《乘法分配律》教學(xué)反思(精選27篇)
身為一名剛到崗的教師,課堂教學(xué)是重要的工作之一,在寫教學(xué)反思的時(shí)候可以反思自己的教學(xué)失誤,教學(xué)反思要怎么寫呢?下面是小編為大家整理的《乘法分配律》教學(xué)反思(精選27篇),歡迎閱讀與收藏。
《乘法分配律》教學(xué)反思 篇1
乘法分配律是在學(xué)生學(xué)習(xí)了加法交換律、結(jié)合律和乘法交換律、結(jié)合律的基礎(chǔ)上教學(xué)的。它的教學(xué)重點(diǎn)是讓學(xué)生感知乘法分配律,知道什么是乘法分配律,難點(diǎn)是理解乘法分配律的意義,并會(huì)用乘法分配律進(jìn)行一些簡便運(yùn)算。所以本堂課我通過口算、讀算式、寫類似算式等多種方式讓學(xué)生去感知乘法分配律,最后由學(xué)生總結(jié)出乘法分配律概念。本堂課我感到比較滿意的地方,就是把課堂的主體權(quán)交給了學(xué)生,學(xué)生們都很主動(dòng)積極的參與到學(xué)習(xí)中來,可是不足之處頗多。
一、本課堂我的教學(xué)程序是:
先讓學(xué)生獨(dú)學(xué)“學(xué)一學(xué)”部分的6個(gè)問題,第1、2個(gè)問題根據(jù)情景圖上所給的信息估算并列出算式:(4+2)×25和4×25+2×25;第3個(gè)問題讓學(xué)生觀察這兩個(gè)算式的特點(diǎn);第4個(gè)問題根據(jù)你的發(fā)現(xiàn)完成填空。25×(40+4)=25×()+25×()、65×17+35×17=(+)×()(意圖是讓學(xué)生體驗(yàn)乘法分配律);第5個(gè)問題試著舉出類似的例子;第6個(gè)問題試一試:你可以用a、b、c分別表示三個(gè)數(shù),寫出你的發(fā)現(xiàn)嗎?(a+b)×c=()×()+()×()。獨(dú)學(xué)完六個(gè)問題后,學(xué)生通過群學(xué)和小組在全班的展示,進(jìn)一步達(dá)成學(xué)習(xí)目標(biāo)。接下來,通過練習(xí)檢測學(xué)生對乘法分配律的理解和應(yīng)用。最后通過兩道練習(xí)題對所學(xué)內(nèi)容進(jìn)行了延伸。((1)28×18-8×28、(2)25×99)
二、不足之處:
1、在要求同學(xué)們?nèi)タ偨Y(jié)出乘法分配律的概念時(shí)老師沒有很好的引導(dǎo),導(dǎo)致同學(xué)對乘法分配律特點(diǎn)的認(rèn)識比較模糊。
2、在學(xué)生總結(jié)出乘法分配律的概念時(shí),我只是一筆帶過的把乘法分配律通過課件再展示給學(xué)生們看了一遍,沒有反復(fù)強(qiáng)調(diào)乘法分配律的特點(diǎn),導(dǎo)致學(xué)生沒有較好的掌握乘法分配律。
3、課堂用語不夠簡潔。
三、結(jié)合學(xué)生的掌握情況我覺得教學(xué)此內(nèi)容需要注意以下幾點(diǎn):
1、區(qū)分乘法結(jié)合律與乘法分配律的特點(diǎn),多進(jìn)行對比練習(xí)。
乘法結(jié)合律的特征是幾個(gè)數(shù)連乘,而乘法分配律特征是兩數(shù)的和乘一個(gè)數(shù)或兩個(gè)積的'和。在練習(xí)中(40+4)×25與(40×4)×25這種題學(xué)生特別容易出現(xiàn)錯(cuò)誤。為了學(xué)生更好地掌握可以多進(jìn)行一些對比練習(xí)。如:進(jìn)行題組對比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;練習(xí)中可以提問:每組算式有什么特征和區(qū)別?符合什么運(yùn)算定律的特征?應(yīng)用運(yùn)算定律可以使計(jì)算簡便嗎?為什么要這樣算?
2、學(xué)生進(jìn)行一題多解的練習(xí),經(jīng)歷解題策略多樣性的過程,優(yōu)化算法,加深學(xué)生對乘法結(jié)合律與乘法分配律的理解。
如:計(jì)算125×88;101×89你能用幾種方法?125×88①豎式計(jì)算;②125×8×11;③125×(80+8);④125×(100-12);⑤(100+25)×88;⑥(100+20+5)×88等等。101×89①豎式計(jì)算;②(100+1)×89;③101×(80+9);101×(100-11);101×(90-1)等。對不同的解題方法,引導(dǎo)學(xué)生進(jìn)行對比分析,什么時(shí)候用乘法結(jié)合律簡便,什么時(shí)候用乘法分配律簡便?明確利用乘法結(jié)合律與乘法分配律進(jìn)行間算的條件是不一樣的。乘法結(jié)合律適用于連乘的算式,而乘法分配律一般針對有兩種運(yùn)算的算式。力爭達(dá)到“用簡便算法進(jìn)行計(jì)算”成為學(xué)生的一種自主行為,并能根據(jù)題目的特點(diǎn),靈活選擇適當(dāng)?shù)乃惴ǖ哪康摹?/p>
3、多練。
針對典型題目多次進(jìn)行練習(xí)。典型題型可選擇(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。對于比較特殊的題目可間斷性練習(xí),對優(yōu)生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等。
《乘法分配律》教學(xué)反思 篇2
乘法分配律是第三章的教學(xué)難點(diǎn)也是重點(diǎn)。這節(jié)課的設(shè)計(jì)。我是從學(xué)生的生活問題入手,利用與生活密切相關(guān)的情境圖植樹問題展開。這節(jié)課我力圖將教學(xué)生學(xué)會(huì)知識,變?yōu)橹笇?dǎo)學(xué)生會(huì)學(xué)知識。通過讓學(xué)生經(jīng)歷了 “ 觀察、初步發(fā)現(xiàn)、舉例驗(yàn)證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納 ” 這樣一個(gè)知識形成的過程;仡櫿麄(gè)教學(xué)過程,這節(jié)課的亮點(diǎn)主要體現(xiàn)在以下幾個(gè)方面:
一、引入生活問題,激趣探究
在教學(xué)中,我為學(xué)生做好新知鋪墊,然后創(chuàng)設(shè)大量生動(dòng)、具體、鮮活的生活情境,讓學(xué)生感到數(shù)學(xué)就是從身邊的生活中來的,激發(fā)學(xué)生學(xué)習(xí)的熱情。首先我創(chuàng)設(shè)情景,提出問題: “ 一共有多少名學(xué)生參加這次植樹活動(dòng)? ” 。讓學(xué)生根據(jù)提供的條件,用不同的方法解決,從而發(fā)現(xiàn)( 4 + 2 ) ×25=4×25 + 2×25 這個(gè)等式。然后請學(xué)生觀察,這個(gè)等式兩邊的運(yùn)算順序,使學(xué)生初步感知 “ 乘法分配律 ” 。再讓學(xué)生 “ 觀察這個(gè)等式左右兩邊的不同之處 ” ,再次感知 “ 乘法分配律 ” 。同時(shí)利用情景,讓學(xué)生充分的感知 “ 乘法分配律 ” ,為后來 “ 乘法分配律 ” 的探究提供了有力的保障。
二、提供學(xué)生獨(dú)立探究的機(jī)會(huì)
我要求學(xué)生觀察得到的兩個(gè)等式,提出 “ 你有什么發(fā)現(xiàn)? ” 。此時(shí)學(xué)生對 “ 乘法分配律 ” 已有了自己的一點(diǎn)點(diǎn)感知,我馬上要求學(xué)生模仿等式,自己再寫幾個(gè)類似的等式。使學(xué)生自己的模仿中,自然而然地完成猜測與驗(yàn)證,形成比較 “ 模糊 ” 的認(rèn)識。
三、為學(xué)生的學(xué)習(xí)方式的轉(zhuǎn)變創(chuàng)設(shè)了條件
為了讓 “ 改變學(xué)生的'學(xué)習(xí)方式,讓學(xué)生進(jìn)行探索性的學(xué)習(xí) ” 不是一句空話。在這節(jié)課上,我抓住學(xué)生的已有感知,立刻提出 “ 觀察這一組等式,你能發(fā)現(xiàn)其中的奧秘嗎? ” 。這樣,給學(xué)生提供了豐富的感知材料和具有挑戰(zhàn)性的研究材料,提供猜測與驗(yàn)證,辨析與交流的空間,把學(xué)習(xí)的主動(dòng)權(quán)力還給學(xué)生。學(xué)生的學(xué)習(xí)熱情高了,自然激起了探究的火花。學(xué)生的學(xué)習(xí)方式不再是單一的、枯燥的,整個(gè)教學(xué)過程都采用了讓學(xué)生觀察思考、自主探究、合作交流的學(xué)習(xí)方式。我想:只有改變學(xué)習(xí)方式,才能提高學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力。
《乘法分配律》教學(xué)反思 篇3
乘法的分配律學(xué)生在本冊書中是接觸過的。譬如第42頁的應(yīng)用題第7題,其中就滲透了乘法的分配律。在數(shù)學(xué)一課一練上也有過這種類似的形式。以前在講的時(shí)候是從乘法的意義上來幫助學(xué)生理解。
一、抓住重點(diǎn)。讓學(xué)生理解乘法分配律的意義。
在教學(xué)時(shí),我是按照如上的步驟進(jìn)行教學(xué)的。可是在我引導(dǎo)學(xué)生把算式寫成等式的時(shí)候讓學(xué)生觀察左右兩邊算式之間的'聯(lián)系與區(qū)別之后,學(xué)生就根本不知道從何下手。在他們的印象中,聯(lián)系就是根據(jù)乘法的意義來進(jìn)行聯(lián)系。根本沒有從數(shù)字上面去進(jìn)行分析。可以說,局限在原先的思維中,而沒有跳出來看。而讓學(xué)生寫出幾組算式后,觀察分析幾組等式左右兩邊的區(qū)別之后,學(xué)生也還是無法用語言來表達(dá)這一規(guī)律。場面一時(shí)之間很冷,后來我只好直接讓學(xué)生用字母來表示,變化為這樣的形式之后,有很多的學(xué)生都能夠?qū)懗鰜怼?/p>
我不明白這是為什么,時(shí)間我給了,小組也交流了,在小組交流時(shí)我已經(jīng)發(fā)現(xiàn)我們班上的學(xué)生根本無法發(fā)現(xiàn)其中的規(guī)律,所以也根本無法用語言來進(jìn)行表達(dá)。難道是坡度給得不夠嗎?還是平時(shí)的教學(xué)中出現(xiàn)了問題。這些都要一一地去分析。
二、考慮學(xué)生的學(xué)習(xí)情況,尊重他們的主觀感受。
在引導(dǎo)學(xué)生把兩道算式拼成一道等式之后,我讓學(xué)生交流,結(jié)果學(xué)生給出了兩種(65+45)×5=65×5+45×5。和65×5+45×5=(65+45)×5。我把這兩種方式都板書上黑板上。教材上要求的是第一種,即把(65+45)×5寫在等式的左邊,是為了方便學(xué)生對乘法分配律的意義的理解。我認(rèn)為,從乘法的意義這個(gè)角度上來說,意義的理解我們班級可以做到。既然是從意義出發(fā),那么兩種方式其實(shí)都是可以的。所以在用字母來表達(dá)時(shí),我們班的同學(xué)也有了兩種的表達(dá)方式:即(A+B)×C=A×C+B×C和A×C+B=(A+B)×C。
三、練習(xí)中注意乘法分配律的變式。
乘法分配律的意義是用,是為了計(jì)算的簡便。所以,在練習(xí)中我注意讓學(xué)生說清楚怎么使用的。尤其是想想做做第2題中的74×(20+1) 和74×20+74。一定要學(xué)生說清楚括號中的1是從哪兒來的。但是簡便的思想滲透得還很不夠。學(xué)生在完成想想做做第5題的時(shí)候,一大半的學(xué)生都沒有采用簡算的方法。哪怕他們在經(jīng)過了第四題的練習(xí)時(shí)也是一樣。
今天教學(xué)了運(yùn)算律——乘法分配律,對于例題的解決,學(xué)生能列出不同的算式,45*5+65*5和(45+65)*5,通過各自的計(jì)算得出計(jì)算結(jié)果相同,然后把這兩條算式寫成等式45*5+65*5=(45+65)*5,學(xué)生還能用自己的語言表述自己對等式的理解:45個(gè)5加65個(gè)5也就是(45+65)個(gè)5,然后又讓學(xué)生再仿寫了幾個(gè)算式后讓學(xué)生觀察等式總結(jié)自己的發(fā)現(xiàn),學(xué)生會(huì)用字母表示出這一規(guī)律,但用語言表述有困難了。
《乘法分配律》教學(xué)反思 篇4
《乘法分配律》一課是四年級上冊第四單元的教學(xué)內(nèi)容,它相對于加法交換律、結(jié)合律,乘法交換律和結(jié)合律來說會(huì)比較抽象,學(xué)生較難于理解。因此把本課的教學(xué)重點(diǎn)定位為“探索并發(fā)現(xiàn)乘法分配律,理解乘法分配律的意義”,讓學(xué)生經(jīng)歷“觀察算式——仿寫算式——解釋規(guī)律——應(yīng)用規(guī)律”的過程。
一、比賽導(dǎo)入 激發(fā)探究欲望
課前創(chuàng)設(shè)比賽情境:老師能很快說出下面幾道題的得數(shù),你信嗎?不信的同學(xué)敢跟我比一比嗎?(出示: 28×70+72×70 (125+10)×8 34×101)在我既對又快的說出結(jié)果時(shí),孩子們都很驚訝,于是我因勢利導(dǎo):剛才的比賽老師算得快,是因?yàn)槔蠋熡幸粋(gè)取勝的秘訣,它可以使計(jì)算簡便,你們想知道嗎?學(xué)完這節(jié)課,你就能發(fā)現(xiàn)其中的秘密。學(xué)生個(gè)個(gè)躍躍欲試,瞬間充滿探究的欲望,很好地激發(fā)了學(xué)生學(xué)習(xí)的興趣。
二、自主探索 發(fā)現(xiàn)規(guī)律
在解決“一共貼了多少塊磁磚?”中,學(xué)生列出了四個(gè)算式:3×10+5×10、4×8+6×8、(3+5)×10、(4+6)×8后,在讓學(xué)生觀察四個(gè)算式之后,先引導(dǎo)學(xué)生將四個(gè)算式進(jìn)行分類并說明分類的標(biāo)準(zhǔn)。通過這個(gè)環(huán)節(jié),學(xué)生對于相等的兩個(gè)算式的特征有了進(jìn)一步的了解,知道將3×10+5×10和(3+5)×10分為一類,將4×8+6×8和(4+6)×8分為一類,是因?yàn)樗鼈兊臄?shù)字都一樣,都是由3、5、10組成或是由4、6、8組成的,了解乘法分配律中有3個(gè)數(shù);如將3×10+5×10和將4×8+6×8分一類,將(3+5)×10和(4+6)×8分為一類的,則從中明白一邊都是兩個(gè)積相加,另一邊則是兩個(gè)數(shù)的和與一個(gè)數(shù)相乘。通過這個(gè)分類活動(dòng),讓學(xué)生自主發(fā)現(xiàn)規(guī)律,為理解乘法分配律做了很好的鋪墊。接著再讓學(xué)生仿寫算式,總結(jié)規(guī)律并解釋規(guī)律,最后再應(yīng)用規(guī)律揭示課前比賽中老師獲勝的奧秘。
三、錯(cuò)因分析 防患未然
以往的教學(xué)經(jīng)驗(yàn)告訴我,學(xué)生對于乘法分配律的運(yùn)用經(jīng)常出錯(cuò),也很容易與結(jié)合律混在一起。為了防患于未然,在教學(xué)中創(chuàng)設(shè)了“小馬虎這樣做,你同意嗎?
(1)(6+30)×7 = 7×6+7×30
(2) 25×(4+60)= 25×4+60
(3) 16×5×8 = 16×5+16×8
(4) 15×3+15×7 = (15+15)×(3+7)”讓學(xué)生進(jìn)行分析、判斷并修正。特別是第3題,讓學(xué)生對比乘法分配律和乘法結(jié)合律的數(shù)學(xué)模型,找出其中的區(qū)別,加以比較,從而發(fā)現(xiàn)模型左邊乘法結(jié)合律是兩個(gè)數(shù)的積,而乘法分配律是兩個(gè)數(shù)的和,而模型右邊乘法結(jié)合律是連乘的形式,而乘法分配律是兩個(gè)積相加的形式。這樣對比,加深對乘法分配律模型的'認(rèn)識和對其意義的理解。分析錯(cuò)因后,還不忘讓學(xué)生說說:“你想對小馬虎說什么?”來提醒告誡學(xué)生,除了要養(yǎng)成認(rèn)真細(xì)心的習(xí)慣外,還要運(yùn)用好乘法分配律,注意分配律與結(jié)合律的區(qū)別,將錯(cuò)誤扼制在搖籃里。
不足之處:雖然學(xué)生對于乘法分配律的理解比較到位,較好地達(dá)成了教學(xué)目標(biāo),但如能進(jìn)行適時(shí)拓展,讓學(xué)生通過“兩個(gè)數(shù)的和與一個(gè)數(shù)相乘來聯(lián)想到兩個(gè)數(shù)的差與一個(gè)數(shù)相乘,兩個(gè)數(shù)的和除以一個(gè)數(shù)及兩個(gè)數(shù)的差除以一個(gè)數(shù)是否都可以應(yīng)用乘法分配律這個(gè)數(shù)學(xué)模型?”會(huì)使課堂更豐滿,更有深度。
《乘法分配律》教學(xué)反思 篇5
一、讓學(xué)生從實(shí)質(zhì)上理解乘法分配律
在乘法分配律的教學(xué)中,如果只求形式把握不求實(shí)質(zhì)理解,一方面從認(rèn)識的角度看是不嚴(yán)謹(jǐn)?shù)模ㄐ问缴系牟煌耆珰w納不一定得出真理),另一方面很容易造成學(xué)生不求甚解、囫圇吞棗的不良認(rèn)知習(xí)慣。如果滿足于從形式上掌握乘法分配律,對于學(xué)生的后續(xù)發(fā)展也極為不利。因此,在教學(xué)時(shí)先出示了這樣一道例題:一件茄克衫65元,一條褲子35元。王老師買5件茄克衫和5條褲子,一共要花多少元?學(xué)生用了兩種解答方法即:(65+35)×5=65×5+35×5。借助對同一實(shí)際問題的'不同解決方法讓學(xué)生體會(huì)乘法分配律的合理性。
二、突破乘法分配律的教學(xué)難點(diǎn)
相對于乘法運(yùn)算中的其他規(guī)律而言,乘法分配律的結(jié)構(gòu)是最復(fù)雜的,等式變形的能力是教學(xué)的難點(diǎn)。為了突破教學(xué)難點(diǎn),我設(shè)計(jì)了一系列的練習(xí)。
1、在□里填數(shù),○里填運(yùn)算符號:如(25+45)×4=□○□○□○□……
2、在相等的一組算式后面打“√”:如16×7+24×7(16+24)×7□……
在這一組題目中教者重點(diǎn)評析了最后一道題:40×50+50×9040×(50+90)□。先讓學(xué)生說說著一題為什么不能打√,再根據(jù)乘法分配律的特征,分別寫出與左右算式相等的式子。通過練習(xí)學(xué)生對乘法分配律有了進(jìn)一步的認(rèn)識,又讓學(xué)生照上面的樣子寫出的幾個(gè)這樣的等式,最后歸納出了乘法分配律的字母表示:(a+b)×c=a×c+b×c。
實(shí)際上課堂時(shí)學(xué)生對于能否找到反例的活動(dòng)很感興趣,可以嘗試讓學(xué)生也提幾個(gè)反例,經(jīng)過討論逐個(gè)否決,在這樣的過程中,學(xué)生的等式變形能力能夠得到很大提高,有益于加深對乘法分配律的認(rèn)識。
《乘法分配律》教學(xué)反思 篇6
昨天,我與全班同學(xué)一起進(jìn)行了乘法分配律探討學(xué)習(xí),從作業(yè)的反饋中,一部分同學(xué)的作業(yè)相當(dāng)完美,對公式的應(yīng)用,變形拓展都能應(yīng)用自如;我也發(fā)現(xiàn)部分學(xué)生的正確率很低,特別乘法分配律的“分別”相乘理解得不清楚,沒有把每個(gè)加數(shù)與因數(shù)相乘,造成作業(yè)正確率低。針對這種情況,在教學(xué)中應(yīng)該注意些什么,我積極思考,與同學(xué)進(jìn)行交流,找出他們思維中出錯(cuò)的原因,正確進(jìn)行補(bǔ)救,以達(dá)到對乘法分配律的正確運(yùn)用,靈活應(yīng)用。
一、乘法分配律的教學(xué)時(shí),注重從例題的解答中引導(dǎo)抽象出乘法分配律。強(qiáng)調(diào)注重它的外形結(jié)構(gòu)特點(diǎn),也要同時(shí)注重其內(nèi)涵。
教材中植樹情境圖給出了以下的條件:一共有25個(gè)小組,每組里4人負(fù)責(zé)挖坑、種樹,2人負(fù)責(zé)抬水、澆樹,“一共有多少名同學(xué)參加植樹活動(dòng)?”這一問題,得到了如下兩種解答方法。
方法一:①每組有多少名同學(xué)? 2+4=6人
、25組共有多少名同學(xué)參加植樹? 6×25=150人
綜合列式:(2+4)×25
=6×25
=150(個(gè))
方法二:①挖坑種樹有多少人? 4×25=100人
②抬水澆水的有多少人? 2×25=50人
、垡还灿卸嗌偃? 100+50=150人
綜合列式:4×25+2×25
=100+50
=150(人)
同學(xué)們很容易得出(4+2)×25和4×25+2×25這兩個(gè)算式結(jié)果相等。這時(shí)同學(xué)們往往注意了等式兩邊的“外形”結(jié)構(gòu)特點(diǎn),即兩數(shù)的和乘一個(gè)數(shù)=兩個(gè)數(shù)的積的和,而忽視從乘法意義角度去理解。這時(shí)教師可提問“為什么兩個(gè)算式是相等的?”這里不僅要從解題思路的角度理解(4+2)×25=4×25+2×25是相等的,還要從乘法的意義的角度理解,即左邊表示6個(gè)25,右邊表示4個(gè)25加2個(gè)25,等于6個(gè)25,所以,(4+2)×25=4×25+2×25
二、注意乘法分配律的特點(diǎn),多進(jìn)行練習(xí)。
乘法分配律特征是兩數(shù)的和乘一個(gè)數(shù)或兩個(gè)積的和。在練習(xí)時(shí)學(xué)生特別容易出現(xiàn)錯(cuò)誤。把算式做成(80+8)×125
=80×125+80
=10000+80
=10080
為了學(xué)生更好地掌握可以讓學(xué)生劃出分別相乘的`箭頭如:
提醒同學(xué)把箭頭畫出來,把兩個(gè)加數(shù)“分別”與括號外的因數(shù)相乘,這樣盡量減少一些把一個(gè)加數(shù)乘掉的同學(xué)。
三、多進(jìn)行分組練習(xí)
一組:15×(8+4) (80+8)×125 (40+4)×25
47×(100+1) 78×(200+2) (100-1)×125
在練習(xí)上述題后,讓學(xué)生觀察括號里的數(shù)如果不運(yùn)用乘法分配律會(huì)變成怎樣的一個(gè)算式:
15×12 88×125 44×25
47×101 78×202 99×125
這些算式我們?nèi)绾螌⒁粋(gè)因數(shù)拆成兩個(gè)數(shù)相加的形式,這兩個(gè)加數(shù)盡量要拆成整十整百或是與外面的數(shù)相乘能得整十整百的數(shù)。
在讓學(xué)生在對乘法分配律基本公式的運(yùn)用掌握較好之后,再進(jìn)行第二組乘法分配律反方向運(yùn)用的形式。
《乘法分配律》教學(xué)反思 篇7
新課程如春風(fēng)化雨,走進(jìn)了師生的生活。倡導(dǎo)自主探究,關(guān)注有效生成,成為新課程改革永恒的主題。在追求有效的教學(xué)中我作出了以下幾點(diǎn)的嘗試:
1、從具體的問題情境出發(fā),有利于學(xué)生的自主探索
對于5套運(yùn)動(dòng)服一共多少元,這樣的問題對于大多數(shù)學(xué)生來說是駕輕就熟的。結(jié)合熟悉的問題情境,便于學(xué)生理解兩種算法間的聯(lián)系與區(qū)別,
為后敘對乘法分配律的成功探究理好伏筆。最近發(fā)展區(qū)理論告訴我們,只有找準(zhǔn)了學(xué)生的知識起點(diǎn),才能有效的教學(xué),熟悉的問題情境面向全體學(xué)生,只有全面參與的探究,才是真正的自主有效的探究。
2、鼓勵(lì)學(xué)生大膽猜想,在驗(yàn)證過程中形成共識。
數(shù)學(xué)的猜想是在一系列的實(shí)驗(yàn)、觀察、歸納、類比的基礎(chǔ)上獲得的,數(shù)學(xué)活動(dòng)脫離了猜想就會(huì)顯得沒有意義。本課教學(xué)乘法分配律的探究過程分為幾個(gè)層次:
。1)啟發(fā)猜想。在解決實(shí)際問題的基礎(chǔ)上通過比較,引導(dǎo)學(xué)生的發(fā)散性思維,提出猜想。在具體的`問題情境中,讓學(xué)生插上想象的翅膀,激起創(chuàng)新的火花。
。2)例舉驗(yàn)證。讓學(xué)生圍繞猜想,以小組探究為主要形式,以獨(dú)立思考例舉算式與合作學(xué)習(xí)有機(jī)結(jié)合,算出得數(shù)發(fā)現(xiàn)兩種算式結(jié)果相等,在相互交流中,形成對乘法分配律的共識。在交流、合作中,使學(xué)生真正成為學(xué)習(xí)的主人。
3、設(shè)計(jì)多層次練習(xí),在層層深入中啟迪學(xué)生的智慧
在形成對乘法分配律的認(rèn)識后,分幾個(gè)層次運(yùn)用知識訓(xùn)練,首先是基礎(chǔ)訓(xùn)練,書本55頁第1、2、3題練習(xí)從正的兩個(gè)角度進(jìn)行,使學(xué)生明確乘法分配律是互逆的。從而達(dá)到靈活運(yùn)用真正理解并掌握的目標(biāo)。其次變式練習(xí),我將書本55頁第4題組練習(xí)設(shè)計(jì)成游戲的形式呈現(xiàn),讓學(xué)生在國松的氛圍中,發(fā)現(xiàn)用乘法分配律可使計(jì)算方便。最后拓展延伸啟迪智慧。練習(xí)中再次結(jié)合具體的問題情境,通過觀察與比較體會(huì)到乘法分配律不僅適用于一個(gè)數(shù)兩個(gè)數(shù)的和,也適用于一個(gè)數(shù)乘兩個(gè)數(shù)的差。在這層層深入的練習(xí)中面向了全體學(xué)生,使每個(gè)孩子有所進(jìn)步,有所發(fā)現(xiàn),有所啟迪,有所收獲。
新課改的腳步在前行,新課扆的理念在深入。作為教師只有不斷內(nèi)化新課程理念,才能使自己的教學(xué)面向全體,促使學(xué)生真正的自主探究,成為學(xué)習(xí)的主人。
《乘法分配律》教學(xué)反思 篇8
教材提供了這樣一個(gè)主體圖:春季里,同學(xué)們開展植樹活動(dòng),一共有25個(gè)小組,每組里4人負(fù)責(zé)挖坑、種樹,2人負(fù)責(zé)抬水、澆樹。需要解決的問題是:一共有多少人參加植樹活動(dòng)?學(xué)生會(huì)用兩種不同的方法分別列出算式,接著通過計(jì)算發(fā)現(xiàn),兩個(gè)算式可以用=連接,即25(4+2)=254+252,從而通過比較等號兩邊兩個(gè)算式的不同與相同,概括出乘法分配律。當(dāng)我在一個(gè)班按照此教學(xué)設(shè)計(jì)教學(xué)后,我發(fā)現(xiàn)效果并不理想,表現(xiàn)有兩點(diǎn):
①有些學(xué)生只是機(jī)械的記憶了乘法分配律的公式,例如看到3544不能想到3540+354;
②由于沒有真正理解乘法分配律的內(nèi)涵,所以完全不能理解其逆應(yīng)用以及當(dāng)兩個(gè)數(shù)的差乘一個(gè)數(shù)時(shí)應(yīng)用乘法分配律。如:他們認(rèn)為6464+3664(64+36)64;265(105-5)=265105-2655。
針對此情況,我重新設(shè)計(jì)了教案。增加了一個(gè)問題:負(fù)責(zé)挖坑、種樹的同學(xué)比負(fù)責(zé)抬水、澆水的同學(xué)多多少人?這樣學(xué)生又列出另外兩個(gè)算式,通過計(jì)算后用等號連接: 25(4-2)=254-252,接下來,我引導(dǎo)學(xué)生觀察、對比兩組算式,充分地去發(fā)現(xiàn)相同點(diǎn)與不同點(diǎn)。這樣一來,促使了學(xué)生去尋找事物之間的聯(lián)系,抓住本質(zhì),尋找共同點(diǎn),促進(jìn)交流,順利地實(shí)現(xiàn)了自我構(gòu)建和知識創(chuàng)造。學(xué)生的發(fā)現(xiàn)自然也就更豐富、更有深度了:無論是兩個(gè)數(shù)的和還是兩個(gè)數(shù)的差去乘一位數(shù),都可以先把他們與這個(gè)數(shù)分別相乘,再相加或者再相減。此外,我還引導(dǎo)學(xué)生從右到左的觀察等式,嘗試用乘法的'意義去理解乘法分配律,即:4個(gè)25加2個(gè)25就等于(4+2)個(gè)25,4個(gè)25減2個(gè)25就等于(4-2)個(gè)25,這樣幫助學(xué)生突破乘法分配律逆應(yīng)用這個(gè)教學(xué)難點(diǎn)。
我通過對兩個(gè)班不同的教學(xué)設(shè)計(jì),感受到:認(rèn)真鉆研教材,多動(dòng)心思,深入挖掘教材中的寶貴資源,會(huì)使教材的內(nèi)涵更有廣度和深度,也為培養(yǎng)和發(fā)展學(xué)生思維的靈活性,提供了更廣闊的空間。
《乘法分配律》教學(xué)反思 篇9
乘法分配律是教學(xué)的難點(diǎn)也是重點(diǎn)。這節(jié)課采用從生活中的問題入手,利用學(xué)生感興趣的具體情境展開。這節(jié)課我力圖將教學(xué)生學(xué)會(huì)知識,變?yōu)橹笇?dǎo)學(xué)生會(huì)學(xué)知識,將重視結(jié)論的記憶變?yōu)橹匾晫W(xué)生獲取結(jié)論的體驗(yàn)和感悟,將模仿式的學(xué)習(xí)變?yōu)樘骄渴降膶W(xué)習(xí)。學(xué)生經(jīng)歷了“觀察、初步發(fā)現(xiàn)、舉例驗(yàn)證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個(gè)知識形成過程。這樣不僅讓學(xué)生獲得了數(shù)學(xué)基礎(chǔ)知識和基本技能,而且更能培養(yǎng)學(xué)生主動(dòng)探究、發(fā)現(xiàn)知識的能力;仡櫿麄(gè)教學(xué)過程,這節(jié)課的亮點(diǎn)體現(xiàn)在以下幾個(gè)方面:
一、從身邊引入熟悉的生活問題,激趣探究
我們在教學(xué)中要為學(xué)生創(chuàng)設(shè)大量生動(dòng)、具體、鮮活的`生活情境,讓學(xué)生感到數(shù)學(xué)就是從身邊的生活中來的,激發(fā)學(xué)生學(xué)習(xí)的熱情。在教學(xué)時(shí),我先創(chuàng)設(shè)情景,提出問題:“一共有多少名學(xué)生參加這次植樹活動(dòng)?”。讓學(xué)生根據(jù)提供的條件,用不同的方法解決,從而發(fā)現(xiàn)(4+2)×25=4×25+2×25這個(gè)等式。然后請學(xué)生觀察,這個(gè)等式兩邊的運(yùn)算順序,使學(xué)生初步感知“乘法分配律”。再讓學(xué)生“觀察這個(gè)等式左右兩邊的不同之處”,再次感知“乘法分配律”。我利用情景,讓學(xué)生充分的感知“乘法分配律”,為后來“乘法分配律”的探究提供了有力的保障。
二、為學(xué)生提供了自己獨(dú)立探究的機(jī)會(huì)
數(shù)學(xué)教學(xué)應(yīng)該是數(shù)學(xué)教學(xué)的活動(dòng)。傳統(tǒng)的教學(xué)活動(dòng)往往只重視結(jié)論的記憶,而這節(jié)課我把學(xué)生的活動(dòng)定位在感悟和體驗(yàn)上,引導(dǎo)學(xué)生用數(shù)學(xué)思維方式去發(fā)現(xiàn),去探索。尤其是在學(xué)生初步感悟到兩種算法相等關(guān)系的基礎(chǔ)上,繼續(xù)為學(xué)生創(chuàng)造一個(gè)思考的情景。我要求學(xué)生觀察得到的兩個(gè)等式,提出“你有什么發(fā)現(xiàn)?”。此時(shí)學(xué)生對“乘法分配律”已有了自己的一點(diǎn)點(diǎn)感知,我馬上要求學(xué)生模仿等式,自己再寫幾個(gè)類似的等式。使學(xué)生自己的模仿中,自然而然地完成猜測與驗(yàn)證,形成比較“模糊”的認(rèn)識。
三、為學(xué)生的學(xué)習(xí)方式的轉(zhuǎn)變創(chuàng)設(shè)了條件
模仿學(xué)習(xí),學(xué)生“知其然,而不知其所以然”,知識容易遺忘,而且不能靈活應(yīng)用。改變學(xué)生的學(xué)習(xí)方式,讓學(xué)生進(jìn)行探索性的學(xué)習(xí),不能是一句空話。在這節(jié)課上,我抓住學(xué)生的已有感知,立刻提出“觀察這一組等式,你能發(fā)現(xiàn)其中的奧秘嗎?”。這樣,給學(xué)生提供了豐富的感知材料和具有挑戰(zhàn)性的研究材料,提供猜測與驗(yàn)證,辨析與交流的空間,把學(xué)習(xí)的主動(dòng)權(quán)力還給學(xué)生。學(xué)生的學(xué)習(xí)熱情高了,自然激起了探究的火花。學(xué)生的學(xué)習(xí)方式不再是單一的、枯燥的,整個(gè)教學(xué)過程都采用了讓學(xué)生觀察思考、自主探究、合作交流的學(xué)習(xí)方式。我想:只有改變學(xué)習(xí)方式,才能提高學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力。
《乘法分配律》教學(xué)反思 篇10
乘法分配律教學(xué)是在學(xué)生學(xué)習(xí)了加法交換律、結(jié)合律和乘法交換律、結(jié)合律的基礎(chǔ)上進(jìn)行的。它是學(xué)生較難理解與敘述的定律。因此我在教學(xué)中讓學(xué)生在不斷的感悟、體驗(yàn)、練習(xí)中理解乘法分配律,從而達(dá)到熟練掌握的效果。
一、從學(xué)生已有生活經(jīng)驗(yàn)出發(fā),通過觀察、類比、歸納、驗(yàn)證、運(yùn)用等方法深化和豐富對乘法分配律的認(rèn)識。滲透“由特殊到一般,再由一般到特殊”的認(rèn)識事物的方法,培養(yǎng)學(xué)生獨(dú)立自主、主動(dòng)探索、發(fā)現(xiàn)問題,解決問題的能力,提高數(shù)學(xué)的`應(yīng)用意識。
二、在本課教學(xué)過程的設(shè)計(jì)上,我盡量想體現(xiàn)新課標(biāo)的一些理念,注重從實(shí)際出發(fā),把數(shù)學(xué)知識和實(shí)際生活緊密聯(lián)系起來,讓學(xué)生在體驗(yàn)中學(xué)到知識。舉例:設(shè)計(jì)學(xué)校買書的情景。讓學(xué)生幫助出主意。出示:“一套故事書45元,一套科技書35元,各買3套書。一共需要多少元錢?”讓學(xué)生嘗試通過不同的方法得出:(45 +35 )×3 = 80×3 = 240(元)、45×3 + 35×3 = 135+105= 240(元)。此時(shí),讓學(xué)生觀察通過計(jì)算方法得到了相同的結(jié)果,這兩個(gè)算式可用“=”連接。使之讓學(xué)生從中感受了乘法分配律的模型。從而引出乘法分配律的概念:“兩個(gè)數(shù)的和同一個(gè)數(shù)相乘,可以把兩個(gè)加數(shù)分別同這個(gè)數(shù)相乘,再把兩個(gè)積相加,結(jié)果不變!庇米帜感问奖硎荆海╝ + b)× c = a × c + b × c
本節(jié)課氣氛活躍,學(xué)生積極性高?赏ㄟ^練習(xí)發(fā)現(xiàn)孩子們掌握得并不如意,在下節(jié)課我將繼續(xù)加強(qiáng)練習(xí)。
《乘法分配律》教學(xué)反思 篇11
乘法分配律是在學(xué)生學(xué)習(xí)了加法交換律、結(jié)合律和乘法交換律、結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是學(xué)生較難理解和敘述的定律。因此在本節(jié)課教學(xué)設(shè)計(jì)上,我結(jié)合新課標(biāo)的一些基本理念和本地區(qū)的具體情況,注重從學(xué)生的實(shí)際出發(fā),把數(shù)學(xué)知識和實(shí)際生活緊密聯(lián)系起來,讓學(xué)生在不斷的感悟和體驗(yàn)中學(xué)習(xí)知識。
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“學(xué)生的數(shù)學(xué)學(xué)習(xí)內(nèi)容應(yīng)當(dāng)是現(xiàn)實(shí)的、有意義的、富有挑戰(zhàn)性的!睌(shù)學(xué)教育家波利亞曾經(jīng)說過:“數(shù)學(xué)教師的首要責(zé)任是盡其一切可能,來發(fā)展學(xué)生解決問題的能力!倍覀冞^去的教學(xué)往往比較重視解決書上的'數(shù)學(xué)問題,學(xué)生一旦遇到實(shí)際問題就束手無策。因此,在上課的一開始,我創(chuàng)造性地使用教材,創(chuàng)設(shè)了一個(gè)肯德基餐廳用餐的情境,使學(xué)生置身于非常熟悉的生活情境中,極大地激發(fā)了學(xué)生的學(xué)習(xí)欲望。學(xué)生很快地按要求用兩種不同的方法列出算式,并且能夠輕而易舉地證明兩式相等。接著要求學(xué)生通過觀察這個(gè)等式看看能否發(fā)現(xiàn)什么規(guī)律。在此基礎(chǔ)上,我并沒有急于讓學(xué)生說出規(guī)律,而是繼續(xù)為學(xué)生提供具有挑戰(zhàn)性的研究機(jī)會(huì):“請你再舉出一些符合自己心中規(guī)律的等式”,繼續(xù)讓學(xué)生觀察、思考、猜想,然后交流、分析、探討,感悟到等式的特點(diǎn),驗(yàn)證其內(nèi)在的規(guī)律,從而概括出乘法分配律。這樣既培養(yǎng)了學(xué)生的猜想能力,又培養(yǎng)了學(xué)生驗(yàn)證猜想的能力。學(xué)生通過自主探索去發(fā)現(xiàn)、猜想、質(zhì)疑、感悟、調(diào)整、驗(yàn)證、完善,主體性得到了充分的發(fā)揮。
與此同時(shí),我還十分注重合作與交流,多向互動(dòng)。倡導(dǎo)課堂教學(xué)的動(dòng)態(tài)生成是新課程標(biāo)準(zhǔn)的重要理念。在數(shù)學(xué)學(xué)習(xí)中,每個(gè)學(xué)生的思維方式、智力、活動(dòng)水平都是不一樣的。因此,為了讓不同的學(xué)生在數(shù)學(xué)學(xué)習(xí)中都得到發(fā)展,我在本課教學(xué)中立足通過生生、師生之間多向互動(dòng),特別是通過學(xué)生之間的互相啟發(fā)與補(bǔ)充來培養(yǎng)他們的合作意識,實(shí)現(xiàn)對“乘法分配律”的主動(dòng)建構(gòu)。學(xué)生在這樣一個(gè)開放的環(huán)境中博采眾長,共同經(jīng)歷猜想、驗(yàn)證、歸納知識的形成過程,共同體驗(yàn)成功的快樂。既培養(yǎng)了學(xué)生的問題意識,又拓寬了學(xué)生思維,學(xué)生也學(xué)得積極主動(dòng)。
應(yīng)用規(guī)律,解決實(shí)際問題是數(shù)學(xué)學(xué)習(xí)的目的所在。在練習(xí)題型的設(shè)計(jì)上,有搶答(填空)題、判斷題、連線題、簡算題和拓展題,它們并不孤立,而是有機(jī)地聯(lián)系在一起,由基本題到變式題,由一般題到綜合題,有一定的梯度和廣度。使學(xué)生逐步加深認(rèn)識,在弄清算理的基礎(chǔ)上,學(xué)生能根據(jù)題目的特點(diǎn),靈活地運(yùn)用所學(xué)知識進(jìn)行簡便運(yùn)算和拓展練習(xí)。不僅要求學(xué)生會(huì)順向應(yīng)用乘法分配律,而且還要求學(xué)生會(huì)反向應(yīng)用。通過正反應(yīng)用的練習(xí),加深學(xué)生對乘法分配律的理解。從課堂反饋來看,學(xué)生熱情較高,能夠?qū)W以致用。學(xué)生通過自己的努力以及和同學(xué)的交流合作,解題速度和準(zhǔn)確性都很理想。只有這樣才能真正提高學(xué)生的計(jì)算能力。
本節(jié)課有一定的亮點(diǎn),但其中出現(xiàn)了不少問題:學(xué)生參與的積極性沒有預(yù)想中那么高?赡芘c我相對缺乏激勵(lì)性語言有關(guān)。也有可能今天的題材學(xué)生不太感興趣。但學(xué)生不感興趣的材料,教師應(yīng)該想辦法使呈現(xiàn)的這個(gè)材料變得能讓學(xué)生感興趣。另外,在回答問題時(shí),個(gè)別學(xué)生的語言不夠流利、準(zhǔn)確。對乘法分配律的敘述稍顯羅嗦,不夠堅(jiān)定、自信。在這方面有待今后加強(qiáng)訓(xùn)練和提高
《乘法分配律》教學(xué)反思 篇12
《乘法分配律》是四年級數(shù)學(xué)下冊第三單元中的一節(jié)教學(xué)內(nèi)容,一直以來的教學(xué)中,我認(rèn)為這節(jié)課的教學(xué)都是一個(gè)教學(xué)難點(diǎn),學(xué)生很難學(xué)好。
我認(rèn)為其中的不易可以從三個(gè)方面來說:其一,例題僅僅是分配律的一點(diǎn)知識,在課下的練習(xí)題中還存在不少乘法分配律類型的題(不過,這好像也是新課改后教材的表現(xiàn))。如果讓學(xué)生僅僅學(xué)會(huì)例題,可以說,你也只是學(xué)到了乘法分配律的皮毛;其二,乘法分配律只是一種簡單的計(jì)算方法的'應(yīng)用,所有用乘法分配律計(jì)算的試題,用一般的方法完全都可以計(jì)算出來,也就是說,如果不用乘法分配律,學(xué)生完全可以計(jì)算出結(jié)果來,只不過不能符合簡便計(jì)算的要求罷了,問題是學(xué)生已學(xué)過一般的方法,學(xué)生在計(jì)算時(shí)想的最多的還是一般的計(jì)算方法;其三,本節(jié)課的教學(xué)靈活性比較大,并沒有死板板的模式可以來死記硬背,就是學(xué)生記住了定律,在運(yùn)用時(shí),運(yùn)用錯(cuò)了,也是很大的麻煩,從題目的分析到應(yīng)用定律都需要學(xué)生的認(rèn)真分析及靈活運(yùn)用。
針對以上自己分析可能出現(xiàn)的問題,,確定從以下兩個(gè)方面時(shí)行教學(xué):
第一,以書本為依托,學(xué)好基礎(chǔ)知識。
有一句話叫做“萬變不離其宗”。雖然課下還有多種類型題,但它們都與書上的例題有著親密的聯(lián)系,所以教學(xué)還是要以書本為依托。在教學(xué)中,我引導(dǎo)生通過觀察兩個(gè)不同的算式,得出乘法分配律的用字母表示數(shù):a×b+a×c=a×(b+c),在引導(dǎo)學(xué)生經(jīng)過練習(xí)之后,我還強(qiáng)調(diào)學(xué)生,要做到:a×(b+c)=a×b+a×c。用我自己的話說,就是:能走出去,還要走回來。再次經(jīng)過練習(xí),在學(xué)生掌握差不多時(shí),簡單變換一下樣式:(a+b)×c=a×c+b×c,走回來:a×c+b×c=(a+b)×c。如此以來,學(xué)生算是對乘法分配律有了個(gè)初步的認(rèn)識,知道是怎么回事,具體的運(yùn)用還差很遠(yuǎn),因?yàn)檫有很多的類型學(xué)生并不知道。于是我就在第二節(jié)課進(jìn)行了第二個(gè)方面的教學(xué)。
第二,以練習(xí)為載體,系統(tǒng)鞏固知識。
針對乘法分配律還有多種類型,例題中也沒講到的情況,我上網(wǎng)查資料,加上并時(shí)的一些認(rèn)識,把乘法分配律分為五類,并對每類進(jìn)行簡單的分析提示,附以相應(yīng)的練習(xí)題印發(fā)給學(xué)生,讓學(xué)生進(jìn)行練習(xí)。
類型一:(a+b)×c a×(b-c)
例:A (40+8)×25 B 15×(40-8)
類型二:a×b+a×c a×b-a×c
例:A 36×34+36×66 B 325×113-325×13
類型三:100+1或80+1
例:A 78×102 B 125×81
類型四:100-1或40-1
例:A 45×98 B 25×39
類型五:+1或-1
例:A 83+83×99 B 91×31-91
《乘法分配律》教學(xué)反思 篇13
乘法分配律是小學(xué)四年級學(xué)生比較難理解與敘述的定律。如何使學(xué)生掌握得更好,記得更牢?我想學(xué)生自己獲得的知識要比灌輸?shù)脕淼挠浀酶。因此我在一開始設(shè)計(jì)了一個(gè)購物的情境,讓學(xué)生在一個(gè)寬松愉悅的環(huán)境中,走進(jìn)生活,開始學(xué)習(xí)新知。
教學(xué)內(nèi)容:教材第54~55頁例題,完成“做一做”。
教學(xué)目標(biāo):
1、讓學(xué)生在解決實(shí)際問題的過程中發(fā)現(xiàn)乘法分配律;通過計(jì)算說理,理解乘法分配律。
2、讓學(xué)生在發(fā)現(xiàn)規(guī)律的過程中,發(fā)展比較、分析、抽象和概括的能力,增強(qiáng)用符號表達(dá)數(shù)學(xué)規(guī)律的意識,進(jìn)一步體會(huì)數(shù)學(xué)與生活的聯(lián)系。
3、培養(yǎng)學(xué)生聯(lián)系現(xiàn)實(shí)問題主動(dòng)參與探索、發(fā)現(xiàn)和概括規(guī)律的學(xué)習(xí)態(tài)度,感受數(shù)學(xué)規(guī)律的確定性和普遍適用性,獲得發(fā)現(xiàn)數(shù)學(xué)規(guī)律的愉悅感和成功
感,增強(qiáng)學(xué)習(xí)的興趣和自信。
教學(xué)重、難點(diǎn):
發(fā)現(xiàn)并理解乘法分配律。
教具準(zhǔn)備:
多媒體課件一套。
教學(xué)過程
一、創(chuàng)設(shè)問題情境
談話:這學(xué)期,我們學(xué)校鼓號隊(duì)又增加了新成員,輔導(dǎo)員柳老師正在為他們準(zhǔn)備服裝呢。ㄕn件出示商店場景)
二、展開探索過程
1、初步感知。
提問:仔細(xì)觀察,從圖中你獲得了哪些信息?
學(xué)生列式后交流反饋解題思路,并借助圖形加深學(xué)生對兩種解題思路的體會(huì)。
提問:猜一猜,這兩種方法的計(jì)算結(jié)果會(huì)怎么樣?
計(jì)算驗(yàn)證:算一算,來證明你的猜想是正確的。
板書等式:(30+25)x4=30x4+25x4
2、類比展開。
。1)出示圖形,讓學(xué)生說說你想到了什么?你能用兩種方法求出6套衣服一共要付多少元嗎?板書:(30+25)x6=30x6+25x6
。2)除了把長方形看成上衣,梯形看成褲子,把它們看成6套衣服,還可以看成什么?
要求6套課桌椅多少元,你準(zhǔn)備怎么解決?
板書:(100+60)x6=100x6+60x6
3、體驗(yàn)感悟。
(1)類似這樣的.等式還有嗎?你能寫出第4組嗎?
學(xué)生舉例后,挑3組板書。
(2)提問:這3組算式相等嗎?怎么證明?(計(jì)算、乘法的意義)
同桌互相檢查剛才寫的算式是否相等。
。3)交流:介紹你寫成功的經(jīng)驗(yàn)
引導(dǎo):你是怎么根據(jù)左邊的算式寫出右邊的算式的?
4、提示規(guī)律。
(1)提問:像這樣的等式能寫完嗎?
。2)用自己喜歡的方式表達(dá)所發(fā)現(xiàn)的規(guī)律,在小組里交流。展示。
板書:(a+b)xc=axc+bxc
。3)板書:乘法分配律
讓學(xué)生用自己的語言說說這個(gè)字母式子表示什么,師小結(jié)。
三、鞏固內(nèi)化
1、在□里填上合適的數(shù),在○里填上運(yùn)算符號。
(42+35)×2=42×□+35×□
27×12+43×12=(27+□)×□
15×26+15×14=□○(□○□)
學(xué)生獨(dú)立填寫,指名報(bào)答案,全班共同校對。指出后兩題是乘法分配律的逆向應(yīng)用。
出示:72x(30+6)= 齊說答案。
出示:(25-12)x4= 可能等于什么?怎樣才能確認(rèn)?你能聯(lián)想到什么?小結(jié)
2、橫著看,在得數(shù)相同的兩個(gè)算式后面畫“√”。
。48+52)×13 48×13+52×13 □
40×5+2×5 5×(40+2) □
75×(19+1) 75×19+75 □
40×50+50×90 40×(50+90) □
27×(16+30) 27×16+30 □
獨(dú)立完成,小組討論為什么有的是相同的,有的是不相同的。指名報(bào)答案,說說第三組兩道算式為什么是相等的?第四組的兩道算式為什么不相等?怎樣改一下能使它們相等?
出示打“√”的算式,如果讓你計(jì)算的話,你更愿意計(jì)算哪邊的式子呢?為什么?小結(jié):有時(shí)應(yīng)用乘法分配律可以使計(jì)算簡便。
四、總結(jié)回顧
通過今天這節(jié)課的學(xué)習(xí),你有什么收獲?
五、布置作業(yè)
1、必做題:想想做做第5題。
2、選做題:如果把乘法分配律中“兩個(gè)數(shù)的和”換成“3個(gè)數(shù)的和”、“4個(gè)數(shù)的和”或“更多個(gè)數(shù)的和”,結(jié)果還會(huì)不會(huì)不變?用合適的方試著進(jìn)行驗(yàn)證。
《乘法分配律》教學(xué)反思 篇14
《乘法分配律》是整個(gè)四年級運(yùn)算定律中最最重要的一節(jié)。理解乘法分配律、并會(huì)很好運(yùn)用他很重要!所以這節(jié)課重點(diǎn)就是在于讓學(xué)生理解乘法分配律的意義。
整堂課基本完成了教學(xué)目標(biāo),但在環(huán)節(jié)設(shè)置以及細(xì)節(jié)等方面存在很多問題。
1、概念課親歷過程需精確、嚴(yán)密
本節(jié)課是一節(jié)概念課,旨在學(xué)生通過操作整理式子(多余3)——觀察式子——猜測觀點(diǎn)——驗(yàn)證觀點(diǎn)——總結(jié)定理,這樣一個(gè)過程。如果后面沒有反例,就證明存在這種成立的可能。而在整節(jié)課程中,學(xué)生沒有明確的用具體數(shù)字驗(yàn)證它是成立的,所以推導(dǎo)出來的不具有說服力。可能會(huì)給學(xué)生一種不好的印象,猜想后就可以了,不需要驗(yàn)證、或者不需要反證來驗(yàn)證就可以了。所以概念怎么推到出來這個(gè)很重要。
2、師生互動(dòng)評判加強(qiáng)
學(xué)生無論是回答好的還是不好的,對的還是不對的,都需要老師帶有評判性的語言,這樣對于學(xué)生的積極性都可以提高。同樣的對于典型的.問題可以進(jìn)行當(dāng)堂解答,這都是課堂生成的一個(gè)過程,需要重視學(xué)生在整個(gè)課程的反映這個(gè)很重要。
3、語言表達(dá)方面可以優(yōu)化
在思維拓展的時(shí)候,本來應(yīng)該是“如果給你一把剪刀,你可以拼嗎?用最少的次數(shù)去剪,使它拼成一個(gè)長方形,你會(huì)剪嗎?拼有什么要求嗎?如果沒有相等的兩條邊,你可以創(chuàng)造嗎?”而在課堂上,表達(dá)的意思卻是:“如果給你一把剪刀,你可以拼嗎?拼有什么要求,如果沒有,你可以創(chuàng)造嗎?”結(jié)果導(dǎo)致最終在小組活動(dòng)中,學(xué)生隨意亂剪,并不理解活動(dòng)的意義。數(shù)學(xué)講究的是嚴(yán)密性以及邏輯性,所以要求要明確一些,引導(dǎo)性的語言要貼切。整個(gè)語言組織,如:相等的兩條表而不是相同的兩條邊
4、注重細(xì)節(jié)
在整個(gè)過程中有同學(xué)列出38×(547-347)和(547-347)×38這兩個(gè)算式,它都可以用乘法分配律來講,但同時(shí)兩者也是有差異的。課堂生成的東西需要注意,并且坐好預(yù)設(shè)。將38放到前面,可以避免出錯(cuò)。這個(gè)小的知識點(diǎn)也是需要去讓學(xué)生通過對比來理解的這很重要。方便他們積累避免錯(cuò)誤。
5、試教是一個(gè)課堂診斷的過程
在上整堂課前,已經(jīng)去試教過3個(gè)班。雖然每個(gè)班情況都不一樣,但是試教就是跟孩子的磨合過程,試教過程中發(fā)現(xiàn)什么問題,再去改正過來,調(diào)整好。如果每個(gè)班都出現(xiàn)這樣的問題,說明課程設(shè)置不合理。需要對教案進(jìn)行修改。這也是為什么需要試教。希望在試教過程中,能夠反思,自己發(fā)現(xiàn)問題所在。
總的來說,這個(gè)課從制作教案、試教、修改、正式教學(xué)過程中,感謝數(shù)學(xué)組尤其是師傅對我的指點(diǎn)以及磨煉。試教讓我明白了課件調(diào)整的重要性,一定要符合學(xué)生的認(rèn)知發(fā)展規(guī)律。讓我明白了數(shù)學(xué)語言是需要邏輯性,針對性以及嚴(yán)密性的。所以未來的路還很長,我還會(huì)再修改磨煉的。要相信好課是不斷磨出來的!
《乘法分配律》教學(xué)反思 篇15
我對教材內(nèi)容、學(xué)情進(jìn)行了認(rèn)真的分析之后,確定了教學(xué)目標(biāo):通過小組合作探索乘法分配律的活動(dòng),進(jìn)一步體驗(yàn)探索規(guī)律的過程,并能用字母表示;經(jīng)歷共同探索的過程,培養(yǎng)解決實(shí)際問題和數(shù)學(xué)交流的能力;會(huì)用乘法分配律進(jìn)行一些簡便計(jì)算。通過學(xué)生自主研究、小組討論、全班交流以及講學(xué)練相結(jié)合,設(shè)計(jì)相應(yīng)的練習(xí)題,逐步理解抽象的乘法分配律。
通過教研組全體老師的努力,我們設(shè)計(jì)了比較合理的前置性小研究。
在本節(jié)課的教學(xué)過程中,學(xué)生通過對“前置性小研究”的探索研究,能會(huì)用兩種方法去解決同一問題,并且能講出自己的思路;能夠觀察出并說出兩道算式的特點(diǎn),能夠觀察出兩道算式的結(jié)果是相同的;能夠按照算式的特點(diǎn)進(jìn)行舉例;能夠自己說出規(guī)律,總結(jié)規(guī)律;能夠用求結(jié)果和乘法的意義去驗(yàn)證這條規(guī)律的正確性、普遍性;能夠運(yùn)用乘法分配律解決實(shí)際的問題,在做題的同時(shí)感受乘法分配律給計(jì)算帶來的方便。
當(dāng)然,本節(jié)課的教育教學(xué)過程,也是有不足的地方。我認(rèn)為:
1、教師在施教的過程中,經(jīng)常性的打斷學(xué)生的發(fā)言。其實(shí)這是很不好的習(xí)慣。課下陳靖嫣對我說:“老師,你一打斷我,我就不知道怎么說了!蔽易约阂惨庾R到了這個(gè)問題。我覺得在“生本課堂”中教師,應(yīng)該有這樣一種意識,那就是“等”的意識。等學(xué)生表達(dá)完他的所有想法之后,他們在遇到“瓶頸”的時(shí)候,老師可以經(jīng)過有智慧的引導(dǎo),幫助他們度過“難過”?墒俏覀兒芏鄷r(shí)候,經(jīng)常犯的錯(cuò)誤是,學(xué)生只要一有點(diǎn)小問題,老師馬上就出馬,這樣是極不好的做法。像本次課中,我有好幾次打斷了陳靖嫣同學(xué)的匯報(bào),也打斷了王孟陽同學(xué)的匯報(bào),還有好幾次打斷了同學(xué)們的交流活動(dòng)。
對于這種打斷可能在心里帶著很僥幸的心理,認(rèn)為我必須在規(guī)定的時(shí)間完成某些教學(xué)任務(wù),不能讓本節(jié)課“節(jié)外生枝”?墒,這種心理違背了“生本課堂”的基本教學(xué)理念。
2、教師在引導(dǎo)的過程中,不能照顧到學(xué)生的想法。像:徐昊同學(xué)和李厚杰同學(xué)在課堂上,表達(dá)了自己的想法?墒俏以谑┙痰倪^程中,沒有給予足夠的重視?赡軐τ诒竟(jié)課的教學(xué),他們的想法,是在浪費(fèi)時(shí)間。可是,我的這種做法,卻不能照顧到他們的`后續(xù)發(fā)展。我覺得在處理這個(gè)事件的時(shí)候,我應(yīng)該既不能讓本節(jié)課“跑偏”,也不能澆滅他們的“興趣之火”。這是需要有一定的教育智慧的。
3、我覺得學(xué)生們的交流是不夠熱烈的。根本的原因是:學(xué)生們的研究不夠到位,不會(huì)提出自己的疑問,不能對自己的疑問進(jìn)行探索研究。我覺得這都是老師在平時(shí)教學(xué)中,沒有給予足夠的指導(dǎo)的原因。
還有很多的問題,也許是我沒有意識到的。
結(jié)合本節(jié)課,關(guān)于生本課堂我有了很多的想法。
我認(rèn)為真正的“生本課堂”是這樣的:
教師在教學(xué)設(shè)計(jì)、教學(xué)過程等各個(gè)環(huán)節(jié),能體現(xiàn)學(xué)生的主體地位,從細(xì)節(jié)去體現(xiàn)。也是一種和諧的教育氛圍。教師和學(xué)生可以圍繞一個(gè)問題據(jù)理力爭,也可以在一節(jié)課中,實(shí)現(xiàn)多個(gè)知識點(diǎn)的“串聯(lián)”,也可能好幾節(jié)課我們突破不了一個(gè)知識點(diǎn)的講解。教師千萬要改變原先“計(jì)件工作”的模式,我們還原教育本來的色彩。它應(yīng)該是自然的,富有詩情畫意的。我們身在其中,師生應(yīng)該一起去營造一種氛圍,體會(huì)教育給我們帶來的幸和充實(shí)感。
我立志讓我的課堂,成為我們幸福的源泉。
《乘法分配律》教學(xué)反思 篇16
首先結(jié)合學(xué)生熟悉的問題情境,幫助學(xué)生體會(huì)運(yùn)算定律的現(xiàn)實(shí)背景。接著設(shè)計(jì)“懸念”,拋出四組題目,把學(xué)生引到“兩算式的結(jié)果相等”的情況中來。先請學(xué)生猜想,而后驗(yàn)證,再請學(xué)生編題,讓每一個(gè)學(xué)生都不由自主地參與到研究中來。在編題過程中,很多學(xué)生都交出了正確的“答卷”,增強(qiáng)了他們學(xué)習(xí)的自信心和繼續(xù)研究的'欲望。接著,請同學(xué)在生活中尋找驗(yàn)證的方法,以四人小組為研究單位,學(xué)生的思維活動(dòng)一下子活躍起來,紛紛探究其中的奧秘。小組討論的方式,更促使學(xué)生之間進(jìn)行思維交流,激發(fā)學(xué)生希望獲得成功的動(dòng)機(jī)。通過實(shí)踐、討論,揭示了乘法分配律。再通過用自己喜歡的方式來表述乘法分配律加以內(nèi)化。這樣做,學(xué)生學(xué)得積極、學(xué)得主動(dòng)、學(xué)得快樂,自己動(dòng)手編題、自己動(dòng)腦探索,從數(shù)量關(guān)系變化的多次類比中悟出規(guī)律,“扶”得少,學(xué)生創(chuàng)造得多,學(xué)生學(xué)會(huì)的不僅僅是一條規(guī)律,更重要的是,學(xué)生學(xué)會(huì)了自主自動(dòng),學(xué)會(huì)了進(jìn)行合作,學(xué)會(huì)了獨(dú)立思考,學(xué)生學(xué)得輕松,學(xué)得主動(dòng)。
通過這節(jié)課的教學(xué)我感受到:認(rèn)真鉆研教材,深入挖掘教材中的寶貴資源,會(huì)使教材的內(nèi)涵更有廣度和深度,也為培養(yǎng)和發(fā)展學(xué)生思維的靈活性,提供了更廣闊的空間。
《乘法分配律》教學(xué)反思 篇17
乘法分配律是一節(jié)概念課,是在學(xué)生已經(jīng)掌握了加法運(yùn)算定律以及乘法交換律和結(jié)合律的基礎(chǔ)上進(jìn)行教學(xué)的。在五大運(yùn)算定律中,是最難理解的,學(xué)生最不容易掌握的。本節(jié)課的重點(diǎn)是理解乘法分配律的意義,難點(diǎn)是利用乘法分配律進(jìn)行簡便計(jì)算 。
成功之處:
1.本課在教學(xué)情境的設(shè)計(jì)上沒有采用課本上的主題圖,而是選取學(xué)生熟悉的買校服情境:這學(xué)期學(xué)校要換新校服。上衣每件28元,褲子每條12元。我們班共需繳校服費(fèi)多少元?學(xué)生獨(dú)立思考,同位交流,能用兩種方法解答出來,然后讓學(xué)生對比兩種算法初步讓學(xué)生感知乘法分配律的意義,即(28+12)×44=28×44+12×44。
2.加深對乘法分配律意義的理解,讓學(xué)生不僅知道兩個(gè)數(shù)的和與一個(gè)數(shù)相乘可以寫成兩個(gè)積相加的形式,還要知道兩個(gè)積相加的'形式可以寫成兩個(gè)數(shù)的和的形式。通過多種形式的練習(xí)讓學(xué)生深入理解乘法分配律的意義。
不足之處:
1.在總結(jié)乘法分配律時(shí)沒有把結(jié)構(gòu)說的很透徹,導(dǎo)致學(xué)生出現(xiàn)在練習(xí)時(shí)有一個(gè)同學(xué)在同步學(xué)習(xí)的練習(xí)題中把連乘算成乘法分配律。
2.學(xué)生的語言敘述不熟練,導(dǎo)致學(xué)生雖然會(huì)背用字母表示的式子,但是不會(huì)應(yīng)用。
《乘法分配律》教學(xué)反思 篇18
學(xué)生在前面的學(xué)習(xí)中已經(jīng)學(xué)習(xí)了一些有關(guān)運(yùn)算律的知識,對加法交換律、結(jié)合律、乘法交換律、結(jié)合律有一定的了解和認(rèn)識,這些都為本課的學(xué)習(xí)奠定了基礎(chǔ)。本課的教學(xué)環(huán)節(jié)和前面學(xué)習(xí)運(yùn)算律的教學(xué)基本相似,所以學(xué)生也有一定的學(xué)習(xí)方法和經(jīng)驗(yàn),所以乘法分配律的歸納和揭示還是比較順利的。我重點(diǎn)是結(jié)合練習(xí)幫助學(xué)生進(jìn)一步的認(rèn)識乘法分配律的意義以及它與其他運(yùn)算律的區(qū)別。特別是對幾個(gè)數(shù)字的觀察和比較以及等式兩邊的式子分別表示的意義等,通過這樣的引導(dǎo),加深學(xué)生對乘法分配律含義的理解,為后面的簡便運(yùn)算的學(xué)習(xí)奠定基礎(chǔ)。
相對于其他運(yùn)算律的`簡便運(yùn)算,應(yīng)用乘法分配律進(jìn)行簡便運(yùn)算,學(xué)生在實(shí)際的運(yùn)用方面還是有一定困難的。教學(xué)中我是分層進(jìn)行教學(xué)的。首先安排的是最基本,學(xué)生直接根據(jù)乘法分配律就可以直接進(jìn)行簡便運(yùn)算。在這個(gè)環(huán)節(jié),我主要是通過練習(xí)加深學(xué)生對乘法分配律的理解和運(yùn)用,特別是逆向的運(yùn)用。接著,在練習(xí)環(huán)節(jié)進(jìn)行一定的拓展和變化,通過觀察、比較等方式,引導(dǎo)學(xué)生發(fā)現(xiàn)算式間的聯(lián)系,從而能夠靈活的運(yùn)用運(yùn)算律。在這個(gè)環(huán)節(jié),我發(fā)現(xiàn)部分學(xué)生仍然是在逆向的運(yùn)用上出現(xiàn)了一些問題。這可能也與學(xué)生的思維定勢有關(guān)系。
《乘法分配律》教學(xué)反思 篇19
乘法分配律是一節(jié)比較抽象的概念課,教師可以根據(jù)教學(xué)內(nèi)容的特點(diǎn),為學(xué)生提供多種探究方法,激發(fā)學(xué)生的自主意識。
具體是這樣設(shè)計(jì)的:先創(chuàng)設(shè)佳樂超市的情景調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,通過買“3套運(yùn)動(dòng)服,每件上衣21元,每條褲子10元,一共花多少元?”列出兩種不同的式子,他們確實(shí)能夠體會(huì)到兩個(gè)不同的算式具有相等的關(guān)系。這是第一步:通過資料獲取繼續(xù)研究的信息。(雖然所得的信息很簡單,只是幾組具有相等關(guān)系的`算式,但這是學(xué)生通過活動(dòng)自己獲取的,學(xué)生對于它們感到熟悉和親切,用他們作為繼續(xù)研究的對象,能夠調(diào)動(dòng)學(xué)生的參與意識。)
第二步:觀察算式,尋找規(guī)律。讓學(xué)生通過討論初步感知乘法分配律,并作出一種猜測:是不是所有符合這種形式的兩個(gè)算式都是相等的?此時(shí),教師不要急于告訴學(xué)生答案,而是讓學(xué)生自己通過舉例加以驗(yàn)證。這里既培養(yǎng)了學(xué)生的猜測能力,又培養(yǎng)了學(xué)生驗(yàn)證猜測的能力。
第三步:應(yīng)用規(guī)律,解決實(shí)際問題。通過對于實(shí)際問題的解決,進(jìn)一步拓寬乘法分配律。這一階段,既是學(xué)生鞏固和擴(kuò)大知識,又是吸收內(nèi)化知識的階段,同時(shí)還是開發(fā)學(xué)生創(chuàng)新思維的重要階段。
《乘法分配律》教學(xué)反思 篇20
《乘法分配律》是本章的難點(diǎn),它不是單一的乘法運(yùn)算,還涉及到加法運(yùn)算。教材對于這部分內(nèi)容的處理方法與前面講乘法結(jié)合律的方法類似。通過觀察幾組數(shù)目不同的算式,引導(dǎo)學(xué)生發(fā)現(xiàn)規(guī)律,然后歸納、總結(jié),用語言表述出來。在教學(xué)時(shí),我也是按照教學(xué)參考書的建議安排教學(xué)過程的。先復(fù)習(xí)乘法的交換律和結(jié)合律,接著導(dǎo)入新課。通過
。18+7)×6○18×6+7×6、20×(15+90)○20×15+20×3
讓學(xué)生觀察、分析、思考、歸納,最后在教師的引導(dǎo)下總結(jié)出乘法分配律并加以運(yùn)用。
教學(xué)過程中,導(dǎo)課比較快,在歸納乘法分配律的`內(nèi)容時(shí),主觀上是時(shí)間緊張,可課后想想,實(shí)際上是引導(dǎo)不到位。課堂上學(xué)生氣氛不活躍,思維不積極,難以完整地總結(jié)出乘法分配律。結(jié)果,學(xué)生對乘法分配律不太理解,運(yùn)用時(shí)問題較多。如當(dāng)天在作業(yè)時(shí)出現(xiàn)的問題就比較多:45×103有三分之一的學(xué)生直接乘,不會(huì)簡便;尤其是計(jì)算59×21+21時(shí),學(xué)生發(fā)現(xiàn)不了它的特點(diǎn),不會(huì)運(yùn)用乘法分配律,可以說,本節(jié)課上得不是很成功。
今后的工作中,要多向以下幾個(gè)方面努力:
1、多聽課,多學(xué)習(xí)。尤其是青年教師的課,學(xué)習(xí)他們的新思想、新方法,改善課堂教學(xué),提高課堂教學(xué)藝術(shù)和課堂效率。
2、加強(qiáng)同同課教師之間的溝通和交流,相互學(xué)習(xí),取長補(bǔ)短,共同進(jìn)步。
3、認(rèn)真鉆研教材,把握好教材的重點(diǎn)、難點(diǎn)、關(guān)鍵點(diǎn)、易混點(diǎn),上課時(shí)才能做到心中有數(shù),游刃有余。
《乘法分配律》教學(xué)反思 篇21
乘法分配律是人教版數(shù)學(xué)第三單元的內(nèi)容,它是在學(xué)生已經(jīng)學(xué)習(xí)掌握了乘法交換律、結(jié)合律,并能初步應(yīng)用這些定律進(jìn)行一些簡便計(jì)算的基礎(chǔ)上進(jìn)行學(xué)習(xí)的。乘法分配律是本單元的教學(xué)重點(diǎn),也是本節(jié)課內(nèi)容的難點(diǎn),教材是按照分析題意、列式解答、講述思路、觀察比較、總結(jié)規(guī)律等層次進(jìn)行的。然而乘法分配律又不是單一的乘法運(yùn)算,還涉及到加法的'運(yùn)算,是學(xué)生學(xué)習(xí)的難點(diǎn)。因此本節(jié)課不僅使學(xué)生學(xué)會(huì)什么是乘法分配律,更要讓學(xué)生經(jīng)歷探索規(guī)律的過程,進(jìn)而培養(yǎng)學(xué)生的分析、推理、抽象、概括的思維能力。
同時(shí),學(xué)好乘法分配律是學(xué)生以后進(jìn)行簡便計(jì)算的重要基礎(chǔ),對提高學(xué)生的計(jì)算能力有著舉足輕重的作用。但要做到讓學(xué)生進(jìn)行“探究、推理、自己總結(jié)規(guī)律”很難,因?yàn)樯系氖侵辈タ,為了突破難點(diǎn),在備課時(shí),我做足了功課,首先我從例題入手,把乘法分配律放在具體的情境中,結(jié)合學(xué)生已有的生活經(jīng)驗(yàn),學(xué)生發(fā)現(xiàn)解決問題策略很多,此題可以用兩種方法解答:(1)(4+2)×25;(2)4×25+2×25,通過比較,學(xué)生知道了為什么:(4+2)×25=4×25+2×25,經(jīng)歷了知識探究的過程,講完例題后,又讓學(xué)生通過發(fā)語音、課堂連麥的形式讓舉了許多這樣的例子,提高了學(xué)生學(xué)習(xí)的積極性,每個(gè)例子不僅可放在具體情境中,也可借助乘法的意義讓學(xué)生進(jìn)一步理解,從而得出什么是“乘法的分配律及它的應(yīng)用”,課堂取得了很好的效果。
《乘法分配律》教學(xué)反思 篇22
《乘法分配律》教學(xué)反思
乘法分配律是一節(jié)概念課,是在學(xué)生已經(jīng)掌握了加法運(yùn)算定律以及乘法交換律、乘法結(jié)合律的基礎(chǔ)上進(jìn)行教學(xué)的。在本單元運(yùn)算定律中,是最難理解的,學(xué)生最不容易掌握的。本節(jié)課的重點(diǎn)是理解乘法分配律的意義,難點(diǎn)是利用乘法分配律靈活地進(jìn)行簡便計(jì)算。
在課堂上,創(chuàng)設(shè)了植樹活動(dòng)的情境,求一共有多少名同學(xué)參加了植樹活動(dòng)。在課堂中,鼓勵(lì)學(xué)生獨(dú)立思考,能用兩種方法解答出來,然后讓學(xué)生對比兩種算法初步讓學(xué)生感知乘法分配律的意義,即(4+2)×25=428×25+2×25。
在學(xué)生理解了乘法分配律后,運(yùn)用變式練習(xí)加深對乘法分配律意義的理解,讓學(xué)生不僅知道兩個(gè)數(shù)的和與一個(gè)數(shù)相乘可以寫成兩個(gè)積相加的形式,還要知道兩個(gè)積相加的形式可以寫成兩個(gè)數(shù)的和的形式。也就是乘法分配律也可以反著用。最后通過多種形式的練習(xí)讓學(xué)生深入理解乘法分配律的.意義。
通過學(xué)習(xí),一些學(xué)生已掌握,但也有一些學(xué)生的語言敘述不熟練,雖然會(huì)背用字母表示的式子,但是不會(huì)靈活應(yīng)用。還有一些學(xué)生容易把乘法分配律和乘法結(jié)合律弄混淆。
所以在復(fù)習(xí)鞏固時(shí),要加強(qiáng)乘法結(jié)合律與乘法分配律的對比,讓學(xué)生對這兩個(gè)運(yùn)算定律的結(jié)構(gòu)更清晰。還要加強(qiáng)對乘法分配律意義的理解,通過不同形式的試題的演練,靈活掌握應(yīng)用運(yùn)算定律進(jìn)行簡便計(jì)算。
《乘法分配律》教學(xué)反思 篇23
1、在思考如何設(shè)計(jì)《乘法分配律練習(xí)課》之前,我收集了一些本校四年級學(xué)生的錯(cuò)題,進(jìn)行分析,了解學(xué)生的學(xué)習(xí)現(xiàn)狀,針對學(xué)生普遍存在的問題進(jìn)行教學(xué)設(shè)計(jì)。
2、經(jīng)過調(diào)查發(fā)現(xiàn)學(xué)生出現(xiàn)錯(cuò)誤的`根本原因在于不理解算式的意義,僅僅停留在題目表面,先找相同因數(shù),再套用公式,不能按照算理正確地思考簡算過程。所以我認(rèn)為,這節(jié)練習(xí)課應(yīng)該從最樸素的算理——乘法的意義出發(fā),抓住問題本質(zhì),才能對癥下藥。教學(xué)中我通過兩個(gè)判斷練習(xí),引導(dǎo)學(xué)生從乘法意義的角度理解乘法分配律,從學(xué)生的反饋來看,這樣的設(shè)計(jì)教學(xué)效果比較合理科學(xué)的,學(xué)生在進(jìn)行簡算時(shí)已經(jīng)有了檢查的意識。而不再是盲目地套用格式。
3、通過將乘法分配律常見題型進(jìn)行歸類,不同題型采用了不同的小妙招來解決,題目形式變化,解決方法也不同,但只要符合“幾個(gè)幾加上幾個(gè)幾”的意義,緊扣每一步都相等,就能夠借助乘法分配律進(jìn)行簡算。學(xué)生對這4個(gè)簡算小妙招比較感興趣,從練習(xí)反饋來看學(xué)習(xí)效果比較好。
本節(jié)課的教學(xué)設(shè)計(jì)合理、教學(xué)重難點(diǎn)突出,教學(xué)目標(biāo)明確、教學(xué)效果比較好。當(dāng)然也有一些不足之處:在計(jì)算大長方形的面積時(shí),課件上呈現(xiàn)的數(shù)字要把單位帶上,如果時(shí)間允許,最好給學(xué)生5分鐘左右的集中練習(xí)的時(shí)間。
《乘法分配律》教學(xué)反思 篇24
乘法分配律的教學(xué)是在學(xué)生學(xué)習(xí)了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是學(xué)生在這幾個(gè)定律中的難點(diǎn)。
新課標(biāo)強(qiáng)調(diào)從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問題抽象成數(shù)學(xué)模型并進(jìn)行解釋和應(yīng)用的`過程,進(jìn)而使學(xué)生獲得對數(shù)學(xué)理解的同時(shí),在思維能力方面得到進(jìn)步和發(fā)展。
初步的教學(xué)設(shè)想是這樣的:首先舉一些學(xué)生身邊的例題求長方形的周長,然后讓學(xué)生觀察這兩組算式有什么樣的關(guān)系。學(xué)生通過計(jì)算發(fā)現(xiàn)每組兩個(gè)算式相等。在此基礎(chǔ)上讓學(xué)生完成長方形周長計(jì)算這樣的例子并在黑板上列出,再出示例題,讓學(xué)生分組討論并解答。然后分組討論這些算式有什么規(guī)律,引導(dǎo)學(xué)生發(fā)現(xiàn)乘法分配律并總結(jié)出這一規(guī)律。最后做一些練習(xí)鞏固、拓展對乘法分配律的認(rèn)識。
在教學(xué)之后發(fā)現(xiàn)有一些問題。孩子對于乘法分配律的作用及意義沒有理解透徹,應(yīng)用不夠靈活,而且在口頭上感覺很好,但是落筆后就發(fā)現(xiàn)很多類型題孩子根本就不會(huì)做,而且錯(cuò)誤很多。所以對本節(jié)課教學(xué)目標(biāo)進(jìn)行了一些調(diào)整。讓一名學(xué)生在黑板上板演,其他學(xué)生在本子上做,最后總結(jié)不同方法,看哪種方法簡便。進(jìn)一步體會(huì)乘法分配律的作用。
教學(xué)目標(biāo)定位是
。1)通過學(xué)生觀察、比較、分析理解乘法分配律的含義,教師引導(dǎo)學(xué)生概括出乘法分配律的內(nèi)容。
。2)初步感受乘法分配律能使一些計(jì)算簡便。
。3)培養(yǎng)學(xué)生分析、推理、概括的思維能力。
《乘法分配律》教學(xué)反思 篇25
這節(jié)課是在學(xué)生學(xué)習(xí)乘法分配律基礎(chǔ)上進(jìn)行教學(xué)的。在第一課時(shí)學(xué)生對于乘法分配律的意義已經(jīng)有了初步的理解,對于乘法分配律的結(jié)構(gòu)也有了一定的認(rèn)識,能初步利用乘法分配律進(jìn)行簡便計(jì)算。本課內(nèi)容的教學(xué)重點(diǎn)是靈活根據(jù)題型應(yīng)用乘法分配律進(jìn)行簡便計(jì)算。
成功之處:
1.課始通過復(fù)習(xí)乘法分配律的.意義,以及應(yīng)用乘法分配律進(jìn)行填空的練習(xí),讓學(xué)生進(jìn)一步熟悉乘法分配律的結(jié)構(gòu)及特點(diǎn),加深對乘法分配律意義的理解。
2.分類型進(jìn)行練習(xí)。采用邊講邊練相結(jié)合的方法,讓學(xué)生通過專項(xiàng)練習(xí)進(jìn)一步鞏固每一類型題目。共分為四類:第一類是a×(b+c);
第二類是a×b+a×c;第三類是a×b+a;第四類是接近整十整百的數(shù)乘一個(gè)數(shù)。整體教學(xué)就是穩(wěn)扎穩(wěn)打,一步一個(gè)腳印,讓所有學(xué)生都能掌握其中的變式練習(xí),然后再進(jìn)行綜合訓(xùn)練,讓學(xué)生靈活解決問題。
不足之處:
1.由于分類型講解練習(xí),導(dǎo)致時(shí)間分配不足,個(gè)別題型沒有足夠的時(shí)間進(jìn)行練習(xí)。
2.學(xué)生的注意力集中不夠,導(dǎo)致個(gè)別學(xué)生對某一類型的題目沒有掌握。
再教設(shè)計(jì):
1.加強(qiáng)小組合作的學(xué)習(xí),能自己解決的問題,就自己解決,能小組解決的問題,就小組解決,充分發(fā)揮小組組際間的交流,留給學(xué)生更多的時(shí)間和空間,發(fā)揮學(xué)生主體作用。
2.抓住易出錯(cuò)類型題,重點(diǎn)講解,重點(diǎn)訓(xùn)練。
《乘法分配律》教學(xué)反思 篇26
《乘法分配律》是本章的難點(diǎn),它不是單一的乘法運(yùn)算,還涉及到加法運(yùn)算。教材對于這部分內(nèi)容的處理方法與前面講乘法結(jié)合律的方法類似。在設(shè)計(jì)本教案的過程中,我一直抱著“以學(xué)生發(fā)展為本”的宗旨,試圖尋找一種在完成共同的學(xué)習(xí)任務(wù)、參與共同的學(xué)習(xí)活動(dòng)過程中實(shí)現(xiàn)不同的人的數(shù)學(xué)水平得到不同發(fā)展的教學(xué)方式。結(jié)合自己所教案例,對本節(jié)課教學(xué)策略進(jìn)行以下幾點(diǎn)簡要分析:
一、教師要深入了解各層次學(xué)生思維實(shí)際,提供充分的信息,為各層次學(xué)生參與探索學(xué)習(xí)活動(dòng)創(chuàng)造條件,沒有學(xué)生主體的主動(dòng)參與,不會(huì)有學(xué)生主體的主動(dòng)發(fā)展,教師若不了解學(xué)生實(shí)際,一下子把學(xué)習(xí)目標(biāo)定得很高,勢必會(huì)造成部分學(xué)生高不可攀而坐等觀望,失去信心浪費(fèi)寶貴的學(xué)習(xí)時(shí)間。以往教學(xué)該課時(shí)都是以計(jì)算引入,有復(fù)習(xí)舊知,也有比一比誰的計(jì)算能力強(qiáng)開場。我想是不是可以拋開計(jì)算,帶著愉快的`心情進(jìn)課堂,因此,我在一開始設(shè)計(jì)了一個(gè)購物的情境,讓學(xué)生在一個(gè)寬松愉悅的環(huán)境中,走進(jìn)生活,開始學(xué)習(xí)新知。這樣所設(shè)的起點(diǎn)較低,學(xué)生比較容易接受。
二、讓學(xué)生根據(jù)自己的愛好,選擇自己喜歡的書,出來的算式就比較開放。學(xué)生能自由發(fā)揮,對所學(xué)內(nèi)容很感興趣,氣氛熱烈。由學(xué)生計(jì)算總價(jià)列式,到通過計(jì)算發(fā)現(xiàn)兩個(gè)形式不一樣的算式,結(jié)果卻是一樣的。這都是在學(xué)生已有的知識經(jīng)驗(yàn)的基礎(chǔ)上得到的結(jié)論,是來自于學(xué)生已有的數(shù)學(xué)知識水平的。
《乘法分配律》教學(xué)反思 篇27
曾經(jīng)真的以為自己是一個(gè)很負(fù)責(zé)任的人:我愛我的學(xué)生,我愛我的數(shù)學(xué)教學(xué),甚至可以為了我的學(xué)生與數(shù)學(xué)教學(xué),放棄我個(gè)人的休息時(shí)間,為的只是我愛的學(xué)生能愛上我教的數(shù)學(xué),能把數(shù)學(xué)學(xué)得很出色。然而為什么總是事與愿違,成效“背叛”了設(shè)想,作業(yè)“背叛”了課堂?一切顯得那么捉襟見肘,“徒勞無功”成了我這學(xué)期最大的感受,到底問題出在哪里呢?當(dāng)我回想起教學(xué)中一點(diǎn)一滴的瑣事,老師們交流時(shí)的經(jīng)驗(yàn)之談,再重新翻閱起一些理論書刊時(shí),我似乎意識到自己其實(shí)早已經(jīng)“背叛”了數(shù)學(xué)教學(xué)。
“哦,簡單,簡單!”黃玄昶又樂滋滋地高高舉起他的手,果然不出我所料,他的回答又正中我的.下懷,這不正是我所期望的答案嗎?說實(shí)話,開公開課我就喜歡像他這樣的學(xué)生,積極舉手發(fā)言,而且一步一步被我“引進(jìn)”來,突出所謂的教學(xué)重點(diǎn),攻克預(yù)設(shè)的教學(xué)難點(diǎn),最后解決相應(yīng)的問題,“看上去很美”,真的,經(jīng)過我的“引導(dǎo)”,他能“自主探索”,尋求規(guī)律,最后消除疑問,這不是一件看上去很“完美”的事嗎?
可是……“怎么又錯(cuò)了!”我真是納悶,上課如此“高效”的人,怎么作業(yè)就這么慘不忍睹?題目稍一拐彎,就轉(zhuǎn)不過來了,曾經(jīng)我把他定論為思維的靈活性不夠,然而上完這堂《利用乘法分配律進(jìn)行簡便運(yùn)算》后,經(jīng)過反思與請教,我終于發(fā)現(xiàn)我錯(cuò)了。
【《乘法分配律》教學(xué)反思】相關(guān)文章:
乘法分配律教學(xué)反思04-13
《乘法分配律》教學(xué)反思01-15
乘法分配律教學(xué)反思15篇04-21
乘法分配律教學(xué)反思(15篇)04-21