上三個角的度數(shù)是90度、45度、45度加起來是180度,90度、60度、30度加起來也是180度。

  (達(dá)成目標(biāo)2:激發(fā)引導(dǎo)學(xué)生運用已有經(jīng)驗猜三角形的內(nèi)角和而不是盲目猜,激起學(xué)生的疑問和好奇心,這樣在教師的引導(dǎo)下,學(xué)生通過猜測三角形的內(nèi)角和是多少度,然后通過計算說出三角形的內(nèi)角和是180°的結(jié)論。)

 。ㄈⅡ炞C三角形的內(nèi)角和是180度

  1.確定研究范圍

  師:研究三角形的內(nèi)角和,是不是應(yīng)該包括所有的三角形?只研究這一個行不行?(不行)那就隨便畫,挨個研究吧。(學(xué)生反對)那該怎樣去驗證呢?請你們想個辦法吧!

  師:分類驗證是科學(xué)驗證的一種好方法,下面我們就用分類驗證的方法來驗證一下,看看三角形的內(nèi)角和是不是180°?

  2.操作驗證

  教師讓每個學(xué)習(xí)小組拿出課前制作的各種各樣的三角形,先找到三個內(nèi)角,在每個內(nèi)角標(biāo)上序號1、2、3。然后請任意用一個三角形,想辦法驗證我們的猜想。如果有困難,可以啟用老師提供的“智慧錦囊”或者尋求同學(xué)的幫助。

  智慧錦囊:

  (1)要知道三個內(nèi)角的和,只要知道三個角分別是多少度就可以了,你覺得哪個工具可以測出角的度數(shù)?試一試。

  (2)180°的角是個特殊的角,它是個什么角?你能想辦法將這三個內(nèi)角轉(zhuǎn)化成這樣的角嗎?

  3.匯報交流

  師:誰來匯報你的'驗證結(jié)果?

  (1)測算法

  師小結(jié):用量的方法驗證既然有誤差、不準(zhǔn),結(jié)論就難以讓人信服,那有沒有辦法更好地驗證我們的猜測呢?誰還有別的方法?

 。2)剪拼法

 。3)折拼法

  師小結(jié):用拼和折的方法都能將三角形的三個內(nèi)角轉(zhuǎn)化成一個平角,從而借助我們學(xué)過的平角知識證明三角形的內(nèi)角和確實是180°,你們真會動腦筋!

 。4)推算法

 、侔岩粋長方形沿對角線分成兩個完全一樣的直角三角形。因為長方形的內(nèi)角和是360°,所以一個直角三角形的內(nèi)角和等于180°。(課件演示過程)

  師直角三角形的內(nèi)角和已經(jīng)證明了是180°,現(xiàn)在我們只要能證明:銳角三角形和鈍角三角形的內(nèi)角和也是180°就可以了。

  課件演示

 、谝粋銳角三角形,從頂點往下畫一條垂線,將三角形分為兩個直角三角形,因為我們已經(jīng)知道直角三角形的內(nèi)角和是180°,所以兩個直角三角形的度數(shù)和就是360°,減去兩個直角的和180°,就是要證明的三角形內(nèi)角和,肯定是180°。

  4.總結(jié)提煉

  師:孩子們,剛才我們通過“量——————推”的方法分類驗證了三角形的內(nèi)角和是( )度?

  現(xiàn)在可以下結(jié)論了嗎?

  (板書:三角形三個內(nèi)角和等于180°。)

  師:那在“三角形的爭吵中”誰是對的?

  (達(dá)成目標(biāo)3。此環(huán)節(jié)讓學(xué)生通過“量——拼——折——推”的方法分類驗證了三角形的內(nèi)角和是180度。此環(huán)節(jié)充分體現(xiàn)了學(xué)生學(xué)習(xí)的主動性。)

 。ㄋ模├萌切蝺(nèi)角和是180解決問題

  1、看圖,求出未知角的度數(shù)。

  2、書本85頁“做一做”

  在一個三角形中,∠1=140。,∠3=25。,求∠2的度數(shù)。

  (達(dá)成目標(biāo)3和目標(biāo)4:能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。通過“做一做”達(dá)成目標(biāo)3和目標(biāo)4.)

  三、目標(biāo)達(dá)成檢測方案:

  1、求出三角形各個角的度數(shù)。

  2、埃及金字塔建于4500年前的埃及古王朝時期,它是用巨大石塊修砌成的方錐形建筑物,外形像中文“金”字,故名“金字塔”。金字塔大小、高矮各異,外表有四個側(cè)面,每個側(cè)面都是等腰三角形。人們量得這個三角形的一個底角是64度。

  四、課堂小結(jié),提升認(rèn)識

  同學(xué)們,這節(jié)課你有哪些收獲?我們是怎樣得到“三角形內(nèi)角和等于180度”這個結(jié)論的?

  師:是啊,今天咱們不但知道了三角形的內(nèi)角和是180°,更重要的是我們經(jīng)歷了探究三角形內(nèi)角和的驗證方法。咱們從猜想出發(fā),經(jīng)過驗證(用量、拼、折、推等)得到了結(jié)論并利用結(jié)論解決了一些問題。孩子們,其實我們在不知不覺中已經(jīng)走了數(shù)學(xué)家的探究歷程……希望同學(xué)們在今后的學(xué)習(xí)中大膽應(yīng)用,勇于創(chuàng)新,做最棒的自己

三角形內(nèi)角和教案7

  一、教學(xué)目標(biāo):

  1、理解掌握三角形內(nèi)角和是180°,并運用這一性質(zhì)解決一些簡單的問題。

  2、通過直觀操作的方法,引導(dǎo)學(xué)生探索并發(fā)現(xiàn)三角形內(nèi)角和等于180°,在實驗活動中,體驗探索的過程和方法。

  3、在探索和發(fā)現(xiàn)三角形內(nèi)角和的過程中獲得成功的體驗。

  二、教學(xué)重、難點:

  重點:探索并發(fā)現(xiàn)三角形內(nèi)角和等于180°。

  難點:運用三角形內(nèi)角和等于180°的性質(zhì)解決一些實際問題。

  教具:課件、三角形若干。

  學(xué)具:量角器、直角三角形、銳角三角形和鈍角三角形各一個。

  三、教學(xué)過程

 。ㄒ唬﹦(chuàng)設(shè)情境,導(dǎo)入新課

  我們已經(jīng)學(xué)過了三角形的知識,我們來復(fù)習(xí)一下,看看大屏幕,各是什么三角形?誰能說說什么是銳角三角形、直角三角形、鈍角三角形?追問:不管是什么三角形它們都有幾個角呢?這三個角都叫做三角形的內(nèi)角,而這三個內(nèi)角的和就是這個三角形的內(nèi)角和。那么誰來說一說什么是三角形的內(nèi)角和?三角形有大有小,形狀也各不相同,那么它們的內(nèi)角和有沒有什么特點和規(guī)律呢?我們來看一個小片段,仔細(xì)聽它們都說了什么?

  教師放課件。

  課件內(nèi)容說明:一個大的直角三角形說:“我的個頭大,我的內(nèi)角和一定比你們大。”一個鈍角三角形說:“我有一個鈍角,我的內(nèi)角和才是最大的)一個小的銳角三角形很委屈的樣子說“是這樣嗎?”

  都聽清它們在爭論什么嗎?(它們在爭論誰的內(nèi)角和大。)誰能說一說你的想法?(學(xué)生各抒己見,是不評價)果真是這樣嗎?下面我們就來研究“三角形內(nèi)角和”。

 。ò鍟n題:三角形內(nèi)角和)

 。ǘ┳灾魈骄,發(fā)現(xiàn)規(guī)律

  1、探究三角形內(nèi)角和的特點。

 。1)檢查作業(yè),并提出要求:

  昨天老師讓每位學(xué)生都分別剪出了銳角三角形、直角三角形和鈍角三角形,并量出了每個角的度數(shù),都完成了嗎?拿出來吧,一會我們要算出三角形的內(nèi)角和填在下面的表格里。我們來看一下表格以及要求。出示小組活動記錄表。

  小組活動記錄表

  小組成員的姓名

  三角形的形狀

  每個內(nèi)角的度數(shù)

  三角形內(nèi)角的和

  (要求:填完表后,請小組成員仔細(xì)觀察你發(fā)現(xiàn)了什么?)

 、谛〗M合作。

  會使用表格了嗎?下面我們就以小組為單位,按照要求把結(jié)果填在小組長手中的表格內(nèi)。

  各組長進(jìn)行匯報。發(fā)現(xiàn)了三角形的內(nèi)角和都是180°左右。

  師:實際上,三角形三個內(nèi)角和就是180°,只是因為測量有誤差,所以我們才得到剛才得到的數(shù)據(jù)。

  2、驗證推測。

  那么同學(xué)們有沒有什么辦法知道三角形的內(nèi)角和就是180°呢?大家可以討論一下,學(xué)生可能會想到用折拼或剪拼的方法來看一看三角形的三個角和起來是不是180°,也就是說三角形的三個角能不能拼成一個平角。師生先演示撕下三個角拼在一起是否是平角,同學(xué)們在下面操作進(jìn)行體驗,再用課件演示把三個內(nèi)角折疊在一起(這時要注意平行折,把一個頂點放在邊上)學(xué)生也動手試一試。

  通過我們的驗證我們可以得出三角形的`內(nèi)角和是180°。

  板書:(三角形內(nèi)角和等于180°。)

  3、師談話:三個三角形討論的問題現(xiàn)在能解決了嗎?你現(xiàn)在想對這三個三角形說點什么嗎?(讓學(xué)生暢所欲言,對得出的三角形內(nèi)角和是180°做系統(tǒng)的整理。)

  4、同學(xué)們還有什么疑問嗎?大家想一想我們知道了三角形內(nèi)角和是180°可以干什么呢?(知道三角形中兩個角,可以求出第三個角)

  出示書28頁,試一試第3題,并講解。

  說明:在直角三角形中一個銳角等于30°,求另一個銳角。

  生獨立做,再訂正格式、以及強調(diào)不要忘記寫度。

  小結(jié):同學(xué)們有沒有不明白的地方?如果沒有我們來做練習(xí)。

  (三)鞏固練習(xí),拓展應(yīng)用

  1、出示書29頁第一題。說明:第一幅圖是銳角三角形已知一個銳角是75°,另一個銳角是28°,求第三個銳角?第二幅圖是直角三角形已知一個銳角是35°,求另一個銳角?第三幅圖是鈍角三角形已知一個銳角是20°,另一個銳角是45°,求鈍角?

  完成,并填在書上。講一講直角三角形還有什么解法。

  2、出示29頁第2題。

  說明:一個鈍角三角形說:我的兩個銳角之和大于90°。

  一個直角三角形說:我的兩個銳角之和正好等于90°。讓學(xué)生判斷。

  3、畫一畫:

  出示四邊形和六邊形。運用三角形內(nèi)角和是180°計算出各自的內(nèi)角和。你能推算出多邊形的內(nèi)角和嗎?

  三角形內(nèi)角和180度是科學(xué)家帕斯卡12歲時發(fā)現(xiàn)的。我們同學(xué)還沒到12歲,看你能不能通過自己的努力也去探索和發(fā)現(xiàn)。

  (四)課堂總結(jié)

  讓學(xué)生說說在這節(jié)課上的收獲!

三角形內(nèi)角和教案8

  教學(xué)內(nèi)容:

  p.28、29

  教材簡析:

  本節(jié)課的教學(xué)先通過計算三角尺的3個內(nèi)角的度數(shù)的和,激發(fā)學(xué)生的好奇心,進(jìn)而引發(fā)三角形內(nèi)角和是180度的猜想,再通過組織操作活動驗證猜想,得出結(jié)論。

  教學(xué)目標(biāo):

  1、讓學(xué)生通過觀察、操作、比較、歸納,發(fā)現(xiàn)三角形的內(nèi)角和是180。

  2、讓學(xué)生學(xué)會根據(jù)三角形的內(nèi)角和是180 這一知識求三角形中一個未知角的度數(shù)。

  3、激發(fā)學(xué)生主動參與、自主探索的意識,鍛煉動手能力,發(fā)展空間觀念。

  教學(xué)準(zhǔn)備:

  三角板,量角器、點子圖、自制的三種三角形紙片等。

  教學(xué)過程:

  一、提出猜想

  老師取一塊三角板,讓學(xué)生分別說說這三個角的度數(shù),再加一加,分別得到這樣的2個算式:90+60+30=180,90+45+45=180

  看了這2個算式你有什么猜想?

  (三角形的三個角加起來等于180度)

  二、驗證猜想

  1、畫、量:在點子圖上,分別畫銳角三角形、直角三角形、鈍角三角形。畫好后分別量出各個角的度數(shù),再把三個角的.度數(shù)相加。

  老師注意巡視和指導(dǎo)。交流各自加得的結(jié)果,說說你的發(fā)現(xiàn)。

  2、折、拼:學(xué)生用自己事先剪好的圖形,折一折。

  指名介紹折的方法:比如折的是一個銳角三角形,可以先把它上面的一個角折下,頂點和下面的邊重合,再分別把左邊、右邊的角往里折,三個角的頂點要重合。發(fā)現(xiàn):三個角會正好在一直線上,說明它們合起來是一個平角,也就是180度。

  繼續(xù)用該方法折鈍角三角形,得到同樣的結(jié)果。

  直角三角形的折法有不同嗎?

  通過交流使學(xué)生明白:除了用剛才的方法之外,直角三角形還可以用更簡便的方法折;可以直角不動,而把兩個銳角折下,正好能拼成一個直角;兩個直角的度數(shù)和也是180度。

  3、撕、拼:可能有個別學(xué)生對折的方法感到有困難。那么還可以用撕的方法。

  在撕之前要分別在三個角上標(biāo)好角1、角2和角3。然后撕下三個角,把三個角的一條邊、頂點重合,也能清楚地看到三個角合起來就是一個平角180度。

  小結(jié):我們可以用多種方法,得到同樣的結(jié)果:三角形的內(nèi)角和是180。

  4、試一試

  三角形中,角1=75,角2=39,角3=( )

  算一算,量一量,結(jié)果相同嗎?

  三、完成想想做做

 。、算出下面每個三角形中未知角的度數(shù)。

  在交流的時候可以分別學(xué)生說說怎么算才更方便。比如第1題,可先算40加60等于100,再用180減100等于80。第2題則先算180減110等于70,再用70減55更方便。第3題是直角三角形,可不用180去減,而用90減55更好。

  指出:在計算的時候,我們可根據(jù)具體的數(shù)據(jù)選擇更佳的算法。

  2、一塊三角尺的內(nèi)角和是180 ,用兩塊完全一樣的三角尺拼成一個三角形,這個三角形的內(nèi)角和是多少度?

  可先猜想:兩個三角形拼在一起,會不會它的內(nèi)角和變成1802=360 呢?為什么?

  然后再分別算一算圖上的這三個三角形的內(nèi)角和。得出結(jié)論:三角形不論大小,它的內(nèi)角和都是180 。

  3、用一張正方形紙折一折,填一填。

  4、說理:一個直角三角形中最多有幾個直角?為什么?

  一個鈍角三角形中最多有幾個直角?為什么?

  四、布置作業(yè)

  第4、5題

三角形內(nèi)角和教案9

  教學(xué)目標(biāo)

  知識與能力:學(xué)生通過測量、撕拼的方法探索和發(fā)現(xiàn)三角形三個內(nèi)角和是180°。

  過程與方法:學(xué)生經(jīng)歷合理猜想和驗證三角形內(nèi)角度數(shù)和等于180°的過程,發(fā)展空間觀念及分析推理能力。

  情感態(tài)度和價值觀:學(xué)生在活動中體驗成功的喜悅,激發(fā)學(xué)生探索數(shù)學(xué)的愿望和興趣。

  重點難點

  教學(xué)重點:

  探究發(fā)現(xiàn)三角形的內(nèi)角和是180度。

  教學(xué)難點:

  在猜想和驗證三角形內(nèi)角和的過程中發(fā)展空間觀念。

  教學(xué)過程

  活動1【導(dǎo)入】理解內(nèi)角、內(nèi)角和概念

 。、謎語引入:形狀似座山,穩(wěn)定性能堅,三竿首尾連,學(xué)問不簡單,打一幾何圖形猜一猜是什么?

  Q:結(jié)合謎面的信息來說一說三角形有什么特點?

 。、介紹內(nèi)角:這三個角都在三角形的里面,又叫內(nèi)角。

  Q:三角形有幾個內(nèi)角?

  3、介紹內(nèi)角和:把三個內(nèi)角的度數(shù)加起來求和就是三角形的內(nèi)角和。

  引出課題:今天我們就來研究三角形內(nèi)角和。

  活動2【活動】觀察圖形

  1、觀察圖形的變與不變

  ppt依次出示

  Q:這是銳角三角形,什么是它的內(nèi)角和?

  出示直角三角形,它的內(nèi)角和是指?

  出示鈍角三角形,內(nèi)角和是指?

  質(zhì)疑:哪個三角形的內(nèi)角和最大?

  預(yù)設(shè)1:鈍角三角形內(nèi)角和大。(說想法)

  預(yù)設(shè)2:一樣大。(說想法)

  預(yù)設(shè)3:180度。

  小結(jié):三個三角形的樣子不一樣,大小也不一樣,三個內(nèi)角也不一樣,但內(nèi)角和是一樣的。

 。ǘ┗顒佣翰孪雰(nèi)角和不變的度數(shù)

  Q:這個一樣的度數(shù)是多少?你是怎么知道的?

  預(yù)設(shè)1:聽說過,學(xué)過。

  預(yù)設(shè)2:直角三角尺上三個角的度數(shù)和是180度。

  預(yù)設(shè)3:等邊三角形。

  這兩個都是我們知道度數(shù)的特殊的三角形,請你根據(jù)這個特殊的三角形來大膽的猜猜三角形內(nèi)角和是多少度?那任意的一個三角形的內(nèi)角和度數(shù)是不是180°呢?今天我們就來一起研究。

  活動3【活動】測量驗證

  (一)思考量的方法和原因

  過渡:你想怎么研究?(用量角器去量)

  Q:誰來介紹介紹量的方法?

  預(yù)設(shè):要想研究內(nèi)角和,只要把三個內(nèi)角度數(shù)量出來再加起來看看是不是180度就可以了。

 。ǘ﹦邮譁y量

  PPT:操作建議:

  1、請你找到三角形的三個內(nèi)角,用彩筆標(biāo)序號1、2、3。

  2、用量角器仔細(xì)測量后,記錄角的度數(shù)。

  3、列式計算出三角形內(nèi)角和度數(shù)。

  動手測量

 。ㄈ﹨R報交流:

  學(xué)生1展示測量的過程。

  Q:還有誰測量的這個銳角三角形,說一說?

  追問:為什么同一個三角形內(nèi)角和度數(shù)卻不一樣?

  Q:你在測量的過程中遇到了什么困難?

  Q:觀察這些數(shù)據(jù),雖然都不太一樣,但是都很接近?

  小結(jié):測量確實可以幫助我們找到三個角的'度數(shù),加起來就可以求出內(nèi)角和,但是測量有誤差。

  活動4【活動】拼角驗證

  (一)思考其它驗證方法

  Q:你還有其他的方法嗎?

  預(yù)設(shè)1:學(xué)生沒有反應(yīng)。

  師引導(dǎo):說到180度,你想到什么角?(平角)

  預(yù)設(shè)2:撕拼法

  Q:怎么把三個內(nèi)角拼在一起?

  (生不撕,教師幫助突破,撕下三個內(nèi)角。)

  Q:你能在投影上拼一拼嗎?

  預(yù)設(shè)3:折疊法

  你的方法也很好,你們聽懂了嗎?一會兒可以試試。

  預(yù)設(shè)4:描畫法

  Q:怎么描?你能演示一下嗎?

  其他同學(xué)觀察他在做什么?

  引語:剛才說的方法都很好,下面我們自己來試一試。

 。ǘ﹦邮制匆黄

  操作要求:

  1、請你用彩筆在紙上隨意畫一個三角形,并剪下來。

  2、用彩筆標(biāo)出三個內(nèi)角。

  3、嘗試操作。

  動手操作

 。ㄈ﹨R報交流

  Q:你是怎么研究的?發(fā)現(xiàn)了什么?

  (四)小結(jié)

  剛才每人的三角形是自己任意畫出的,形狀、大小都不一樣。無論是撕拼、折疊、還是描畫的方法,都是在把這三個內(nèi)角拼在了一起,轉(zhuǎn)化成一個平角,我們發(fā)現(xiàn)他們的內(nèi)角和都是180度。

  活動5【活動】幾何畫板驗證

  引:但我們時間有限,研究的三角形個數(shù)有限,是不是任意一個三角形的內(nèi)角和都是180度呢?我們可以借助幾何畫板來看一看。

  師:介紹:計算機能夠幫助我們比較精確地測量出三個角的度數(shù),并計算它們的和。

  觀察:老師拉動一個頂點,什么變了?什么沒變?

  小結(jié):也就是,無論我們怎么改變?nèi)切蔚男螤,大小,雖然它的內(nèi)角在變化,但三個內(nèi)角和的卻是不變的,都是180度。

  活動6【練習(xí)】基礎(chǔ)練習(xí)

  1、三角形中∠1=55°,∠2=45°,∠3=?

  2、直角三角形:我有一個銳角是40°,求另一個角?

  3、說一說:在一個三角形中,能有兩個直角嗎?能有兩個鈍角嗎?為什么?

  4、拼三角形

  師:兩個180°不是360°嗎?

  小結(jié):看來,組合以后的圖形還要分清楚哪些是內(nèi)角。

  活動7【練習(xí)】拓展練習(xí)

 。ㄒ唬┩卣咕毩(xí)

  今天,我們通過自己的研究發(fā)現(xiàn)三角形內(nèi)角和是180度。那四邊形有沒有內(nèi)角和呢?它的內(nèi)角和是多少度?

  課件演示。

  說說這節(jié)課你的收獲?

三角形內(nèi)角和教案10

  【設(shè)計理念】

  遵循由特殊到一般的規(guī)律進(jìn)行探究活動是這節(jié)課設(shè)計的主要特點之一!稊(shù)學(xué)課程標(biāo)準(zhǔn)》指出,讓學(xué)生學(xué)習(xí)有價值的數(shù)學(xué),讓學(xué)生帶著問題、帶著自己的思想、自己的思維進(jìn)入數(shù)學(xué)課堂,對于學(xué)生的數(shù)學(xué)學(xué)習(xí)有著重要作用。因此,我嘗試著將數(shù)學(xué)文本、課外預(yù)習(xí)、課堂教學(xué)三方有機整合,在質(zhì)疑、解疑、釋疑中展開教學(xué),培養(yǎng)學(xué)生提出問題、分析問題和解決問題的探究能力。

  【教材分析】

  三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在學(xué)習(xí)三角形的概念及分類之后進(jìn)行的,它是學(xué)生以后學(xué)習(xí)多邊形的內(nèi)角和及解決其它實際問題的基礎(chǔ)。學(xué)生在掌握知識方面:已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識;能力方面:經(jīng)過三年多的學(xué)習(xí),已具備了初步的動手操作能力和主動探究能力以及合作學(xué)習(xí)的習(xí)慣。因此,教材很重視知識的探索與發(fā)現(xiàn),安排了一系列的實驗操作活動。教材呈現(xiàn)教學(xué)內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒有直接給出結(jié)論,而是通過量、算、拼等活動,讓學(xué)生探索、實驗、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180°。

  【學(xué)情分析】

  學(xué)生已經(jīng)掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識,大多數(shù)學(xué)生已經(jīng)在課前通過不同的途徑知道“三角形的內(nèi)角和是180度”的結(jié)論,但不一定清楚道理,所以本課的設(shè)計意圖不在于了解,而在于驗證,讓學(xué)生在課堂上經(jīng)歷研究問題的過程是本節(jié)課的重點。四年級的學(xué)生已經(jīng)初步具備了動手操作的意識和能力,并形成了一定的空間觀念,能夠在探究問題的過程中,運用已有知識和經(jīng)驗,通過交流、比較、評價尋找解決問題的途徑和策略。

  【學(xué)習(xí)目標(biāo)】

  1.通過測量、剪、拼等活動發(fā)現(xiàn)、探索和發(fā)現(xiàn)“三角形內(nèi)角和是180°”。

  2.學(xué)會根據(jù)“三角形內(nèi)角和是180°”這一知識求三角形中一個未知數(shù)的度數(shù)。

  3.在課堂活動中培養(yǎng)學(xué)生的觀察、歸納、概括能力和初步的空間想象力。并通過動手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動,向?qū)W生滲透“轉(zhuǎn)化”數(shù)學(xué)思想。

  4.使學(xué)生體驗成功的喜悅,激發(fā)學(xué)生主動學(xué)習(xí)數(shù)學(xué)的興趣。

  【教學(xué)重點】

  探索和發(fā)現(xiàn)“三角形的內(nèi)角和是180°”。

  【教學(xué)難點】

  運用三角形的內(nèi)角和解決實際問題。

  【教學(xué)準(zhǔn)備】

  教師:多媒體、剪好的不同類型的三角形。

  學(xué)生:量角器、剪刀、剪好的不同類型的三角形。

  【教學(xué)過程】

  一、創(chuàng)設(shè)情景,引出問題

  1.猜謎語。

  師:同學(xué)們,你們喜歡猜謎語嗎?今天老師給你們帶來了一則謎語。請同學(xué)們讀一下(出示謎語)。

  師:打一幾何圖形。猜猜看!

  學(xué)生猜謎語。

  根據(jù)學(xué)生的回答,出示謎底。

  師:真是三角形,同學(xué)們的反應(yīng)真快!

  2.復(fù)習(xí)三角形的內(nèi)容。

  其實,三角形我們并不陌生,它是一種特別的平面圖形。關(guān)于三角形,你們已經(jīng)掌握了哪些知識?

  指名學(xué)生回答。

  (當(dāng)學(xué)生回答出三角形有3個頂點、3條邊和3個角時,請這名學(xué)生到臺上分別指出三角形的3個角,并標(biāo)出角。)

  3.引出課題。

  師:同學(xué)們知道的還真不少,可見你們平時學(xué)習(xí)很用功。知道嗎?其實三角形的這三個角就是三角形的三個內(nèi)角,而這三個角的度數(shù)和就是三角形的內(nèi)角和。你們知道三角形的內(nèi)角和是多少度嗎?今天這節(jié)課就讓我們一起走進(jìn)三角形內(nèi)角和,探索其中的奧秘。

 。ò鍟n題:三角形的內(nèi)角和)

  二、探究新知

  1.討論、交流驗證知識的方法。

  師:那同學(xué)們用什么方法來研究三角形的內(nèi)角和呢?趕緊商量一下。(同桌交流)

  學(xué)生匯報:①用量的方法;②用拼的方法;③用折的方法...

  2.操作驗證。

  師:同學(xué)們的點子還真多!現(xiàn)在請同學(xué)們拿出準(zhǔn)備好的三角形,

  選1個自己喜歡的三角形,選擇自己喜歡的方法進(jìn)行驗證。(或說研究)等研究完了我們再交流,發(fā)現(xiàn)了什么,好嗎?好,現(xiàn)在開始!

  3.學(xué)生匯報。

  師:如果你們已經(jīng)完成了,就把你的小手舉起來示意老師。老師有點迫不及待了,想趕緊分享一下你們研究的成果。誰先來說?

  學(xué)生匯報,教師適時板書。

 、儆昧康姆椒ǎ

  指名學(xué)生匯報度量的結(jié)果,教師板書。(指兩名學(xué)生匯報)

  教師白板演示測量方法,并計算和板書出結(jié)果。

  教師:同樣是測量的方法,有的同學(xué)得了180,有的不是180°,為什么會出現(xiàn)這種情況?(指名學(xué)生說)

  師:可能我們測量的時候會有誤差,但是同學(xué)們選擇比較精確的測量工具,使用正確的測量方法,還是可以得到精確的結(jié)果。看來這個辦法不能使人很信服,有沒有別的方法驗證?

 、谟闷吹姆椒

  a.學(xué)生匯報拼的方法并上臺演示。

  我這里也有一個鈍角三角形,請兩名同學(xué)上臺演示。

  b.請大家四人小組合作,用他的方法驗證其它三角形。

  c.展示學(xué)生作品。

  d.師展示。

  師:我們用量、拼得到了180度,還有什么方法?

 、塾谜鄣'方法

  師:還想向同學(xué)們請同學(xué)們看一看他是怎么折的(演示)。

  師:剛才我們用量的方法、拼的方法和折的方法研究了銳角三角形、直角三角形和鈍角三角形內(nèi)角和,得出什么結(jié)論了?

  教師根據(jù)學(xué)生板書:(任意)三角形的內(nèi)角和是180度。

 、軘(shù)學(xué)文化

  師:除了我們這節(jié)課大家想到的方法,還有很多方法也能驗證三角形的內(nèi)角和是180°,到初中我們還要更嚴(yán)密的方法證明三角形的內(nèi)角和是180°。其實,早在300多年前就有一位偉大的數(shù)學(xué)家,用科學(xué)的數(shù)學(xué)方法見證了任意三角形的內(nèi)角和都是180度。這位偉大的數(shù)學(xué)家就是帕斯卡(出示帕斯卡),他是法國著名的數(shù)學(xué)家、物理學(xué)家。他在12歲時發(fā)現(xiàn)了三角形內(nèi)角和定律,17時寫出了《圓錐截線論》19歲設(shè)計了第一架計算機。

  三、鞏固練習(xí)

  數(shù)學(xué)家發(fā)現(xiàn)了知識,今天我們也能夠總結(jié)出知識。你們棒不棒?真厲害,接下來白老師要考考你們。眼睛看好啦!

  1.出示:我是小判官(對的打“√”錯的“×”。)

  強調(diào):把兩個小三角形拼在一起,問:大三角形的內(nèi)角和是多少度?

  教師:為什么不是360°?學(xué)生回答。

  2.接下來我要獎勵你們一個游戲:《幫角找朋友》

  3.求未知角的度數(shù)。

  師:接下來,利用三角形的內(nèi)角和我們來解決一些相關(guān)的問題吧!

 、俪鍪镜谝粋三角形,學(xué)生嘗試獨立完成,教師巡視。

  教師:剛才,我們利用了三角形的什么?

 、诮處煟喝绻粋都不知道,或只知道1個角,你能知道三角形各角的度數(shù)嗎?求出下面三角形各角的度數(shù)。

  a.我三邊相等;b.我是等腰三角形,我的頂角是96°。c.我有一個銳角是40°。

  教師:如果我們?nèi)デ笠粋三角形內(nèi)角的度數(shù)的時候,首先我們要去觀察三角形,找出它的特點,找出它給出的已知角的度數(shù),然后再去計算三角形未知的內(nèi)角的度數(shù)。

  四、拓展延伸

  師:看來三角形內(nèi)角和的知識難不倒你們了,我們來一個挑戰(zhàn)題。你們敢接受挑戰(zhàn)嗎?(出示四邊形)你知道它的內(nèi)角和是多少嗎?指名生回答,并說出理由。同學(xué)們,你們能用今天學(xué)的知識算出它的內(nèi)角和嗎?

  接著讓學(xué)生嘗試求5邊形和6邊形的內(nèi)角和。

  小結(jié):求多邊形的內(nèi)角和,可以從一個頂點出發(fā),引出它的對角線,這樣就把這個多邊形分割成了N個三角形,它的內(nèi)角和就是N個180°

  五、課堂總結(jié)。

  師:這節(jié)課你有什么收獲?

  學(xué)生自由發(fā)言。

  師生交流后總結(jié):知道了三角形的內(nèi)角和是180度,根據(jù)這個規(guī)律知道可以用180°減去兩個內(nèi)角的度數(shù),求出第三個未知角的度數(shù)。

  同學(xué)們,只要我們在日常的學(xué)習(xí)中,細(xì)心觀察,大膽質(zhì)疑,認(rèn)真研究,一定會有意想不到的收獲。

  六、作業(yè)布置

  完成教材練習(xí)十六的第1、3題。

  七、板書設(shè)計:

 。 任意)三角形的內(nèi)角和是180°

  ∠1+∠2+∠3=180°

  度量 剪拼 折拼

三角形內(nèi)角和教案11

  教學(xué)要求

  1.通過動手操作,使學(xué)生理解并掌握三角形的內(nèi)角和是180°的結(jié)論。

  2.能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。

  3.培養(yǎng)學(xué)生動手動腦及分析推理能力。

  教學(xué)重點 三角形的內(nèi)角和是180°的規(guī)律。

  教學(xué)難點 使學(xué)生理解三角形的內(nèi)角和是180°這一規(guī)律。

  教學(xué)用具 每個學(xué)生準(zhǔn)備銳角三角形、直角三角形、鈍角三角形紙片各一張,量角器。

  教學(xué)過程:

  一、復(fù)習(xí)準(zhǔn)備

  1.三角形按角的不同可以分成哪幾類?

  2.一個平角是多少度?1個平角等于幾個直角?

  3.如圖,已知∠1=35°,∠2=75°,求∠3的度數(shù)。

  二、教學(xué)新課

  1.投影出示一組三角形:(銳角三角形、鈍角三角形、直角三角形)。三角形有幾個角?老師指出:三角形的這三個角,就叫做三角形的三個內(nèi)角。(板書:內(nèi)角)

  2.三角形三個內(nèi)角的度數(shù)和叫做三角形的`內(nèi)角和。(板書課題:三角形的內(nèi)角和)今天我們一起來研究三角形的內(nèi)角和有什么規(guī)律。

  3.以小組為單位先畫4個不同類型的三角形,利用手中的工具分別計算三角形三個內(nèi)角的和各是多少度?

  4.指名學(xué)生匯報各組度量和計算的結(jié)果。你有什么發(fā)現(xiàn)?

  5.大家算出的三角形的內(nèi)角和都接近180°,那么,三角形的內(nèi)角和與180°究竟是怎樣的關(guān)系呢?就讓我們一起來動手實驗研究,我們一定能弄清這個問題的。

  6.剛才我們計算三角形的內(nèi)角和都是先測量每個角的度數(shù)再相加的。在量每個內(nèi)角度數(shù)時只要有一點誤差,內(nèi)角和就有誤差了。我們能不能換一種方法,減少度量的次數(shù)呢?

  提示學(xué)生,可以把三個內(nèi)角拼成一個角,就只需測量一次了。

  7.請拿出桌上的直角三角形紙片,想一想,怎樣折可以把三個角拼在一起,試一試。

  8.三個角拼在一起組成了一個什么角?我們可以得出什么結(jié)論?(直角三角形的內(nèi)角和是180°)

  9.拿一個銳角三角形紙片試試看,折的方法一樣。再拿鈍角三角形折折看,你發(fā)現(xiàn)了什么?(直角三角形和鈍角三角形的內(nèi)角和也是180°)

  10.那么,我們能不能說所有三角形的內(nèi)角和都是180°呢?為什么?(能,因為這三種三角形就包括了所有三角形)11.老師板書結(jié)論:三角形的內(nèi)角和是180°。

  12.一個三角形中如果知道了兩個內(nèi)角的度數(shù),你能求出另一個角是多少度嗎?怎樣求?

  13.出示教材85頁做一做。讓學(xué)生試做。

  14.指名匯報怎樣列式計算的。兩種方法均可。

  ∠2=180°-140°-25°=15°

  ∠2=180°(140°+25°)=15°

  三、鞏固練習(xí)

  1.88頁第9題

  這一題是不是只知道一個角的度數(shù)?另一個角是多少度,從哪看出來的?獨立完成,集體訂正。

  直角三角形中的一個銳角還可以怎樣算?

  2、88頁第10題

  ①等腰三角形有什么特點?(兩底角相等)

 、诹惺接嬎 180°-70°-70°=40°或

  180°-(70°×2)=40°

  2.88頁第10題

  ①連接長方形、正方形一組對角頂點,把長方形、正方形分成兩個什么圖形?

 、谝粋三角形的內(nèi)角和是180°,兩個三角形呢?

  四、布置作業(yè)

三角形內(nèi)角和教案12

  【教學(xué)目標(biāo)】

  1、知識與技能:

 。1)理解和掌握三角形的內(nèi)角和是180°。

 。2)運用三角形的內(nèi)角和知識解決實際問題和拓展性問題。

  2、過程與方法:

 。1)通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的和等于180°。

 。2)知道三角形兩個角的度數(shù),能求出第三個角的度數(shù)。

 。3)發(fā)展學(xué)生動手操作、觀察比較和抽象概括的能力。

  3、情感態(tài)度與價值觀:

  讓學(xué)生體驗數(shù)學(xué)活動的探索樂趣,通過教學(xué)中的活動體會數(shù)學(xué)的轉(zhuǎn)化思想。

  【教學(xué)重、難點】

  教學(xué)重點:理解掌握三角形的內(nèi)角和是180°。

  教學(xué)難點:運用三角形的內(nèi)角和知識解決實際問題。

  【教具準(zhǔn)備】

  教學(xué)課件、各種三角形

  【教學(xué)過程】

  一、創(chuàng)設(shè)情景,引出問題

  1、猜謎語:

  形狀似座山,穩(wěn)定性能堅。三竿首尾連,學(xué)問不簡單。

  (打一圖形名稱)

  2、猜三角形

  師:老師這有1個三角形,它的一部分被智慧星給遮住了,猜猜這是什么三角形?它里面會出現(xiàn)兩個直角嗎?為什么?

  3、引出課題。

  師:為什么不會出現(xiàn)兩個直角?今天我們就再次走進(jìn)數(shù)學(xué)王國,探討三角形的內(nèi)角和的奧秘。(板書課題)

  二、探究新知

  1、三角形的內(nèi)角和

  師:三角形內(nèi)角和指的是什么?

  2、猜一猜。

  師:這個三角形的內(nèi)角和是多少度?

  3、驗證。

  讓學(xué)生用自己喜歡的方式驗證三角形的內(nèi)角和是不是180°。

  4、學(xué)生匯報。

 。1)測量

  師:匯報的`測量結(jié)果,有的是180°,有的不是180°,為什么會出現(xiàn)這種情況?有沒有別的方法驗證?

 。2)剪拼

  A、學(xué)生上臺演示。

  B、請大家三人小組合作,用剪拼的方法驗證其它三角形。

  C、師演示。

 。3)折拼

  師:有沒有別的驗證方法?我在電腦里收索到折的方法,請同學(xué)們看一看他是怎么折的(課件演示)。

 。4)結(jié)論:三角形的內(nèi)角和是180。

 。5)數(shù)學(xué)小知識。

  5、鞏固知識。

 。1)解決課前問題,為什么一個三角形不可能有兩個直角?一個三角形中可以有2個鈍角嗎?

 。2)把兩個小三角形拼在一起,問:大三角形的內(nèi)角和是多少度。

  教師:為什么不是360°?

  三、解決相關(guān)問題

  師:接下來,利用三角形的內(nèi)角和我們來解決一些相關(guān)的問題吧!

  1、看圖,求未知角的度數(shù)。

  2、判斷。

  3、如果一個都不知道,或只知道1個角,你能知道三角形各角的度數(shù)嗎?

  求出下面三角形各角的度數(shù)。

 。1)我三邊相等。

  (2)我是等腰三角形,我的頂角是96°。

 。3)我有一個銳角是40°。

  4、求四邊形、五邊形內(nèi)角和。

  四、總結(jié)。

  師:這節(jié)課你有什么收獲?

  五、板書設(shè)計:(略)

三角形內(nèi)角和教案13

  教學(xué)目標(biāo):

  1、知識目標(biāo):通過測量、拼、折疊等方法探索和發(fā)現(xiàn)三角形的內(nèi)角和等于180°;已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。

  2、能力目標(biāo):通過討論爭辯、操作、推理等培養(yǎng)學(xué)生的思維能力和解決問題的能力;培養(yǎng)學(xué)生的空間觀念,使學(xué)生的創(chuàng)新能力得到發(fā)展;使學(xué)生初步掌握由特殊到一般的邏輯思辨方法和先猜想后驗證的研究問題的方法。

  3、情感目標(biāo):培養(yǎng)學(xué)生的合作精神和探索精神;培養(yǎng)學(xué)生運用數(shù)學(xué)的意識。

  教學(xué)重、難點:

  掌握三角形的內(nèi)角和是180°。驗證三角形的內(nèi)角和是180°。

  學(xué)生分析:

  在上學(xué)期學(xué)生已經(jīng)掌握了角的分類及度量問題。在本課之前,學(xué)生又研究了三角形的分類。這些都為進(jìn)一步研究三角形內(nèi)角和作了知識儲備和心理準(zhǔn)備,為本課內(nèi)容的教學(xué)作了鋪墊。三角形的內(nèi)角和是三角形的一個重要性質(zhì)。它有助于理解三角形的`三個內(nèi)角之間的關(guān)系,是進(jìn)一步學(xué)習(xí)、研究幾何問題的基礎(chǔ)。

  教學(xué)流程:

  一、創(chuàng)設(shè)情境,激發(fā)興趣

 。ㄕn件出示:兩個三角形爭論,大的對小的說,我的內(nèi)角和比你大。)

  (學(xué)生小聲議論著,爭論著。)

  師:同學(xué)們,你們能不能幫助大三角形和小三角形解決這個問題?

  生:可以把這兩個三角形的內(nèi)角比一比。

  生:它們不是一個角在比較,可怎么比呀?

  生:我們先畫出一個大三角形,再畫一個小三角形。分別量一量這兩個三角形三個內(nèi)角的度數(shù),這樣就知道誰的內(nèi)角和大,誰的內(nèi)角和小啦。

  師:那好,我們今天就來研究“三角形的內(nèi)角和”。(板書課題。)

  【設(shè)計意圖:通過多媒體出示,引起學(xué)生興趣,使學(xué)生想探索大、小三角形的內(nèi)角和到底誰大?】

  二、動手操作,探索新知

  1、初步感知。

  師讓學(xué)生分別畫出不同形狀的三角形。學(xué)生用量角器測量三角形三個內(nèi)角的度數(shù),并做著記錄,并統(tǒng)一填表格。(表格略。)

  生匯報測量的結(jié)果:內(nèi)角和約等于180°。

  師啟發(fā)學(xué)生發(fā)現(xiàn)三角形的內(nèi)角和180°。(師板書:三角形的內(nèi)角和是180°。)

  【設(shè)計意圖:通過這種方法可以得出準(zhǔn)確的結(jié)論,也容易被學(xué)生理解和接受?赡艹霈F(xiàn)問題:用測量的方法得到的結(jié)果不是剛好180°。使學(xué)生明白是因為測量存在誤差的緣故!

  2、用拼角法驗證。

  師:剛才同學(xué)們發(fā)現(xiàn),三角形的內(nèi)角和約等于180°,那么到底是不是這樣呢?

  生:我們手里有一些三角形,可以動手拼一拼。

  生:還可以剪一剪。

  師:那同學(xué)們就開始吧!

  (學(xué)生動手進(jìn)行拼、剪、折等方法,檢驗三角形內(nèi)角和的度數(shù)。)

  生:銳角三角形的內(nèi)角可以拼成一個平角。因為平角是180°,所以銳角三角形的三個內(nèi)角和是180°。

  生:我把一個直角三角形的三個內(nèi)角剪下來,拼成了一個平角,所以直角三角形的三個內(nèi)角和也是180°。

  生:鈍角三角形的內(nèi)角和也是180°。

  (師板書:三角形的內(nèi)角和是180°。)

  【設(shè)計意圖:使學(xué)生明確,因為全面研究了直角三角形、銳角三角形和鈍角三角形這三類三角形的內(nèi)角和,所以可以得出“三角形的內(nèi)角和等于180°”這一結(jié)論。通過這些過程使學(xué)生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達(dá)到結(jié)論的統(tǒng)一,從而使學(xué)生明白獲得探究問題的方法比獲得結(jié)論更為重要!

  三、鞏固新知,拓展應(yīng)用

  1.出示題目:在三角形中,已知∠1=78°,∠2=44°,求∠3=的度數(shù)。

  2.已知∠1、∠2、∠3是三角形的三個內(nèi)角,猜一猜下面的三角形各是什么三角形?(圖略,分別是銳角、直角、鈍角三角形。)學(xué)生猜后,教師抽去遮蓋的紙,進(jìn)行驗證。

  通過以上的練習(xí)使學(xué)生對三角形內(nèi)角和的應(yīng)用有個初步認(rèn)識,并積累解決問題的經(jīng)驗。

  3.師:(出示一個大三角形)它的內(nèi)角和是多少度?

  生:180 °。

  師:(出示一個很小的三角形)它的內(nèi)角和是多少度?

  生:180 °。

  師:(把大三角形平均分成兩份。指均分后的一個小三角形)它的內(nèi)角和是多少度?(生有的答90°,有的答180°。)

  師:哪個對?為什么?

  生:180°對,因為它還是一個三角形。

  師:每個小三角形的度數(shù)是180°,那么這樣的兩個小三角形拼成一個大三角形,內(nèi)角和是多少度?(這時學(xué)生的答案又出現(xiàn)了180°和360°兩種。)師:究竟誰對呢?(學(xué)生臉上露出疑問。經(jīng)過一番激烈的討論探究后,學(xué)生開始舉手回答。)

  生:180°。因為兩個三角形拼在一起,就變成了一個三角形了,每個三角形的內(nèi)角和總是180°。

  生:我發(fā)現(xiàn)兩個小三角形拼成一個大三角形,拼接在一起的兩條邊上的兩個角沒有了,比原來兩個三角形少180°,所以大三角形的內(nèi)角和還是180°,不是360°。

  師:你真聰明。(課件演示。)

  四、小結(jié)

  師:同學(xué)們,你們今天學(xué)了“三角形的內(nèi)角和是180°”的新知識,現(xiàn)在能來幫助大、小三角形進(jìn)行評判了吧?(生答能。)

  師:說一說本節(jié)課的收獲。這節(jié)課你掌握了哪些知識?學(xué)會了哪些研究問題的方法?

  五、探究性作業(yè)

  求下面幾個多邊形的內(nèi)角和。(圖形略。)

  【設(shè)計意圖:通過這樣的練習(xí),培養(yǎng)學(xué)生思維的靈活性、多樣性,使不同層次的學(xué)生得到不同的發(fā)展,體現(xiàn)教學(xué)的層次性!

  反思:

  1、重視動手操作,讓學(xué)生在探究中收獲知識!稊(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“有效的數(shù)學(xué)學(xué)習(xí)活動不能單純地依賴模仿與記憶,動手實踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式!北竟(jié)課通過量、折、剪、拼等多種活動,使學(xué)生主動探究,找到新舊知識的聯(lián)系,得出研究問題的結(jié)論,有利于學(xué)生培養(yǎng)空間觀念和動手操作能力。

  2、小組合作學(xué)習(xí)是新課程倡導(dǎo)的學(xué)習(xí)方式,有利于培養(yǎng)學(xué)生的合作意識、探索能力、團(tuán)隊精神。我們要從平時抓起,在平常的課堂中開展小組合作學(xué)習(xí),可以是前后四人為一組,深入探究合作學(xué)習(xí)的方法和途徑。這樣學(xué)生學(xué)習(xí)方式的轉(zhuǎn)變才能落到實處,才不會變成某些公開課的擺設(shè)

三角形內(nèi)角和教案14

  探索三角形內(nèi)角和的度數(shù)以及已知兩個角度數(shù)求第三個角度數(shù)。

  教學(xué)目標(biāo):

  1、通過測量、撕拼、折疊等探索活動,使學(xué)生發(fā)現(xiàn)三角形內(nèi)角和的度數(shù)是180?

  2、已知三角形兩個角的度數(shù),會求第三個角的度數(shù)。

  3、培養(yǎng)學(xué)生動手實踐,動腦思考的習(xí)慣。

  教學(xué)重點:

  了解三角形三個內(nèi)角的度數(shù)。

  教學(xué)難點:

  理解三角形三個內(nèi)角大小的關(guān)系。

  教具學(xué)具準(zhǔn)備:

  課件三角形若干量角器剪刀。

  教材與學(xué)生

  教材創(chuàng)設(shè)了一個有趣的問題情境,通過對大小兩個三角形內(nèi)角和的大小比較來激發(fā)學(xué)生探索的興趣。教材為了得到三角形內(nèi)角和是180的結(jié)論安排了兩個活動,通過學(xué)生測量,折疊,撕拼來找到答案。

  學(xué)生在已有的會用量角器來度量一個角的度數(shù)的基礎(chǔ)上,會首先想到這種方法。但測量的誤差會導(dǎo)致測量不同,因此,學(xué)生會想到采取其他更好的辦法,通過親手實踐,得出結(jié)論。

  教學(xué)過程:

  一、呈現(xiàn)真實狀態(tài)。

  師:今天我們來研究三角形內(nèi)角和度數(shù)。這里有兩個三角形,一個是大三角形,一個是小三角形(圖略),到底哪一個三角形的內(nèi)角和比較大呢?

  學(xué)生各抒己見。

  二、提出問題:

  師;剛才我們觀察三角形哪個內(nèi)角和大,同學(xué)們有兩種不同的猜想,可以肯定,必定有錯下面我們來測量驗證。

 。1)以小組為單位請同學(xué)們拿出量角器,量一量,算一算圖中大小兩個三角形內(nèi)角和度數(shù),并做好記錄,記錄每個內(nèi)角的度數(shù)。

  (2)組內(nèi)交流。

  (3)全班交流。由小組匯報測出結(jié)果(三角形內(nèi)角和)

  (4)師小結(jié):我們通過測量發(fā)現(xiàn),每個三角形的內(nèi)角和測出結(jié)果接近180。

  三。自主探索、研究問題、歸納總結(jié):

  師引導(dǎo)提問:三角形的內(nèi)角和會不會就是180呢?

 。ㄒ唬┙M內(nèi)探索:

 。1)以小組為單位探索更好的辦法。

  (2)以小組為單位邊展示邊匯報探索的過程與發(fā)現(xiàn)的結(jié)果。

 。ㄓ械男〗M想不出來,可以安排小組和小組之間進(jìn)行交流,目的是讓學(xué)生通過實踐發(fā)現(xiàn)結(jié)果,在探索中發(fā)現(xiàn)問題,在討論中解決問題,是學(xué)生學(xué)習(xí)到良好的學(xué)習(xí)方法)

 。3)把你沒有想到的方法動手做一次

 。ㄊ箤W(xué)生更直觀地理解三角形的內(nèi)角和是180的證明過程)

 。4)根據(jù)學(xué)生的反饋情況教師進(jìn)行操作演示。

 。ǘ┙處熝菔

  撕拼法1。教師取出三角形教具,把三個角撕下來,拼在一起,如圖所示

  2.師:這三個內(nèi)角放在一起你有什么發(fā)現(xiàn)?

  生:發(fā)現(xiàn)三個內(nèi)角拼成一個平角。

  師:平角是多少度呢?說明什么?

  生:180?說明三個內(nèi)角和剛好等于180。

  師:這種方法是不是適用各種三角形呢?

  3。學(xué)生每人動手實踐,看看是不是不同的三角形是否都有這個特點,也能拼出一個平角呢?

  進(jìn)行實驗后,結(jié)果發(fā)現(xiàn)同樣存在這一規(guī)律,三角形三個內(nèi)角和是180。

  折疊法:師:剛才我們通過測量發(fā)現(xiàn)三角形內(nèi)角和接近180,那是因為測量的不那么精確,所以說“接近”,又通過撕拼方法發(fā)現(xiàn)三角形的三個內(nèi)角剛好拼成一個平角,進(jìn)一步說明三個內(nèi)角和是180,現(xiàn)在再來演示另一種實驗,再次證明我們的發(fā)現(xiàn)。

  你們也來試一試好嗎?

  在學(xué)生完成這一實踐后肯定這一發(fā)現(xiàn)

  三角形三個內(nèi)角和等于180?

  :充分發(fā)揮了學(xué)生的主觀能動性,讓學(xué)生大膽去思考發(fā)言,把課堂交給學(xué)生,最后老師在演示達(dá)成共識,這樣學(xué)生學(xué)到知識印象頗深,也理解最為透徹,提高課堂教學(xué)的效率

  四。鞏固練習(xí),知識升華。

  1.完成課本第28頁的“試一試”第三題。

  2.想一想:鈍角三角形最多有幾個鈍角?為什么?

  銳角三角形中的兩個內(nèi)角和能小于90嗎?

  3.有一個四邊形,你能不用量角器而算出它的四個內(nèi)角和嗎?

  試一試,看誰算得快。

  師:誰來說說自己的計算過程?

  角的和叫做三角形的內(nèi)角和。(板書課題)下面請大家認(rèn)真觀察這兩個算式,從結(jié)果上看,你發(fā)現(xiàn)了什么?

  生:它們的內(nèi)角和都是 180 度。

  師:觀察的真仔細(xì)!(點擊課件,出示多種多樣的三角形后提問)同學(xué)們,咱們都知道,這兩個三角形是特殊三角形,在我們的生活中還有許許多多不是這個樣子的三角形,請看大屏幕,這些任意三角形,它們的內(nèi)角和是不是都是 180 度呢?

 。刍卮鹂赡苡卸荩

 。ㄒ环N全部說是:)

  師:請問,你們是怎么想的,為什么這么認(rèn)為?

  生: ……

  師:看來,大家是通過這兩個三角形猜想的,是嗎?想不想驗證一下你們的猜想,(生:想)好,咱們一起走進(jìn)三角形王國,一起去研究它們內(nèi)角和的秘密吧。◣熢谡n題“內(nèi)角和”下面劃上橫線,打上問號)

 。ㄒ环N有一部分同學(xué)說是,有一部分同學(xué)說不是:)

  師:看來,大家的意見不一致, 想不想驗證一下你們的猜想,(生:想)好,咱們一起走進(jìn)三角形王國,一起去研究它們內(nèi)角和的秘密吧!(師在課題“內(nèi)角和”下面劃上橫線,打上問號)

 。ǘ﹦邮植僮,探究新知

  師:老師看你們有答案了,哪位同學(xué)愿意說一說你的奇思妙想?

  生:我準(zhǔn)備用量的方法。

  師:然后呢?

  生:然后把它們?nèi)齻內(nèi)角的度數(shù)相加起來,就知道了三角形的內(nèi)角和是多少?

  師:說的真不錯,還有沒有其它的方法?

  生:我是把三角形的三個角剪下來,拼在一起( 師鼓勵: 你的想法很有創(chuàng)意, 等一會兒用你的行動來驗證你的猜想吧。

  生:……

  (如生一時想不到,師可引導(dǎo):他是把三個內(nèi)角的度數(shù)相加在一起,我們能不能想辦法把三個內(nèi)角放在一起進(jìn)行觀察,看看能不能發(fā)現(xiàn)些什么呢?)

  師: 好啦, 老師相信咱們班的同學(xué)個個都是小數(shù)學(xué)家, 一定能找出更多的方法的, 請你們在研究之前,也像老師一樣,在三個內(nèi)角上編上序號,角一、角二、角三,現(xiàn)在就請同學(xué)們對銳角三角形、直角三角形和鈍角三角形等各種類型的三角形進(jìn)行研究,看看它們的內(nèi)角和各有什么特點。咱們比一比,看一看,哪個小組的方法多,方法好!

  開始吧。▽W(xué)生研究,師巡回指導(dǎo))預(yù)設(shè)時間:5 分鐘

  師:老師看各小組已經(jīng)研究好了,哪位同學(xué)愿意上來交流一下?

  師:請你告訴大家,你是怎么研究的,最后發(fā)現(xiàn)了什么結(jié)果?

  ( 預(yù)設(shè): 如果第一類同學(xué)說的是量的方法)

  師:你是用什么來研究的?

  生:量角器。

  師: 那請你說一下你度量的結(jié)果好嗎?

 。 生匯報度量結(jié)果)

  師: 剛才有的同學(xué)測量的結(jié)果是180 度,有的同學(xué)測量的結(jié)果是179 度,有的同學(xué)測量的結(jié)果是182 度,各不相同,但是這些結(jié)果都比較接近于多少?

  生:180 度。

  師:那到底三角形的內(nèi)角和是不是180 度呢?還有哪位同學(xué)有其它的方法進(jìn)行驗證嗎?

  生:我是先把三角形的三個角剪掉以后粘在一起,然后在量出它們?nèi)齻角組成的度數(shù)。

  師:他演示的真好,你們聽明白了嗎? 李 老師把他的過程給大家在大屏幕上演示一下。

  (師邊講解邊點擊 FLASH :把三角形按照三個內(nèi)角撕成三塊,先把角一放在右邊,再把角二放在左邊,最后把角三調(diào)個頭,插在角一角二的中間,這樣它們?nèi)齻內(nèi)角就形成了一個大角,角一的這條邊,角二這條邊看起來在一條直線上,那到底是不是在一條直線上呢,我們一起用直尺來量一下,師演示后問學(xué)生:是不是在一條直線上,那這個大角是個什么角呢?通過剛才拼的過程,你有什么發(fā)現(xiàn)?)

  師:好極了,剛才這個小組的同學(xué)用拼的方法得到XX 三角形的內(nèi)角和是180 度,你們還有別的方法嗎?

  生:我們還用了折的方法(生介紹方法)

  師: 你們聽明白了嗎? 李老師把他的過程給大家在大屏幕上演示一下。

 。◣熯呏v解邊點擊 FLASH :先找到兩條邊的中點,把它連起來,把角一沿著中間的這條線向?qū)厡φ,再把角二向里對折,使它的頂點與角一對齊,最后把角三也用同樣的方法對折,這樣它們?nèi)齻內(nèi)角就形成了一個大角,這個大角是個什么角呢?)

  生:是個平角。180 度。

  師:除了用了量、拼、折的方法來研究以外,剛才在操作的過程中老師還發(fā)現(xiàn)了一個同學(xué)用了一種方法來進(jìn)行研究,大家想知道嗎?

  師:請這位同學(xué)來說給大家聽聽吧!

  生:我把兩個相同的直角三角形拼成了一個長方形,因為長方形里面有四個直角,所以它的內(nèi)角和是360 度,那么一個三角形的內(nèi)角和就是180 度。

  師:剛才我們用量、拼、折、推理的方法都得到了三角形的內(nèi)角和是 180 度,同學(xué)們,現(xiàn)在我們回想一下,剛才測量的不同結(jié)果是一個準(zhǔn)確數(shù)還是一個近似數(shù)?為什么會出現(xiàn)這種情況呢?

  生 1 :量的不準(zhǔn)。

  生 2 :有的量角器有誤差。

  師:對,這就是測量的`誤差,如果測量儀器再精密一些,我們的方法再準(zhǔn)確一些,那么任意一個三角形的內(nèi)角和也將是 180 度。

  師:同學(xué)們,我們剛才用不同的方法,不同的三角形研究了三角形的內(nèi)角和,得到了一個相同的發(fā)現(xiàn),這個發(fā)現(xiàn)就是?

  生:三角形的內(nèi)角和是180 度。(師板書)

  師:把你們偉大的發(fā)現(xiàn)讀一讀吧!

 。ㄈ┩卣箲(yīng)用,深化認(rèn)識

  師:請看老師手上的這兩個三角形,左邊這個內(nèi)角和是多少度?(生: 180 度)右邊呢(生:也是 180 度)

  師:現(xiàn)在老師把它們拼在一起,這個大三角形的內(nèi)角和又是多少度呢?

 。ㄉ鸷髱熞龑(dǎo)歸納得出:三角形的內(nèi)角和與形狀大小無關(guān),組成的大三角形的內(nèi)角和依然是 180 度。)

  師:剛才我們在討論學(xué)習(xí)三角形知識的時候,三角形中的兩個好朋友卻爭執(zhí)了起來,想知道怎么回事嗎?讓我們一起去看看吧。ǔ鍪菊n件,課件內(nèi)容:一個大一些的直角三角形說:“我的個頭比你大,我的內(nèi)角和一定比你大”。另一個稍小的銳角三角形說:“是這樣嗎”?)

  師:到底誰說的對呢?今天我們就用我們今天學(xué)到的知識來為它們解決解決吧!

  師:真不錯,你們當(dāng)了一回小法官,幫助三角形兄弟解決了問題,它倆很感謝你們,三角形王國中還有很多生活中的問題,小博士們,你們愿意解答嗎?

  師:好,請看大屏幕!

 。ǔ鍪净A(chǔ)練習(xí))在一個三角形中角一是 140 度,角三是 25 度,求角二的度數(shù)。

  生答后,師提問:你是怎樣想的?

  生陳述后,師鼓勵:說的真好!

  出示自行車、等邊三角形的路標(biāo)牌、告訴頂角求底角的房頂、直角三角形的電線桿架進(jìn)行練習(xí)。

  (出示)小紅的爸爸給小紅買了一個等腰三角形的風(fēng)箏,它的一個底角是 70 度,它的頂角是多少度?

  師:看來啊,三角形的知識在咱們生活中還有著這么廣泛的運用呢!昨天,我們班發(fā)生了一件事情,小明不小心將鏡框上的一塊三角形玻璃摔破了,(課件呈現(xiàn)情境)他想重新買一塊玻璃安上,小明非常聰明,只帶了其中的一塊到玻璃店去,就配到了和原來一模一樣的玻璃了。你知道他帶的是哪一塊嗎?

  (預(yù)設(shè):師:根據(jù)三角形的內(nèi)角和是180 度,你能求出下面四邊形、五邊形、六邊形的內(nèi)角和嗎?

  師:太棒了,這位同學(xué)把這個四邊形分割成了二個三角形求出了它的內(nèi)角和,你能像他一樣棒求出五邊形和六邊形的內(nèi)角和嗎?

  師: 同學(xué)們,今天我們一起學(xué)習(xí)了三角形的內(nèi)角和,你有哪些收獲呢?

  師:嗯,真不錯, 你們知道嗎? 三角形的內(nèi)角和等于 180 度是 法國著名的數(shù)學(xué)家帕斯卡 在 1635 年他 12 歲時獨自發(fā)現(xiàn)的, 今天憑著同學(xué)們的聰明智慧也研究出了三角形的內(nèi)角和是180 度,老師為你們感到驕傲,老師相信在你們的勤奮學(xué)習(xí)和刻苦鉆研下,你們就是下一個“帕斯卡”!

  師:好,下課!同學(xué)們再見!

三角形內(nèi)角和教案15

  教學(xué)目標(biāo):

  1、讓學(xué)生親自動手,通過量、剪、拼等活動,發(fā)現(xiàn)并證實三角形的內(nèi)角和是180°,應(yīng)用三角形內(nèi)角和的知識解決實際問題。

  2、讓學(xué)生在動手獲取知識的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識,探索精神和實踐能力。

  重點、難點:

  經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成,發(fā)展和應(yīng)用的全過程。

  三角形內(nèi)角和是180°的探索和驗證。

  教學(xué)過程:

  一、揭示課題

  1、今天我們一起來學(xué)習(xí)三角形的內(nèi)角和,那什么是三角形的內(nèi)角和?(三角形里面的角),它有幾個內(nèi)角?(三個)出示紙片,那什么又是三角形的內(nèi)角和呢?(把三角形的三個角的度數(shù)加起來就是三角形的內(nèi)角和)

  出示課件

  2、提出問題,為后面做鋪墊。

  現(xiàn)在有3個三角形(出示課件),直角三角形說:“我是直角三角形,我的內(nèi)角和最大”鈍角三角形說:“我有一個鈍角,比你們?nèi)齻角都大,所以我的內(nèi)角和才是最大的.。銳角三角形說:“我雖然是銳角三角形,但我的個頭最大,所以我的內(nèi)角和才是最大的。

  孩子們,它們這樣吵起來可不是辦法呀!你們可知道它們誰的內(nèi)角和最大呢?那我們就一起來證明給他們看。

  二、新授

  1、任意畫不同的類型的三角形,算一算三個內(nèi)角和是多少度。我們就畫三個不同類型的三角形,算一算三個內(nèi)角和是多少度,我們有三大組,為了節(jié)約時間,每一大組畫一種又分幾小組,三人一小組,一人畫,一人量,一人記錄。(小組合作,畫圖,量角,記錄,計算)

  指名匯報結(jié)果并板書(至少一種一個板書),有不同意見的舉手,相差1、2度很正常,量角會有誤差(你們完成的又快又好,因此可見小組合作很到位)

  師出示一個大直角三角板,請大家算一算這個三角板的內(nèi)角和是多少?

 。ㄈ切蔚膬(nèi)角和都是一樣大的,都是180°,僅僅一個實驗還不能讓它們心服口服,下面我們再來做兩個實驗,讓它們心服口服)

  1、拼一拼,折一折

  孩子們,我們又活動起來吧,拼一拼折一折,讓它們看一看,拿出你們準(zhǔn)備好的三角形。我們一起來:拿出一個三角形(不管形狀),撕下三個角,然后拼在一起(注意三個角的頂點要在同一個點上)你們發(fā)現(xiàn)了什么?(拼成了一個平角,這一點就是平角的頂點)

  我們再拿出一個三角形,折一折(注意科學(xué)的嚴(yán)謹(jǐn)性,折的時候不留很寬的縫隙)你又發(fā)現(xiàn)了什么?(這個三角形還是組成了一個平角)

  通過這三次實驗,我們可以得出結(jié)論:三角形的內(nèi)角和等于180°,不分形狀,不分大小,任何一個三角形的內(nèi)角和都是180°

  此時,這三個三角形還爭吵嗎?它們都心服口服了。

  孩子們,你們真了不起,輕而易舉就平息了一場爭吵。現(xiàn)在你能不能利用所學(xué)知識解決一些問題呢?

  三、練習(xí)

  1、搶答游戲(答對的給你的那一小組加一分)

 、

  這個三角形的內(nèi)角和是多少度。

  ②

  把這個三角形平均分成兩個小三角形,每個小三角形是多少度。

 、

  這個小三角形再分成一大一小兩個三角形,這個三角形的內(nèi)角和分別是多少度?

 、

  三個小三角形拼成一個更大的三角形,它的內(nèi)角和是多少度?

  2、智慧角

  3、判斷(用手語表示)(哪個小組同學(xué)全部舉手,就由哪個小組回答,口說手劃答對加一分)

  4、知識擴展

  其實三角形的內(nèi)角和是一個小朋友發(fā)現(xiàn)并提出來的,當(dāng)時他只有12歲,比你們大一點點,真了不起,你們想知道他是誰嗎?(帕斯卡)

  出示課件

  孩子們,其實你們跟他們同樣聰明,以后,我們就利用所學(xué)知識去發(fā)現(xiàn)探索新的知識和規(guī)律,只要努力,就一定會成功的,孩子們加油吧!

  四、總結(jié)

  任何一個三角形不分大小,不分形狀,它們的內(nèi)角和都是180°

【三角形內(nèi)角和教案】相關(guān)文章:

《三角形的內(nèi)角和》教案03-01

《三角形的內(nèi)角和》教案(精選10篇)03-31

《三角形內(nèi)角和》數(shù)學(xué)教案02-13

三角形內(nèi)角和教案(精選22篇)02-22

《三角形內(nèi)角和》數(shù)學(xué)教案12-17

三角形內(nèi)角和教案(通用21篇)02-24

《三角形內(nèi)角和》數(shù)學(xué)教案13篇02-15

《三角形內(nèi)角和》的教學(xué)設(shè)計05-11

《三角形內(nèi)角和》教學(xué)設(shè)計05-11