高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
總結(jié)是指對(duì)某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗(yàn)或情況加以總結(jié)和概括的書(shū)面材料,它在我們的學(xué)習(xí)、工作中起到呈上啟下的作用,因此好好準(zhǔn)備一份總結(jié)吧。那么總結(jié)要注意有什么內(nèi)容呢?以下是小編幫大家整理的高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié),歡迎閱讀與收藏。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1
考點(diǎn)一:集合與簡(jiǎn)易邏輯
集合部分一般以選擇題出現(xiàn),屬容易題。重點(diǎn)考查集合間關(guān)系的理解和認(rèn)識(shí)。近年的試題加強(qiáng)了對(duì)集合計(jì)算化簡(jiǎn)能力的考查,并向無(wú)限集發(fā)展,考查抽象思維能力。在解決這些問(wèn)題時(shí),要注意利用幾何的直觀性,并注重集合表示方法的轉(zhuǎn)換與化簡(jiǎn)。簡(jiǎn)易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關(guān)系、邏輯聯(lián)結(jié)詞、“充要關(guān)系”、命題真?zhèn)蔚呐袛唷⑷Q(chēng)命題和特稱(chēng)命題的否定等,二是在解答題中深層次考查常用邏輯用語(yǔ)表達(dá)數(shù)學(xué)解題過(guò)程和邏輯推理。
考點(diǎn)二:函數(shù)與導(dǎo)數(shù)
函數(shù)是高考的重點(diǎn)內(nèi)容,以選擇題和填空題的為載體針對(duì)性考查函數(shù)的定義域與值域、函數(shù)的性質(zhì)、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對(duì)數(shù)、冪函數(shù))的應(yīng)用等,分值約為10分,解答題與導(dǎo)數(shù)交匯在一起考查函數(shù)的性質(zhì)。導(dǎo)數(shù)部分一方面考查導(dǎo)數(shù)的運(yùn)算與導(dǎo)數(shù)的幾何意義,另一方面考查導(dǎo)數(shù)的簡(jiǎn)單應(yīng)用,如求函數(shù)的單調(diào)區(qū)間、極值與最值等,通常以客觀題的形式出現(xiàn),屬于容易題和中檔題,三是導(dǎo)數(shù)的綜合應(yīng)用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式出現(xiàn),如一些不等式恒成立問(wèn)題、參數(shù)的取值范圍問(wèn)題、方程根的個(gè)數(shù)問(wèn)題、不等式的證明等問(wèn)題。
考點(diǎn)三:三角函數(shù)與平面向量
一般是2道小題,1道綜合解答題。小題一道考查平面向量有關(guān)概念及運(yùn)算等,另一道對(duì)三角知識(shí)點(diǎn)的補(bǔ)充。大題中如果沒(méi)有涉及正弦定理、余弦定理的應(yīng)用,可能就是一道和解答題相互補(bǔ)充的三角函數(shù)的圖像、性質(zhì)或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數(shù)形結(jié)合思想在解題中的應(yīng)用。向量重點(diǎn)考查平面向量數(shù)量積的概念及應(yīng)用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等結(jié)合,解決角度、垂直、共線等問(wèn)題是“新熱點(diǎn)”題型.
考點(diǎn)四:數(shù)列與不等式
不等式主要考查一元二次不等式的解法、一元二次不等式組和簡(jiǎn)單線性規(guī)劃問(wèn)題、基本不等式的`應(yīng)用等,通常會(huì)在小題中設(shè)置1到2道題。對(duì)不等式的工具性穿插在數(shù)列、解析幾何、函數(shù)導(dǎo)數(shù)等解答題中進(jìn)行考查.在選擇、填空題中考查等差或等比數(shù)列的概念、性質(zhì)、通項(xiàng)公式、求和公式等的靈活應(yīng)用,一道解答題大多凸顯以數(shù)列知識(shí)為工具,綜合運(yùn)用函數(shù)、方程、不等式等解決問(wèn)題的能力,它們都屬于中、高檔題目.
考點(diǎn)五:立體幾何與空間向量
一是考查空間幾何體的結(jié)構(gòu)特征、直觀圖與三視圖;二是考查空間點(diǎn)、線、面之間的位置關(guān)系;三是考查利用空間向量解決立體幾何問(wèn)題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求).在高考試卷中,一般有1~2個(gè)客觀題和一個(gè)解答題,多為中檔題。
考點(diǎn)六:解析幾何
一般有1~2個(gè)客觀題和1個(gè)解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關(guān)系、圓錐曲線的定義應(yīng)用、標(biāo)準(zhǔn)方程的求解、離心率的計(jì)算等,解答題則主要考查直線與橢圓、拋物線等的位置關(guān)系問(wèn)題,經(jīng)常與平面向量、函數(shù)與不等式交匯,考查一些存在性問(wèn)題、證明問(wèn)題、定點(diǎn)與定值、最值與范圍問(wèn)題等。
考點(diǎn)七:算法復(fù)數(shù)推理與證明
高考對(duì)算法的考查以選擇題或填空題的形式出現(xiàn),或給解答題披層“外衣”.考查的熱點(diǎn)是流程圖的識(shí)別與算法語(yǔ)言的閱讀理解.算法與數(shù)列知識(shí)的網(wǎng)絡(luò)交匯命題是考查的主流.復(fù)數(shù)考查的重點(diǎn)是復(fù)數(shù)的有關(guān)概念、復(fù)數(shù)的代數(shù)形式、運(yùn)算及運(yùn)算的幾何意義,一般是選擇題、填空題,難度不大.推理證明部分命題的方向主要會(huì)在函數(shù)、三角、數(shù)列、立體幾何、解析幾何等方面,單獨(dú)出題的可能性較小。對(duì)于理科,數(shù)學(xué)歸納法可能作為解答題的一小問(wèn).
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2
考點(diǎn)一、映射的概念
1.了解對(duì)應(yīng)大千世界的對(duì)應(yīng)共分四類(lèi),分別是:一對(duì)一多對(duì)一一對(duì)多多對(duì)多
2.映射:設(shè)A和B是兩個(gè)非空集合,如果按照某種對(duì)應(yīng)關(guān)系f,對(duì)于集合A中的任意一個(gè)元素x,在集合B中都存在的一個(gè)元素y與之對(duì)應(yīng),那么,就稱(chēng)對(duì)應(yīng)f:A→B為集合A到集合B的一個(gè)映射(mapping).映射是特殊的對(duì)應(yīng),簡(jiǎn)稱(chēng)“對(duì)一”的對(duì)應(yīng).包括:一對(duì)一多對(duì)一
考點(diǎn)二、函數(shù)的概念
1.函數(shù):設(shè)A和B是兩個(gè)非空的數(shù)集,如果按照某種確定的對(duì)應(yīng)關(guān)系f,對(duì)于集合A中的.任意一個(gè)數(shù)x,在集合B中都存在確定的數(shù)y與之對(duì)應(yīng),那么,就稱(chēng)對(duì)應(yīng)f:A→B為集合A到集合B的一個(gè)函數(shù).記作y=f(x),xA.其中x叫自變量,x的取值范圍A叫函數(shù)的定義域;與x的值相對(duì)應(yīng)的y的值函數(shù)值,函數(shù)值的集合叫做函數(shù)的值域.函數(shù)是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射.
2.函數(shù)的三要素:定義域、值域、對(duì)應(yīng)關(guān)系.這是判斷兩個(gè)函數(shù)是否為同一函數(shù)的依據(jù).
3.區(qū)間的概念:設(shè)a,bR,且a
、伲╝,b)={xa
、荩╝,+∞)={>a}⑥[a,+∞)={≥a}⑦(—∞,b)={
考點(diǎn)三、函數(shù)的表示方法
1.函數(shù)的三種表示方法列表法圖象法解析法
2.分段函數(shù):定義域的不同部分,有不同的對(duì)應(yīng)法則的函數(shù).注意兩點(diǎn):①分段函數(shù)是一個(gè)函數(shù),不要誤認(rèn)為是幾個(gè)函數(shù).②分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集.
考點(diǎn)四、求定義域的幾種情況
、偃鬴(x)是整式,則函數(shù)的定義域是實(shí)數(shù)集R;
、谌鬴(x)是分式,則函數(shù)的定義域是使分母不等于0的實(shí)數(shù)集;
③若f(x)是二次根式,則函數(shù)的定義域是使根號(hào)內(nèi)的式子大于或等于0的實(shí)數(shù)集合;
、苋鬴(x)是對(duì)數(shù)函數(shù),真數(shù)應(yīng)大于零.
⑤.因?yàn)榱愕牧愦蝺鐩](méi)有意義,所以底數(shù)和指數(shù)不能同時(shí)為零.
、奕鬴(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,則函數(shù)的定義域是使各部分式子都有意義的實(shí)數(shù)集合;
、呷鬴(x)是由實(shí)際問(wèn)題抽象出來(lái)的函數(shù),則函數(shù)的定義域應(yīng)符合實(shí)際問(wèn)題
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3
一、集合有關(guān)概念
1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。
2、集合的中元素的三個(gè)特性:1.元素的確定性;2.元素的互異性;3.元素的無(wú)序性.
3、集合的表示:(1){?}如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}(2).用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}4
。系谋硎痉椒ǎ毫信e法與描述法。
常用數(shù)集及其記法:非負(fù)整數(shù)集(即自然數(shù)集)記作:N正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R
5.關(guān)于“屬于”的概念
集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A
列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號(hào)括上。
描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的方法。用確定的條件表
示某些對(duì)象是否屬于這個(gè)集合的方法。6、集合的分類(lèi):
(1).有限集含有有限個(gè)元素的集合(2).無(wú)限集含有無(wú)限個(gè)元素的集合
(3).空集不含任何元素的集合例:{x|x2=-5}=Φ
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集注意:A?B有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之:集?B或B??A合A不包含于集合B,或集合B不包含集合A,記作A?
2.“相等”關(guān)系:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B
、偃魏我粋(gè)集合是它本身的子集。即A?A
、谌绻鸄?B,且A?B那就說(shuō)集合A是集合B的真子集,記作A B(或BA)
③如果A?B,B?C,那么A?C④如果A?B同時(shí)B?A那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。三、集合的運(yùn)算
1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.
記作A∩B(讀作"A交B"),即A∩B={x|x∈A,且x∈B}.
2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作"A并B"),即A∪B={x|x∈A,或x∈B}.
3、交集與并集的性質(zhì):A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,
A∪φ=A,A∪B=B∪A.
4、全集與補(bǔ)集(1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即A?S),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)記作:CSA即CSA={x?x?S且x?A}
。2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,看作一個(gè)全集。通常用U來(lái)表示。
。3)性質(zhì):⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U二、函數(shù)的有關(guān)概念
合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱(chēng)f:A→B為從集合A到集合B的一個(gè)函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.
能使函數(shù)式有意義的實(shí)數(shù)x的集合稱(chēng)為函數(shù)的定義域,求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:(1)分式的分母不等于零;(2)偶次方根的被開(kāi)方數(shù)不小于零;(3)對(duì)數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1.(5)如果函數(shù)是由一些基本函數(shù)通過(guò)四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零(7)實(shí)際問(wèn)題中的函數(shù)的定義域還要保證實(shí)際問(wèn)題有意義.
2.構(gòu)成函數(shù)的三要素:定義域、對(duì)應(yīng)關(guān)系和值域
再注意:(1)由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱(chēng)這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))(2)兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無(wú)關(guān)。相同函數(shù)的判斷方法:①表達(dá)式相同;②定義域一致(兩點(diǎn)必須同時(shí)具備)
3.區(qū)間的概念(1)區(qū)間的分類(lèi):開(kāi)區(qū)間、閉區(qū)間、半開(kāi)半閉區(qū)間;(2)無(wú)窮區(qū)間;(3)區(qū)間的數(shù)軸表示.4.映射一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對(duì)應(yīng),那么就稱(chēng)對(duì)應(yīng)f:A?B為從集合A到集合B的一個(gè)映射。記作“f:A?B”
給定一個(gè)集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對(duì)應(yīng),那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象
說(shuō)明:函數(shù)是一種特殊的映射,映射是一種特殊的對(duì)應(yīng),①集合A、B及對(duì)應(yīng)法則f是確定的;②對(duì)應(yīng)法則有“方向性”,即強(qiáng)調(diào)從集合A到集合B的對(duì)應(yīng),它與從B到A的對(duì)應(yīng)關(guān)系一般是不同的;③對(duì)于映射f:A→B來(lái)說(shuō),則應(yīng)滿足:(Ⅰ)集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中對(duì)應(yīng)的象可以是同一個(gè);(Ⅲ)不要求集合B中的每一個(gè)元素在集合A中都有原象。
5.常用的函數(shù)表示法:解析法:圖象法:列表法:
6.分段函數(shù)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。(1)分段函數(shù)是一個(gè)函數(shù),不要把它誤認(rèn)為是幾個(gè)函數(shù);
。2)分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集.7.函數(shù)單調(diào)性(1).設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對(duì)于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1 如果對(duì)于區(qū)間D上的任意兩個(gè)自變量的'值x1,x2,當(dāng)x1 注意:函數(shù)的單調(diào)性是在定義域內(nèi)的某個(gè)區(qū)間上的性質(zhì),是函數(shù)的局部性質(zhì); 。2)圖象的特點(diǎn)如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說(shuō)函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.(3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法 (A)定義法:○1任取x1,x2∈D,且x1 8.函數(shù)的奇偶性 。1)一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù). 。2).一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù). 注意:○1函數(shù)是奇函數(shù)或是偶函數(shù)稱(chēng)為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);函數(shù)可能沒(méi)有奇偶性,也可能既是奇函數(shù)又是偶函數(shù)。 2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,○ 則-x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱(chēng)).(3)具有奇偶性的函數(shù)的圖象的特征 偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng). 總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:○1首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng);○2確定f(-x)與f(x)的關(guān)系;○3作出相應(yīng)結(jié)論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).9、函數(shù)的解析表達(dá)式 。1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對(duì)應(yīng)法則,二是要求出函數(shù)的定義域. 。2).求函數(shù)的解析式的主要方法有:待定系數(shù)法、換元法、消參法等,如果已知函數(shù)解析式的構(gòu)造時(shí),可用待定系數(shù)法;已知復(fù)合函數(shù)f[g(x)]的表達(dá)式時(shí),可用換元法,這時(shí)要注意元的取值范圍;當(dāng)已知表達(dá)式較簡(jiǎn)單時(shí),也可用湊配法;若已知抽象函數(shù)表達(dá)式,則常用解方程組消參的方法求出f(x)。 補(bǔ)充不等式的解法與二次函數(shù)(方程)的性質(zhì) (一)導(dǎo)數(shù)第一定義 設(shè)函數(shù) y = f(x) 在點(diǎn) x0 的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量 x 在 x0 處有增量 △x ( x0 + △x 也在該鄰域內(nèi) ) 時(shí),相應(yīng)地函數(shù)取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 與 △x 之比當(dāng) △x→0 時(shí)極限存在,則稱(chēng)函數(shù) y = f(x) 在點(diǎn) x0 處可導(dǎo),并稱(chēng)這個(gè)極限值為函數(shù) y = f(x) 在點(diǎn) x0 處的導(dǎo)數(shù)記為 f'(x0) ,即導(dǎo)數(shù)第一定義 (二)導(dǎo)數(shù)第二定義 設(shè)函數(shù) y = f(x) 在點(diǎn) x0 的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量 x 在 x0 處有變化 △x ( x - x0 也在該鄰域內(nèi) ) 時(shí),相應(yīng)地函數(shù)變化 △y = f(x) - f(x0) ;如果 △y 與 △x 之比當(dāng) △x→0 時(shí)極限存在,則稱(chēng)函數(shù) y = f(x) 在點(diǎn) x0 處可導(dǎo),并稱(chēng)這個(gè)極限值為函數(shù) y = f(x) 在點(diǎn) x0 處的導(dǎo)數(shù)記為 f'(x0) ,即 導(dǎo)數(shù)第二定義 (三)導(dǎo)函數(shù)與導(dǎo)數(shù) 如果函數(shù) y = f(x) 在開(kāi)區(qū)間 I 內(nèi)每一點(diǎn)都可導(dǎo),就稱(chēng)函數(shù)f(x)在區(qū)間 I 內(nèi)可導(dǎo)。這時(shí)函數(shù) y = f(x) 對(duì)于區(qū)間 I 內(nèi)的每一個(gè)確定的 x 值,都對(duì)應(yīng)著一個(gè)確定的.導(dǎo)數(shù),這就構(gòu)成一個(gè)新的函數(shù),稱(chēng)這個(gè)函數(shù)為原來(lái)函數(shù) y = f(x) 的導(dǎo)函數(shù),記作 y', f'(x), dy/dx, df(x)/dx。導(dǎo)函數(shù)簡(jiǎn)稱(chēng)導(dǎo)數(shù)。 (四)單調(diào)性及其應(yīng)用 1.利用導(dǎo)數(shù)研究多項(xiàng)式函數(shù)單調(diào)性的一般步驟 (1)求f(x) (2)確定f(x)在(a,b)內(nèi)符號(hào) (3)若f(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù) 2.用導(dǎo)數(shù)求多項(xiàng)式函數(shù)單調(diào)區(qū)間的一般步驟 (1)求f(x) (2)f(x)>0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為增區(qū)間; f(x)<0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為減區(qū)間 學(xué)習(xí)了導(dǎo)數(shù)基礎(chǔ)知識(shí)點(diǎn),接下來(lái)可以學(xué)習(xí)高二數(shù)學(xué)中涉及到的導(dǎo)數(shù)應(yīng)用的部分。 簡(jiǎn)單隨機(jī)抽樣的定義: 一般地,設(shè)一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內(nèi)的各個(gè)個(gè)體被抽到的機(jī)會(huì)都相等,就把這種抽樣方法叫做簡(jiǎn)單隨機(jī)抽樣。 簡(jiǎn)單隨機(jī)抽樣的特點(diǎn): 。1)用簡(jiǎn)單隨機(jī)抽樣從含有N個(gè)個(gè)體的總體中抽取一個(gè)容量為n的樣本時(shí),每次抽取一個(gè)個(gè)體時(shí)任一個(gè)體被抽到的概率為_(kāi)__;在整個(gè)抽樣過(guò)程中各個(gè)個(gè)體被抽到的概率為_(kāi)___。 (2)簡(jiǎn)單隨機(jī)抽樣的'特點(diǎn)是,逐個(gè)抽取,且各個(gè)個(gè)體被抽到的概率相等。 。3)簡(jiǎn)單隨機(jī)抽樣方法,體現(xiàn)了抽樣的客觀性與公平性,是其他更復(fù)雜抽樣方法的基礎(chǔ)。 (4)簡(jiǎn)單隨機(jī)抽樣是不放回抽樣;它是逐個(gè)地進(jìn)行抽;它是一種等概率抽樣。 簡(jiǎn)單抽樣常用方法: 。1)抽簽法:先將總體中的所有個(gè)體(共有N個(gè))編號(hào)(號(hào)碼可從1到N),并把號(hào)碼寫(xiě)在形狀、大小相同的號(hào)簽上(號(hào)簽可用小球、卡片、紙條等制作),然后將這些號(hào)簽放在同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí)每次從中抽一個(gè)號(hào)簽,連續(xù)抽取n次,就得到一個(gè)容量為n的樣本適用范圍:總體的個(gè)體數(shù)不多時(shí)優(yōu)點(diǎn):抽簽法簡(jiǎn)便易行,當(dāng)總體的個(gè)體數(shù)不太多時(shí)適宜采用抽簽法。 。2)隨機(jī)數(shù)表法:隨機(jī)數(shù)表抽樣“三步曲”:第一步,將總體中的個(gè)體編號(hào);第二步,選定開(kāi)始的數(shù)字;第三步,獲取樣本號(hào)碼概率。 一、集合有關(guān)概念 1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。 2、集合的中元素的三個(gè)特性: 1)元素的確定性; 2)元素的互異性; 3)元素的無(wú)序性。 說(shuō)明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。 。2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。 。3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。 。4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。 3、集合的表示:{…}如{我校的籃球隊(duì)員},{太平洋大西洋印度洋北冰洋} 1)用拉丁字母表示集合:A={我校的籃球隊(duì)員}B={12345}。 2)集合的表示方法:列舉法與描述法。 注意。撼S脭(shù)集及其記法: 非負(fù)整數(shù)集(即自然數(shù)集)記作:N 正整數(shù)集N_或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R 關(guān)于“屬于”的概念 集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的`元素,就說(shuō)a屬于集合A記作a∈A,相反,a不屬于集合A記作a:A。 列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號(hào)括上。 描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的方法。用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法。 ①語(yǔ)言描述法:例:{不是直角三角形的三角形} 、跀(shù)學(xué)式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2} 4、集合的分類(lèi): 1)有限集含有有限個(gè)元素的集合。 2)無(wú)限集含有無(wú)限個(gè)元素的集合。 3)空集不含任何元素的集合例:{x|x2=—5}。 二、集合間的基本關(guān)系 1、“包含”關(guān)系子集 注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之:集合A不包含于集合B或集合B不包含集合A記作AB或BA。 2、“相等”關(guān)系(5≥5,且5≤5,則5=5) 實(shí)例:設(shè)A={x|x2—1=0}B={—11}“元素相同” 結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí)集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B。 ①任何一個(gè)集合是它本身的子集。AA ②真子集:如果A?B且A?B那就說(shuō)集合A是集合B的真子集,記作AB(或BA) ③如果ABBC那么AC 、苋绻鸄B同時(shí)BA那么A=B 3、不含任何元素的集合叫做空集,記為Φ。 規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。 三、集合的運(yùn)算 1、交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合叫做AB的交集。 記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}。 2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做AB的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}。 3、交集與并集的性質(zhì):A∩A=AA∩φ=φA∩B=B∩A,A∪A=A,A∪φ=AA∪B=B∪A。 4、全集與補(bǔ)集 。1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集) 記作:CSA即CSA={x?x?S且x?A}。 。2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來(lái)表示。 。3)性質(zhì):⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U。 一、求動(dòng)點(diǎn)的軌跡方程的基本步驟 、苯⑦m當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo); 、矊(xiě)出點(diǎn)M的集合; 、沉谐龇匠=0; 、椿(jiǎn)方程為最簡(jiǎn)形式; 、禉z驗(yàn)。 二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。 、敝弊g法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。 、捕x法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫(xiě)出方程,這種求軌跡方程的方法叫做定義法。 、诚嚓P(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的'坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。 、磪(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。 ⒌交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。 -直譯法:求動(dòng)點(diǎn)軌跡方程的一般步驟 、俳ㄏ怠⑦m當(dāng)?shù)淖鴺?biāo)系; ②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y); 、哿惺健谐鰟(dòng)點(diǎn)p所滿足的關(guān)系式; ④代換——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡(jiǎn); ⑤證明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。 簡(jiǎn)單隨機(jī)抽樣的定義: 一般地,設(shè)一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內(nèi)的各個(gè)個(gè)體被抽到的機(jī)會(huì)都相等,就把這種抽樣方法叫做簡(jiǎn)單隨機(jī)抽樣。 簡(jiǎn)單隨機(jī)抽樣的特點(diǎn): (1)用簡(jiǎn)單隨機(jī)抽樣從含有N個(gè)個(gè)體的總體中抽取一個(gè)容量為n的樣本時(shí),每次抽取一個(gè)個(gè)體時(shí)任一個(gè)體被抽到的概率為 ;在整個(gè)抽樣過(guò)程中各個(gè)個(gè)體被抽到的概率為 (2)簡(jiǎn)單隨機(jī)抽樣的特點(diǎn)是,逐個(gè)抽取,且各個(gè)個(gè)體被抽到的概率相等; (3)簡(jiǎn)單隨機(jī)抽樣方法,體現(xiàn)了抽樣的`客觀性與公平性,是其他更復(fù)雜抽樣方法的基礎(chǔ). (4)簡(jiǎn)單隨機(jī)抽樣是不放回抽樣;它是逐個(gè)地進(jìn)行抽取;它是一種等概率抽樣 簡(jiǎn)單抽樣常用方法: (1)抽簽法:先將總體中的所有個(gè)體(共有N個(gè))編號(hào)(號(hào)碼可從1到N),并把號(hào)碼寫(xiě)在形狀、大小相同的號(hào)簽上(號(hào)簽可用小球、卡片、紙條等制作),然后將這些號(hào)簽放在同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí)每次從中抽一個(gè)號(hào)簽,連續(xù)抽取n次,就得到一個(gè)容量為n的樣本適用范圍:總體的個(gè)體數(shù)不多時(shí)優(yōu)點(diǎn):抽簽法簡(jiǎn)便易行,當(dāng)總體的個(gè)體數(shù)不太多時(shí)適宜采用抽簽法. (2)隨機(jī)數(shù)表法:隨機(jī)數(shù)表抽樣“三步曲”:第一步,將總體中的個(gè)體編號(hào);第二步,選定開(kāi)始的數(shù)字; (1)不等關(guān)系 感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,了解不等式(組)的.實(shí)際背景。 (2)一元二次不等式 、俳(jīng)歷從實(shí)際情境中抽象出一元二次不等式模型的過(guò)程。 、谕ㄟ^(guò)函數(shù)圖象了解一元二次不等式與相應(yīng)函數(shù)、方程的聯(lián)系。 ③會(huì)解一元二次不等式,對(duì)給定的一元二次不等式,嘗試設(shè)計(jì)求解的程序框圖。 。3)二元一次不等式組與簡(jiǎn)單線性規(guī)劃問(wèn)題 、?gòu)膶?shí)際情境中抽象出二元一次不等式組。 、诹私舛淮尾坏仁降膸缀我饬x,能用平面區(qū)域表示二元一次不等式組(參見(jiàn)例2)。 、蹚膶(shí)際情境中抽象出一些簡(jiǎn)單的二元線性規(guī)劃問(wèn)題,并能加以解決(參見(jiàn)例3)。 (4)基本不等式 、偬剿鞑⒘私饣静坏仁降淖C明過(guò)程。 、跁(huì)用基本不等式解決簡(jiǎn)單的(。┲祮(wèn)題。 空間幾何體表面積體積公式: 1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)。 2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高。 3、a—邊長(zhǎng),S=6a2,V=a3。 4、長(zhǎng)方體a—長(zhǎng),b—寬,c—高S=2(ab+ac+bc)V=abc。 5、棱柱S—h—高V=Sh。 6、棱錐S—h—高V=Sh/3。 7、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3。 8、S1—上底面積,S2—下底面積,S0—中h—高,V=h(S1+S2+4S0)/6。 9、圓柱r—底半徑,h—高,C—底面周長(zhǎng)S底—底面積,S側(cè)—,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h。 10、空心圓柱R—外圓半徑,r—內(nèi)圓半徑h—高V=πh(R^2—r^2)。 11、r—底半徑h—高V=πr^2h/3。 12、r—上底半徑,R—下底半徑,h—高V=πh(R2+Rr+r2)/313、球r—半徑d—直徑V=4/3πr^3=πd^3/6。 14、球缺h—球缺高,r—球半徑,a—球缺底半徑V=πh(3a2+h2)/6=πh2(3r—h)/3。 15、球臺(tái)r1和r2—球臺(tái)上、下底半徑h—高V=πh[3(r12+r22)+h2]/6。 16、圓環(huán)體R—環(huán)體半徑D—環(huán)體直徑r—環(huán)體截面半徑d—環(huán)體截面直徑V=2π2Rr2=π2Dd2/4。 17、桶狀體D—桶腹直徑d—桶底直徑h—桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)。 空間兩條直線只有三種位置關(guān)系:平行、相交、異面 1、按是否共面可分為兩類(lèi): (1)共面:平行、相交 (2)異面: 異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。 異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過(guò)該點(diǎn)的直線是異面直線。 兩異面直線所成的.角:范圍為(0°,90°)esp.空間向量法 兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法 2、若從有無(wú)公共點(diǎn)的角度看可分為兩類(lèi): (1)有且僅有一個(gè)公共點(diǎn)——相交直線; (2)沒(méi)有公共點(diǎn)——平行或異面 直線和平面的位置關(guān)系: 直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行 、僦本在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn) ②直線和平面相交——有且只有一個(gè)公共點(diǎn) 直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。 1.定義法: 判斷B是A的條件,實(shí)際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關(guān)系畫(huà)出箭頭示意圖,再利用定義判斷即可. 2.轉(zhuǎn)換法: 當(dāng)所給命題的充要條件不易判斷時(shí),可對(duì)命題進(jìn)行等價(jià)裝換,例如改用其逆否命題進(jìn)行判斷. 3.集合法 在命題的條件和結(jié)論間的關(guān)系判斷有困難時(shí),可從集合的角度考慮,記條件p、q對(duì)應(yīng)的集合分別為A、B,則: 若A∩B,則p是q的.充分條件. 若A∪B,則p是q的必要條件. 若A=B,則p是q的充要條件. 若A∈B,且B∈A,則p是q的既不充分也不必要條件. 空間兩條直線只有三種位置關(guān)系:平行、相交、異面。 按是否共面可分為兩類(lèi): 。1)共面:平行、相交 。2)異面: 異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。 異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過(guò)該點(diǎn)的直線是異面直線。 兩異面直線所成的角:范圍為(0°,90°)esp。空間向量法。 兩異面直線間距離:公垂線段(有且只有一條)esp。空間向量法。 若從有無(wú)公共點(diǎn)的角度看可分為兩類(lèi): (1)有且僅有一個(gè)公共點(diǎn)——相交直線;(2)沒(méi)有公共點(diǎn)——平行或異面。 直線和平面的位置關(guān)系: 直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行。 、僦本在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn) 、谥本和平面相交——有且只有一個(gè)公共點(diǎn) 直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。 空間向量法(找平面的法向量) 規(guī)定:a、直線與平面垂直時(shí),所成的`角為直角;b、直線與平面平行或在平面內(nèi),所成的角為0°角。 由此得直線和平面所成角的取值范圍為[0°,90°]。 最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角。 三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個(gè)平面的一條斜線的射影垂直,那么它也與這條斜線垂直。 直線和平面垂直 直線和平面垂直的定義:如果一條直線a和一個(gè)平面內(nèi)的任意一條直線都垂直,我們就說(shuō)直線a和平面互相垂直。直線a叫做平面的垂線,平面叫做直線a的垂面。 直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。 直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。直線和平面平行——沒(méi)有公共點(diǎn) 直線和平面平行的定義:如果一條直線和一個(gè)平面沒(méi)有公共點(diǎn),那么我們就說(shuō)這條直線和這個(gè)平面平行。 直線和平面平行的判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。 直線和平面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。 有界性 設(shè)函數(shù)f(x)在區(qū)間X上有定義,如果存在M>0,對(duì)于一切屬于區(qū)間X上的x,恒有|f(x)|≤M,則稱(chēng)f(x)在區(qū)間X上有界,否則稱(chēng)f(x)在區(qū)間上無(wú)界. 單調(diào)性 設(shè)函數(shù)f(x)的定義域?yàn)镈,區(qū)間I包含于D.如果對(duì)于區(qū)間上任意兩點(diǎn)x1及x2,當(dāng)x1f(x2),則稱(chēng)函數(shù)f(x)在區(qū)間I上是單調(diào)遞減的.單調(diào)遞增和單調(diào)遞減的函數(shù)統(tǒng)稱(chēng)為單調(diào)函數(shù). 奇偶性 設(shè)為一個(gè)實(shí)變量實(shí)值函數(shù),若有f(—x)=—f(x),則f(x)為奇函數(shù). 幾何上,一個(gè)奇函數(shù)關(guān)于原點(diǎn)對(duì)稱(chēng),亦即其圖像在繞原點(diǎn)做180度旋轉(zhuǎn)后不會(huì)改變. 奇函數(shù)的例子有x、sin(x)、sinh(x)和erf(x). 設(shè)f(x)為一實(shí)變量實(shí)值函數(shù),若有f(x)=f(—x),則f(x)為偶函數(shù). 幾何上,一個(gè)偶函數(shù)關(guān)于y軸對(duì)稱(chēng),亦即其圖在對(duì)y軸映射后不會(huì)改變. 偶函數(shù)的例子有|x|、x2、cos(x)和cosh(x). 偶函數(shù)不可能是個(gè)雙射映射. 連續(xù)性 在數(shù)學(xué)中,連續(xù)是函數(shù)的一種屬性.直觀上來(lái)說(shuō),連續(xù)的函數(shù)就是當(dāng)輸入值的變化足夠小的時(shí)候,輸出的變化也會(huì)隨之足夠小的函數(shù).如果輸入值的某種微小的'變化會(huì)產(chǎn)生輸出值的一個(gè)突然的跳躍甚至無(wú)法定義,則這個(gè)函數(shù)被稱(chēng)為是不連續(xù)的函數(shù)(或者說(shuō)具有不連續(xù)性). 1.求函數(shù)的單調(diào)性: 利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù). 利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導(dǎo)數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間. 反過(guò)來(lái),也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問(wèn)題(如確定參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo), (1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間); (2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間); 。3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立. 2.求函數(shù)的極值: 設(shè)函數(shù)yf(x)在x0及其附近有定義,如果對(duì)x0附近的所有的點(diǎn)都有f(x)f(x0)(或f(x)f(x0)),則稱(chēng)f(x0)是函數(shù)f(x)的極小值(或極大值). 可導(dǎo)函數(shù)的極值,可通過(guò)研究函數(shù)的單調(diào)性求得,基本步驟是: (1)確定函數(shù)f(x)的定義域;(2)求導(dǎo)數(shù)f(x);(3)求方程f(x)0的全部實(shí)根,x1x2xn,順次將定義域分成若干個(gè)小區(qū)間,并列表:x變化時(shí),f(x)和f(x)值的變化情況: 。4)檢查f(x)的符號(hào)并由表格判斷極值. 3.求函數(shù)的值與最小值: 如果函數(shù)f(x)在定義域I內(nèi)存在x0,使得對(duì)任意的xI,總有f(x)f(x0),則稱(chēng)f(x0)為函數(shù)在定義域上的值.函數(shù)在定義域內(nèi)的極值不一定,但在定義域內(nèi)的.最值是的. 求函數(shù)f(x)在區(qū)間[a,b]上的值和最小值的步驟:(1)求f(x)在區(qū)間(a,b)上的極值; (2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的值與最小值. 4.解決不等式的有關(guān)問(wèn)題: 。1)不等式恒成立問(wèn)題(絕對(duì)不等式問(wèn)題)可考慮值域. f(x)(xA)的值域是[a,b]時(shí), 不等式f(x)0恒成立的充要條件是f(x)max0,即b0; 不等式f(x)0恒成立的充要條件是f(x)min0,即a0. f(x)(xA)的值域是(a,b)時(shí), 不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0. 。2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0. 5.導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用: 實(shí)際生活求解(。┲祮(wèn)題,通常都可轉(zhuǎn)化為函數(shù)的最值.在利用導(dǎo)數(shù)來(lái)求函數(shù)最值時(shí),一定要注意,極值點(diǎn)的單峰函數(shù),極值點(diǎn)就是最值點(diǎn),在解題時(shí)要加以說(shuō)明. 【高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章: 高中數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)08-10 高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)06-08 高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)02-20 高中數(shù)學(xué)基本知識(shí)點(diǎn)總結(jié)07-10 高中數(shù)學(xué)知識(shí)點(diǎn)必修總結(jié)07-29 高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(精選22篇)07-11 高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)精選15篇08-21 高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15篇07-27高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15