圓錐的體積教學(xué)反思15篇
身為一名人民老師,我們都希望有一流的課堂教學(xué)能力,通過教學(xué)反思可以有效提升自己的教學(xué)能力,教學(xué)反思要怎么寫呢?下面是小編幫大家整理的圓錐的體積教學(xué)反思,希望能夠幫助到大家。
圓錐的體積教學(xué)反思1
該學(xué)習(xí)“圓錐的認識和體積”這部分知識了,想到在學(xué)生的生活中,純圓錐的物體并不多見,所以這樣安排本部分內(nèi)容的教學(xué)。
第一節(jié)課帶領(lǐng)學(xué)生做圓錐,畫圓——剪圓——再剪出圓心角不同的扇形——把兩條半徑無縫隙的粘住,放在桌上,一個圓錐成型了,如果你想粘上底面也可以,可是得知道底面的半徑啊。ㄍ卣乖鯓又郎刃蔚陌霃胶蛨A心角的度數(shù),求出圓錐底面半徑的大。
學(xué)生自己做出來的圓錐,對它的認識肯定是比較深刻的——圓錐由一個底面和一個曲面圍城,底面是圓,側(cè)面展開是一個扇形,還有強調(diào)對圓錐的.高的理解。直角三角形沿一條直角邊所在的直線旋轉(zhuǎn)可以得到一個圓錐,讓學(xué)生試一試,想象一下。
第一節(jié)課圓錐的認識,因為加上了讓學(xué)生動手制作這一環(huán)節(jié),教學(xué)效果出奇的好,也為下一節(jié)課做好的鋪墊。
圓錐的體積教學(xué)反思2
圓錐的體積是在學(xué)生直觀認識圓錐的特征,會算圓的面積,以及長方體、正方體、圓柱體的體積的基礎(chǔ)上安排教學(xué)的。以往幾次,都是按老方法進行,一開始教師就準(zhǔn)備了一個圓柱和一個圓錐,先比較它們的底面積相等,再分別量出它們的高也相等。進而由老師做實驗,把圓錐裝滿水(或沙)往圓柱里倒,學(xué)生觀察倒了幾次正好把圓柱裝滿。接著推導(dǎo)圓錐的體積等于圓柱體積的三分之一,并重點強調(diào)求圓錐的體積一定要乘三分之一。一節(jié)課上下來非常輕松,非常順利,時間也充足,作業(yè)效果也還不錯?墒堑搅司C合運用問題就出來了:忘記乘三分之一的,計算出錯的,已知圓錐的體積和底面積,求高時,直接用體積除以底面積的,出的錯誤五花八門。
再上這節(jié)課時,我加強了以下幾個點的教學(xué),收到了較好的效果。
1、教學(xué)新課時,我出示一個圓柱體和一個圓錐體讓學(xué)生觀察并猜測圓錐的體積和什么有關(guān),學(xué)生聯(lián)系到了圓柱的體積,通過師生交流、問答、猜想等形式,調(diào)動學(xué)生的'積極性,激發(fā)學(xué)生強烈的探究欲望,學(xué)生迫切希望通過實驗來證實自己的猜想,所以做起實驗就興趣盎然;
2、實驗時,讓學(xué)生小組合作親自動手實驗,以實驗要求為主線,即動手操作,又動腦思考,努力探索圓錐體積的計算方法。學(xué)生在學(xué)習(xí)的過程中,始終是一個探索者、研究者、發(fā)現(xiàn)者,并獲得了富有成效的學(xué)習(xí)體驗。學(xué)生獲得的不僅是新活的數(shù)學(xué)知識,同時也獲得了探究學(xué)習(xí)的科學(xué)方法,探究成功的喜悅以及探究失敗的深刻反思,在這樣的學(xué)習(xí)中,學(xué)生會逐步變的有思想、會思考、會逐漸發(fā)現(xiàn)自身的價值。
3、學(xué)生做圖形應(yīng)用題時,引導(dǎo)學(xué)生審題,先確定是什么圖形,再想相應(yīng)的計算公式,最后根據(jù)公式列出算式。這樣對于后面的綜合運用題,學(xué)生有了這種固定思維模式,就不會亂列式,
4、列出算式后,不要按部就班的從左算到右,先觀察算式的特點,尋求簡單的計算方法,把口算和計算有機結(jié)合。如:3.14×(4÷2)2×8時,先口算(4÷2)2=4,再口算4×8=32,最后再計算3.14×32。又如:×3.14×(4÷2)2×9時,先口算×9=3,(4÷2)2=4,3×4=12,再計算3.14×12。這樣就大大地減少了學(xué)生計算難度,提高了計算的正確率。
圓錐的體積教學(xué)反思3
1、通過課堂評價促進小組探究學(xué)習(xí)的有效性
我將班上同學(xué)分成了9個小組,在課堂開始前告訴同學(xué)們在今天的小組學(xué)習(xí)中會選出一個優(yōu)秀小組,并且從合作,紀(jì)律,發(fā)現(xiàn)三個方面進行評價,組長安排組員活動 體現(xiàn)小組合作性,鞏固了小組合作探究的實效性,活動時間結(jié)束時從紀(jì)律方面進行評價,有效的組織了教學(xué),使學(xué)生的興奮點得到有效控制,盡快投入到公式的推到 過程中,在推到過程中鼓勵同學(xué)們表達自己的觀點,從發(fā)現(xiàn)方面對學(xué)生進行評價提高學(xué)生的積極性。
2、層次清楚,步步深入,重點突出
在教學(xué)圓錐的體積時,我首先復(fù)習(xí)了圓柱的體積的計算過程,再用生活中的問題引入學(xué)習(xí)圓錐體積的必要性,調(diào)動了學(xué)生的積極性。然后要學(xué)生用自己的.學(xué)具動 手做實驗,從實驗的過程中得出結(jié)論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。這樣,就有一種水到渠成的感覺。然后,利用公 式解決生活中的實際問題,加深學(xué)生印象。
3、激發(fā)學(xué)生的求知欲
新課一開始,我就讓學(xué)生比較兩堆沙的大小,激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生明白學(xué)習(xí)目標(biāo)。在應(yīng)用公式的教學(xué)中,又把問題轉(zhuǎn)向到課初學(xué)生猜測且還沒有解決的問題,引導(dǎo)學(xué)生計算出圓錐的體積,終于使懸念得出了滿意的結(jié)果,使學(xué)生獲得了成功的喜悅。
4、全體學(xué)生的積極參與,突出學(xué)生的主體作用
由于我平時非常重視讓學(xué)生參與教學(xué)的全過程,重視培養(yǎng)學(xué)生的思維想象力,因此,學(xué)生在這節(jié)課上,表現(xiàn)也相當(dāng)?shù)某錾N以诮虒W(xué)中注意調(diào)動學(xué)生的學(xué)習(xí)積極性,采用分組觀察、操作、討論,動手做實驗等方法,突出了學(xué)生的主體作用。
5、課堂教學(xué)后的改進
關(guān)于兩堆沙的多少的比較課讓學(xué)生有更多的發(fā)展空間,例如從價錢,重量等方面考慮,在這些都不知道的情況下才通過求體積的方法,事實上從價錢上來看更簡單一些,要讓學(xué)生有選擇合適的方法解決問題的能力。
在操作活動過程中,指向性過于直接,在第二次教學(xué)中我做了一些新的嘗試。簡單的導(dǎo)入,我出示了一組圓柱和圓錐,先讓學(xué)生猜一猜學(xué)生它們體積的關(guān)系,因為學(xué) 生都有預(yù)習(xí),圓錐體積是圓柱體積的三分之一很快從學(xué)生口中脫出。那我們就來做個試驗驗證一下!我給六個小組分別準(zhǔn)備了等底等高、等底不等高、等高 不等底、既不等底也不等高的圓柱和圓錐,當(dāng)然,實驗還沒結(jié)束,學(xué)生中的問題就出來了,我們做的正好是三分之一、怎么回事?我們的是二分之一?, 我們的是四分之一是不是書上寫錯了?學(xué)生思維出現(xiàn)激烈的碰撞,這時我沒有評判結(jié)果,適時讓學(xué)生觀察、對比、通過合作、討論,等底等高這一 前提,這樣讓學(xué)生在看似混亂無序的實踐中,增加對實驗條件的辨別,既圓滿地推導(dǎo)出了圓錐的體積公式,又促進了學(xué)生實踐能力和批判意識的發(fā)展,而不必苦口婆 心地強調(diào)等底等高,對三分之一的認識也深入學(xué)生之心,圓錐體積計算漏乘三分之一的錯誤將得到很好的糾正。而這些目標(biāo)的達成完全是靈活機智地利 用錯誤這一資源,所產(chǎn)生的效果,這節(jié)教學(xué)雖沒以前那么順利,但我覺得今天的學(xué)生才真正掌握了知識。因為學(xué)生更需要經(jīng)歷知識形成的全過程。真正關(guān)注學(xué)生 學(xué)習(xí)的過程,就要有效利用錯誤這一資源,教師要勇于樂于向?qū)W生提供充分研究的機會,幫助他們真正理解和掌握數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗, 這樣,我們的課堂才是學(xué)生成長和體驗成功的樂園!
圓錐的體積教學(xué)反思4
1、學(xué)生通過自己的實驗,非常順利地得到等底等高的圓柱和圓錐體積之間的關(guān)系,推導(dǎo)出來圓錐的體積計算公式。原因之處有:(1)猜想:發(fā)揮學(xué)生的空間想象,使學(xué)生初步建立圓錐與圓柱體積之間的'關(guān)系,教師預(yù)設(shè)學(xué)生可能粗略地知道有“三分之一”這一關(guān)系,“那么三分之一這一關(guān)系怎樣推導(dǎo)呢”引起以下怎樣推導(dǎo)圓錐的體積這一過程。
(2)在推導(dǎo)過程中,帶著思考題(思考題實際就是學(xué)生實驗的過程),讓學(xué)生帶有目標(biāo)進行實驗,讓學(xué)生更有目的`性,也非常方便,有操作性。
(3)學(xué)具準(zhǔn)備充分,各小組選擇水、沙子,增強趣味性,主動性,積極性高。
。4)公式推導(dǎo)完之后的一個反例子(出示一個非常大的圓柱和一個非常小的圓錐),讓學(xué)生明確并不是所有的圓錐的體積都是圓柱體積的三分之一,從而強調(diào)了等底等高。
2、練習(xí)題由淺入深,判斷題主要是要加深學(xué)生對概念、公式的運用和理解,第2題是書上的一組題,為提高效率只列式不計算,這三道題分別是告訴底面積和高、底面半徑和高、底面直徑和高,把幾種類型都呈現(xiàn)出來。最后一題是動手實踐題,一要考察學(xué)生的公式運用情況,二要考察學(xué)生的解決實際問題的能力及策略,雖然沒做幾道題,但我覺得:解決問題比什么都重要。
3、本來想用不等底、不等高的圓柱和圓錐參與實驗,考慮到可能會得出錯誤結(jié)論而影響體積公式的推導(dǎo),所以把這一環(huán)節(jié)省去。設(shè)計了一組大的等底等高的圓錐和圓柱,讓學(xué)生明確不管大小,只要等底等高就有3倍這樣的關(guān)系。
4、時間分配上不到位,例題的處理中,考慮到本節(jié)的重點是理解公式并運用公式,所以沒花多的時間,由于數(shù)字教大,部分學(xué)生沒做完。
圓錐的體積教學(xué)反思5
以前教學(xué)《圓錐的體積》時多是先由教師演示等底等高情況下的三分之一,再讓學(xué)生驗證,最后教師通過對比實驗說明不等底等高的差異,但效果不太好,學(xué)生對等底等高這一重要前提條件,掌握得并不牢固,理解很模糊。為了讓學(xué)生理解“等底等高”是判斷圓錐的體積是圓柱體積的三分之一的前提條件,我就設(shè)計了以上的教學(xué)片斷:讓學(xué)生自選空圓柱和圓錐研究圓柱和圓錐體積之間的關(guān)系,學(xué)生通過動手操作得出的結(jié)論與書上的結(jié)論有很大的差異,有三分之一、四分之一、二分之一,思維出現(xiàn)激烈的碰撞,這時我沒有評判結(jié)果,而是讓學(xué)生經(jīng)歷一番觀察、發(fā)現(xiàn)、合作、創(chuàng)新過程,得出圓錐體積等于等底等高的圓柱體積的三分之一,這樣讓學(xué)生裝在看似混亂無序的實踐中,增加對實驗條件的辨別及信息的批判。既圓滿地推導(dǎo)出了圓錐的體積公式,又促進了學(xué)生實踐能力和批判意識的發(fā)展。而這些目標(biāo)的'達成完全是靈活機智地利用“錯誤”這一資源,所產(chǎn)生的效果。
在平時的課堂教學(xué)中,我們要善于利用“錯誤”這一資源,讓學(xué)生思考問題幾經(jīng)碰壁終于找到解決問題的方法,把思考問題的實際過程展現(xiàn)給學(xué)生看,讓學(xué)生經(jīng)過思維的碰撞,這樣做實際上是非常富于啟發(fā)性的.學(xué)習(xí)數(shù)學(xué)不僅要學(xué)會這道題的解法,而且更要學(xué)會這個解法是如何找到的。
教學(xué)不僅僅是告訴,更需要經(jīng)歷。真正關(guān)注學(xué)生學(xué)習(xí)的過程,就要有效利用錯誤這一資源,教師要勇于樂于向?qū)W生提供充分研究的機會,幫助他們真正理解和掌握數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗,這樣,我們的課堂才是學(xué)生成長和成功的場所。
圓錐的體積教學(xué)反思6
課前我安排學(xué)生收集、整理生活中應(yīng)用圓錐的實例和信息資料。教學(xué)時我首先列舉生活中大量的圓錐實物,在學(xué)生觀察思考這些物體形狀的共同特點,并從實物中抽象出幾何形體的基礎(chǔ)上引入。再引導(dǎo)學(xué)生對照模型和圖形,互說圓錐的特征,加深對圓錐的認識。感受幾何知識在生活中的應(yīng)用,同時提高學(xué)生運用數(shù)學(xué)為生活服務(wù)的意識和能力。
在本課中,我無論從問題的引入,圓錐概念的定義,高的'尋找及測量方法的探索,我都給予學(xué)生充足的時間進行嘗試、研究和討論,讓學(xué)生以不同的方式進行合作、交流,這樣的過程,不僅提供了學(xué)生自主學(xué)習(xí)的機會,也提高了學(xué)生自主參與學(xué)習(xí)的意識和信心,大家積極發(fā)言,爭先操作,參與率很高。
我積極地創(chuàng)造機會讓學(xué)生自己去學(xué)習(xí)或者去探究問題。通過看一看,摸一摸,比一比,指一指,說一說,猜一猜等問題情境,讓學(xué)生親身感受數(shù)學(xué),在找中學(xué),在測中學(xué),在思中學(xué),培養(yǎng)學(xué)生動手操作能力、直觀思維和抽象思維能力,使數(shù)學(xué)課堂教學(xué),動起來,活起來,讓學(xué)生在做中學(xué),使數(shù)學(xué)課堂煥發(fā)出生命活力。
圓錐的體積教學(xué)反思7
圓錐的體積是在學(xué)生掌握了圓錐的認識和圓柱的體積的基礎(chǔ)上教學(xué)的。教學(xué)時讓學(xué)生通過實驗來發(fā)現(xiàn)圓錐與等底等高的圓柱之間的關(guān)系,從而得出圓錐的體積等于和它等底等高的圓柱體積的三分之一,并能運用這個關(guān)系計算圓錐的體積,讓學(xué)生從感性認識上升到理性認識。學(xué)生感到非常簡單易懂,因此學(xué)起來并不感到困難。但教學(xué)過后,仍感到有許多不盡人意之處,當(dāng)然,也有許多收獲。
新課一開始,我就讓學(xué)生觀察,先猜測圓錐的體積和什么有關(guān),學(xué)生聯(lián)系到了圓柱的體積,在猜想中激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生明白學(xué)習(xí)目標(biāo)。教師從展示實物圖形到空間圖形,采用對比的方法,不斷加深學(xué)生對形體的認識。然后讓學(xué)生動手實驗,讓孩子親歷教學(xué)的驗證過程,從實驗中得出結(jié)論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。這樣,就有一種水到渠成的感覺。對圓錐的體積建立了鮮明的印象之后,就應(yīng)用公式解決實際的生活問題,起到鞏固深化知識點的作用。
在教學(xué)之后感覺到遺憾的是,由于教具有限,參與實驗的學(xué)生不多,如果每個小組準(zhǔn)備一套學(xué)具,讓他們以小組合作學(xué)習(xí)的方式使每個學(xué)生都能真切的參與到探究中去,這樣每個學(xué)生都能懷著喜悅的心情進行學(xué)習(xí),最大限度的發(fā)揮每個學(xué)生的自主學(xué)習(xí)的能力,這樣的學(xué)習(xí)不僅使學(xué)生學(xué)會了知識,更重要的是培養(yǎng)了學(xué)生的能力。
一、 收獲:
1、探究圓錐體積計算方法的學(xué)習(xí)過程,學(xué)生可以不再是實驗演示的被動的觀看者,而是參與操作的主動探索者,真正成為學(xué)習(xí)的主人。在整個學(xué)習(xí)過程中,學(xué)生獲得的不僅是新活的數(shù)學(xué)知識,同時也獲得了更多的是探究學(xué)習(xí)的科學(xué)方法,探究成功的喜悅以及探究失敗的深刻反思,在這樣的學(xué)習(xí)中,學(xué)生會逐步變的有思想、會思考、會逐漸發(fā)現(xiàn)自身的價值。
2、每個學(xué)生都經(jīng)歷“猜想估計---設(shè)計實驗驗證---發(fā)現(xiàn)算法”的自主探究學(xué)習(xí)的過程,在教師適當(dāng)?shù)囊龑?dǎo)下給于學(xué)生根據(jù)自己的設(shè)想自由探究等底等高的圓錐體和圓柱體體積之間的關(guān)系,圓錐體體積的計算方法。讓每個學(xué)生都經(jīng)歷一次探究學(xué)習(xí)的過程。
。1) 、一節(jié)好的課,在教學(xué)時要層次清楚,步步深入,重點突出。
在教學(xué)“圓錐的體積”時,我首先用實物圖形到空間圖形,采用對比的方法,不斷加深學(xué)生對形體的認識。然后要學(xué)生用自己的學(xué)具動手做實驗,從實驗的過程中得出結(jié)論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。這樣,就有一種水到渠成的感覺。然后,利用公式解決生活中的實際問題,加深學(xué)生印象。
。2) 、一節(jié)好的課,應(yīng)注意激發(fā)學(xué)生的`求知欲。
新課一開始,我就讓學(xué)生觀察,先猜測圓柱和圓錐的大小,激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生明白學(xué)習(xí)目標(biāo)。在應(yīng)用公式的教學(xué)中,又把問題轉(zhuǎn)向到課初學(xué)生猜測且還沒有解決的問題,引導(dǎo)學(xué)生計算出圓錐的體積,終于使懸念得出了滿意的結(jié)果,使學(xué)生獲得了成功的喜悅。
。3) 、一節(jié)好的課,要有全體學(xué)生的積極參與,突出學(xué)生的主體作用。
由于我平時非常重視讓學(xué)生參與教學(xué)的全過程,重視培養(yǎng)學(xué)生的思維想象力,因此,學(xué)生在這節(jié)課上,表現(xiàn)也相當(dāng)?shù)某錾。我在教學(xué)中注意調(diào)動學(xué)生的學(xué)習(xí)積極性,采用分組觀察、操作、討論,動手做實驗等方法,突出了學(xué)生的主體作用。
二、 不足:
1、 許多學(xué)生在計算過程中常忘記除以3,需要加強訓(xùn)練。
2、 實驗教材數(shù)量有限,只能起到演示作用,學(xué)生成為被動的觀看者,不能實現(xiàn)人人參與操作探究。
。1)。這些實驗設(shè)計在教學(xué)實踐中也暴露出許多不足:這些實驗設(shè)計都需要借助一定的中介,而根據(jù)小學(xué)生的認知特點,他們在比較體積關(guān)系時首先想到的是進行體積的直接對比,所以實驗設(shè)計不符合學(xué)生思維的真實水平。
。2)。實驗教材具有現(xiàn)成性,學(xué)習(xí)用具具有一定的實際限制,使學(xué)生探索思考的空間較小,不利于學(xué)生思維的充分發(fā)展。
圓錐的體積教學(xué)反思8
《圓錐的體積練習(xí)課》教學(xué)反思正如探究圓柱體積計算方法的教學(xué)過程一樣,學(xué)生不再是實驗演示的被動觀看者,而是參與操作的主動探者,是學(xué)習(xí)的主人。
在整個教學(xué)過程中,學(xué)生獲得的不僅是鮮活的數(shù)學(xué)知識,同時也獲得了更多探究學(xué)習(xí)的科學(xué)方法,探究成功的喜悅以及探究失敗后的深刻反思。在這樣的學(xué)習(xí)中,學(xué)生會逐步變得會思考,逐漸發(fā)現(xiàn)自身的'價值。同時,在操作與實踐的過程中,我讓一些學(xué)習(xí)有困難的學(xué)生參與其中,使他們感受到學(xué)習(xí)數(shù)學(xué)的快樂,并使他們懂得可以通過玩學(xué)習(xí)到數(shù)學(xué)知識。
這是本節(jié)課在教學(xué)組織上的優(yōu)點所在。對于教學(xué)內(nèi)容的設(shè)計,我通過提問引入圓錐的體積,生動而形象地揭示了本節(jié)課的課題。對于學(xué)生易混淆的知識點,我通過實物展示、語言強調(diào)、練習(xí)等方式,讓學(xué)生掌握只有當(dāng)圓柱和圓錐等底、等高時,圓柱的體積才是圓錐的3倍這一知識點。
對于圓錐的形成過程,我也設(shè)計了一個習(xí)題讓學(xué)生自行思考和感受,并通過比較計算結(jié)果發(fā)現(xiàn)沿一個直角三角形不同直角邊快速轉(zhuǎn)動后所得到的圓錐的區(qū)別與聯(lián)系,使學(xué)生在對比中進一步理解并掌握知識。
圓錐的體積教學(xué)反思9
最近教學(xué)了《圓柱與圓錐》,內(nèi)容包括圓柱的表面積、圓柱的體積、圓錐的體積等,并參與實踐活動。從教材編寫的層面上講力圖體現(xiàn)以下特點:
1.結(jié)合具體情境和操作活動,引導(dǎo)學(xué)生經(jīng)歷“點動成線”“線動成面”“面動成體”的過程,體會“點、線、面、體”之間的聯(lián)系教材的第一個活動體現(xiàn)的內(nèi)容是“由平面圖形經(jīng)過旋轉(zhuǎn)形成幾何體”,這不僅是對幾何體形成過程的學(xué)習(xí),同時體會面和體的關(guān)系也是發(fā)展空間觀念的重要途徑,這也是教材將此課題目定為“面的旋轉(zhuǎn)”的原因。教材呈現(xiàn)了幾個生活中的具體情境,鼓勵學(xué)生進行觀察,激活學(xué)生的生活經(jīng)驗,使學(xué)生經(jīng)歷“點動成線”“線動成面”“面動成體”的過程。在結(jié)合具體情境感受的基礎(chǔ)上,教材又設(shè)計了一個操作活動,通過快速旋轉(zhuǎn)小旗,引導(dǎo)學(xué)生結(jié)合空間想象體會立體圖形的形成過程,發(fā)展空間觀念。教材還提供了若干由面旋轉(zhuǎn)成體的練習(xí)。
2.重視操作與思考、想象相結(jié)合,發(fā)展學(xué)生的空間觀念操作與思考、想象相結(jié)合是學(xué)生認識圖形、探索圖形特征、發(fā)展空間觀念的重要途徑。在本單元中,教材重視學(xué)生操作活動的安排,在每個主題活動中都安排了操作活動,促進學(xué)生理解數(shù)學(xué)知識、發(fā)展空間觀念。如“圓柱的表面積”的教學(xué)中,教材引導(dǎo)學(xué)生通過操作來說明圓柱的'側(cè)面展開后是一個怎樣的圖形,并呈現(xiàn)了兩種操作的方法:一種是把圓柱形紙盒剪開,側(cè)面展開后是一個長方形;另一種是用一張長方形紙卷成圓柱形。再如本單元的最后專門安排了一個“用長方形紙卷圓柱形”的實踐活動,先讓學(xué)生用兩張完全一樣的長方形紙,一張橫著卷成一個圓柱形,另一張豎著卷成一個圓柱形,研究兩個圓柱體積的大;然后組織學(xué)生將兩張完全一樣的長方形紙裁開,把變化形狀后的紙再卷成圓柱形,研究圓柱體積的變化,引導(dǎo)學(xué)生發(fā)現(xiàn)規(guī)律,深化對圓柱表面積、體積的認識,并體會變量之間的關(guān)系。
3.引導(dǎo)學(xué)生經(jīng)歷圓柱和圓錐體積計算方法的探索過程,體會類比等數(shù)學(xué)思想方法類比是一種重要的數(shù)學(xué)思想方法,是合情推理時常用的方法。教材重視類比、轉(zhuǎn)化等數(shù)學(xué)思想方法的滲透。在“圓柱的體積”教學(xué)時,教材引導(dǎo)學(xué)生經(jīng)歷“類比猜想—驗證說明”的探索過程。由于圓柱和長方體、正方體都是直柱體,而且長方體與正方體的體積都等于“底面積×高”,由此可以產(chǎn)生猜想:圓柱的體積計算
方法也可能是“底面積×高”。在形成猜想后,教材再引導(dǎo)學(xué)生“驗證說明”自己的猜想。在“圓錐的體積”教學(xué)時,教材繼續(xù)滲透類比的思想,再次引導(dǎo)學(xué)生經(jīng)歷“類比猜想—驗證說明”的探索過程。另外,教材還注意轉(zhuǎn)化、化曲為直等思想方法的滲透,如在驗證說明“圓柱的體積=底面積×高”時,引導(dǎo)學(xué)生把圓柱切割拼成近似的長方體進行研究,體現(xiàn)了化曲為直的思想方法。
4.在解決實際問題中鞏固所學(xué)知識,感受數(shù)學(xué)與生活的聯(lián)系圓柱和圓錐的知識在生活中有著較為廣泛的應(yīng)用,教材在編排練習(xí)時,選擇了來自于現(xiàn)實生活的問題,引導(dǎo)學(xué)生靈活運用所學(xué)知識解決問題。如學(xué)習(xí)“圓柱的表面積”時,鼓勵學(xué)生計算薯片盒的包裝紙的大小、通風(fēng)管需要的鐵皮的面積、壓路機壓路的面積等,由于實際情形變化比較多,需要學(xué)生根據(jù)實際情況靈活地選擇有關(guān)數(shù)據(jù)進行計算。在學(xué)習(xí)“圓柱和圓錐的體積”后,教材鼓勵學(xué)生計算水桶的容積、圓木的體積、圓錐形小麥堆的體積、鉛錘的質(zhì)量等。這些實際問題的解決,將使學(xué)生鞏固對所學(xué)知識的理解,體會數(shù)學(xué)知識在生活中的廣泛應(yīng)用,豐富對現(xiàn)實空間的認識,逐步形成學(xué)好數(shù)學(xué)的情感和態(tài)度。
從教學(xué)層面上講,我覺得要注意這么幾點:
1、讓學(xué)生經(jīng)歷知識的生成,理解公式的由來。
2、熟記相關(guān)公式和一些常見數(shù)據(jù),提高計算的正確率和速度。
3、注意知識的拓展應(yīng)用,體現(xiàn)數(shù)學(xué)的應(yīng)用價值,發(fā)展學(xué)生的思維能力。
圓錐的體積教學(xué)反思10
以前教學(xué)圓錐的體積時,由于教具的制作非常麻煩,多是先由教師演示等底等高情況下的圓柱體積的三分之一正好是圓錐的體積,再讓學(xué)生驗證,最后教師通過對比實驗說明不等底等高的差異,但收到的效果不佳,計算圓錐的體積時容易忘掉乘。學(xué)生對等底等高這一重要條件掌握并不牢固,理解很模糊。在本次課中,新課一開始,我就讓學(xué)生觀察,根據(jù)學(xué)習(xí)體積的經(jīng)驗,先判斷四個圓錐的體積大小,引導(dǎo)學(xué)生猜測圓錐的體積和它的什么有關(guān),學(xué)生聯(lián)系到了圓柱的體積,都能說出圓錐的體積跟它的底面積和高有關(guān)系,在猜想中激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生明白學(xué)習(xí)目標(biāo)。
為了讓學(xué)生理解等底等高是判斷圓錐的體積是圓柱體積的三分之一的前提條件,同時為了節(jié)約教學(xué)時間,我設(shè)計了這樣的教學(xué)片斷:讓學(xué)生思考,圓錐與學(xué)過哪個立體圖形的關(guān)系最近?為什么?學(xué)生很容易找到圓柱,接著我又拿出幾個不同的圓柱,問:考考你們的眼力,選擇哪個來研究這個圓錐的`體積比較好?將學(xué)生選的圓柱進行驗證,發(fā)現(xiàn)與圓錐是等底等高,告訴學(xué)生在選擇實驗材料時要盡量選擇有些相同條件的,這樣實驗時可以少走彎路,實驗的結(jié)果準(zhǔn)確些,在這個過程中加深了對等底等高這個條件的理解。這時,讓學(xué)生進行小組合做,實驗探究,經(jīng)歷一番觀察、發(fā)現(xiàn)、合作、創(chuàng)新的過程,得出圓錐體積等于和它等底等高圓柱體積的三分之一。這樣讓學(xué)生置身于有目的的實踐中,增加對實驗條件的選擇及信息的歸納。既圓滿地推導(dǎo)出了圓錐的體積公式,又促進了學(xué)生實踐能力和批判意識的發(fā)展。而這些目標(biāo)的實現(xiàn),完全是優(yōu)化實驗過程所產(chǎn)生的效果。
在小組合作學(xué)習(xí)中,為了增強實效性,避免走形式,在課前,我引導(dǎo)學(xué)生制作等底等高的一組圓柱和圓錐,使每個學(xué)生都能真切的參與實驗、參與到探究中去,讓他們以這樣每個學(xué)生都能懷著喜悅的心情進行學(xué)習(xí),最大限度的發(fā)揮每個學(xué)生的自主學(xué)習(xí)的能力,這樣的學(xué)習(xí)不僅使學(xué)生學(xué)會了知識,更重要的是培養(yǎng)了學(xué)生的能力。
通過本節(jié)課的教學(xué),我意識到在平時的課堂教學(xué)中,我們要善于利以學(xué)生認識發(fā)展規(guī)律為依托:發(fā)現(xiàn)問題,提出問題探究解決問題,探究解決問題得出結(jié)論,實際應(yīng)用使學(xué)生在認識實踐再認識、再實踐中理解運用知識。在教學(xué)環(huán)節(jié)中以學(xué)生探究為基礎(chǔ)引導(dǎo)學(xué)生在探究中總結(jié)規(guī)律,并運用規(guī)律解決實際問題,激發(fā)學(xué)生探究的興趣感受到數(shù)學(xué)的應(yīng)用性,解決問題的樂趣,逐步提高學(xué)生探究知識應(yīng)用知識解決實際問題的能力。
本節(jié)課的教學(xué)中比較遺憾的時,在制作課件時考慮不周全,幾個圓錐的相關(guān)數(shù)據(jù)不準(zhǔn)確,比例不合適,對學(xué)生的學(xué)習(xí)造成了不必要的麻煩,影響了學(xué)生的判斷結(jié)果,這些看似細節(jié)的環(huán)節(jié),卻反映了在備課時的粗心大意,對學(xué)生也會產(chǎn)生不良的影響,今后要注意,時刻記。杭毠(jié)決定成功!
圓錐的體積教學(xué)反思11
《圓錐的體積》教學(xué)設(shè)計與反思 教學(xué)目的:使學(xué)生初步掌握圓錐體積的計算公式。
并能運用公式正確地計算圓錐的體積,發(fā)展學(xué)生的空間觀念。
教學(xué)難點:圓錐的體積應(yīng)用
學(xué)具準(zhǔn)備:等底等高的圓柱和圓錐,水和沙,多媒體課件
教學(xué)時間:一課時
教學(xué)過程:
一、復(fù)習(xí)
1、圓錐有什么特征?(課件出示)
使學(xué)生進一步熟悉圓錐的特征:底面,側(cè)面,高和頂點。
2、圓柱體積的計算公式是什么?
指名學(xué)生回答,并板書公式:“圓柱的體積=底面積×高”。同時滲透轉(zhuǎn)化方法在數(shù)學(xué)學(xué)習(xí)中的應(yīng)用。
二、導(dǎo)人新課
出示一個圓錐形的谷堆,給出底面直徑和高,讓學(xué)生思考如何求它的體積。 板書課題:圓錐的體積
三、新課
1、教學(xué)圓錐體積的計算公式。
師:請大家回億一下,我們是怎樣得到圓柱體積的計算公式的?
指名學(xué)生敘述圓柱體積計算公式的推導(dǎo)過程,使學(xué)生明確求圓柱的體積是通過切拼成長方體來求得的。
師:那么圓錐的體積該怎樣求呢?能不能也通過已學(xué)過的圖形來求呢?
先讓學(xué)生討論一下用什么方法求,然后指出:我們可以通過實驗的方法,得到計算圓錐體積的公式。
教師拿出等底等高的圓柱和圓錐各一個,“大家看,這個圓錐和圓柱有什么共同的地方?”
然后通過演示后,指出:“這個圓錐和圓柱是等底等高的,下面我們通過實驗,看看它們之間的體積有什么關(guān)系?”
學(xué)生分組實驗。
匯報實驗結(jié)果。先在圓錐里裝滿水,然后倒入圓柱。正好3次可以倒?jié)M。 圓柱里裝滿沙子,倒入與他等底等高的圓錐,三次正好倒完。
接著,教師課件邊演示邊敘述:現(xiàn)在圓錐和圓柱里都是空的。請大家注意觀察,看看能夠倒幾次正好把圓柱裝滿?
問:把圓柱裝滿一共倒了幾次?
生:3次。
師:這說明了什么?
生:這說明圓錐的體積是和它等底等高的圓柱的體積的。
多找?guī)酌瑢W(xué)說。
板書:圓錐的體積=1/3 ×圓柱體積
師:圓柱的.體積等于什么?
生:等于“底面積×高”。
師:那么,圓錐的體積可以怎樣表示呢?
引導(dǎo)學(xué)生想到可以用“底面積×高”來替換“圓柱的體積”,于是可以得到圓錐體積的計算公式。
板書:圓錐的體積= 1/3 ×底面積×高 師:用字母應(yīng)該怎樣表示?
然后板書字母公式:V=1/3 Sh
師:在這個公式里你覺得哪里最應(yīng)該注意?
教學(xué)例1一個圓錐的零件,底面積是19平方厘米,高是12厘米。這個零件的體積是多少?
1/3×19×12=76((立方厘米))
答:這個零件體積是76立方厘米。
做一做:課件出示,學(xué)生回答后,教師訂正。
1、一個圓錐的底面積是25平方分米,高是9分米,它的體積是多少?
2、已知圓錐的底面半徑r和高h,如何求體積V?
3、已知圓錐的底面直徑d和高h,如何求體積V?
4、已知圓錐的底面周長C和高h,如何求體積V?
5、一個圓錐的底面直徑是20厘米,高是9厘米,它的體積是多少?
例2在打谷場上,有一個近似于圓錐的小麥堆,測得底面直徑是4米,高是1.2米。每立方米小麥約重735千克,這堆小麥大約有多少千克?(得數(shù)保留整千克) 判斷:課件出示,學(xué)生回答后,教師訂正。
1、圓柱體的體積一定比圓錐體的體積大( )
2、圓錐的體積等于和它等底等高的圓柱體積的 ( ) 。
3、正方體、長方體、圓錐體的體積都等于底面積×高。 ( )
4、等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米( )
四、教師小結(jié)。
這節(jié)課我們學(xué)習(xí)了哪些知識?你還有什么問題嗎?
五、作業(yè)。課本練習(xí)
六、板書
圓柱的體積=底面積×高
字母公式:V圓柱= S·h
圓錐的體積=圓柱的體積=底面積×高
字母公式:V圓錐= S·h
教學(xué)反思
這節(jié)課是六年級圓柱和圓錐的內(nèi)容,主要是求圓錐體的體積。就小學(xué)現(xiàn)有的知識,把圓錐體積轉(zhuǎn)化為體積相等的其它物體有些困難。因此,教學(xué)圓錐體積公式采用的方法與圓柱相同,采用“轉(zhuǎn)化”的思想。因而這節(jié)課首先復(fù)習(xí)圓柱的體積公式及推導(dǎo)方法,讓學(xué)生從圖畫直觀上感受——圓錐體的體積比等底等高的圓柱體體積小。在此直觀的基礎(chǔ)上,讓學(xué)生親自動手實驗,這里除了培養(yǎng)學(xué)生的自主探究、發(fā)現(xiàn)的能力,還讓學(xué)生在操作實驗的過程中,各種能力得到鍛煉,同時還讓學(xué)生在實驗中感受數(shù)學(xué)的嚴(yán)密性,感受數(shù)學(xué)的內(nèi)在魅力,激發(fā)學(xué)生對數(shù)學(xué)的熱愛。學(xué)生學(xué)識的關(guān)鍵還在于會不會運用,因而,在學(xué)生探索好后,讓學(xué)生用自己探索到的結(jié)論,解決生活中的一些實際問題,讓他們真正感受到數(shù)學(xué)的用處——生活中處處離不開數(shù)學(xué)。最后讓學(xué)生談?wù)勈斋@,鞏固這節(jié)課的重點,加深印象。
圓錐的體積教學(xué)反思12
圓錐的體積是在學(xué)生掌握了圓柱的特征及圓柱的體積等有關(guān)知識的基礎(chǔ)上進行教學(xué)的。
成功之處:
1.讓學(xué)生經(jīng)歷圓錐體積計算公式的推導(dǎo)過程,弄清來龍去脈。在教學(xué)中,我首先通過給學(xué)生提供兩組不同的學(xué)具:一組是等底等高的圓柱和圓錐,另一組是等底不等高的圓柱和圓錐。讓學(xué)生通過倒水,發(fā)現(xiàn)在等底等高的圓柱和圓錐中,用圓錐容器裝水倒入等底等高的圓柱容器中,剛好倒三次,即圓錐的體積是與它等底等高圓柱體積的三分之一,而在等底不等高的圓柱和圓錐中,則不存在這樣的.關(guān)系,圓錐的體積就不是與它等底不等高圓柱體積的三分之一,由此通過公式可以得出:V圓錐=1/3圓柱
=1/3Sh(知道底面積和高)
=1/3πr2h(知道半徑和高)
=1/3π(d*2)2h(知道直徑和高)
=1/3π(c*2*π)2h(知道周長和高)
2.加強學(xué)生的實踐,培養(yǎng)學(xué)生的動手操作能力與自主解決問題的能力。在教學(xué)中,我提供的是兩組不同的學(xué)具,目的是讓學(xué)生通過自己的親身實踐,親自動手,親身體會圓柱與圓錐體積之間的關(guān)系,這樣利于培養(yǎng)學(xué)生自主探索,與同學(xué)之間合作學(xué)習(xí),共同解決問題的能力。學(xué)生在此項活動中,不僅收獲了知識的來龍去脈,還體會到了與同學(xué)合作,共享成果的幸福喜悅。
不足之處:
由于課前把制作的U盤帶回家,未帶回來,所以導(dǎo)致課上無法通過多媒體課件的形式,把動手操作的完整過程給學(xué)生進行展示。
再教設(shè)計:
上課前的一點一絲疏漏都要力求避免,課前準(zhǔn)備真的是對于教師來說至關(guān)重要,缺少哪一環(huán)都會在課堂上留下遺憾。
圓錐的體積教學(xué)反思13
《圓錐的體積》是在學(xué)生掌握了圓錐的認識和圓柱的體積基礎(chǔ)上教學(xué)的。教學(xué)時讓學(xué)生通過實驗的方法發(fā)現(xiàn)圓錐與等底等高的圓柱體積之間的關(guān)系,從而推導(dǎo)出圓錐的體積等于和它等底等高的圓錐體積的三分之一,并能運用這個公式計算圓錐的體積,讓學(xué)生從感性認識上升到理性認識。
教學(xué)的主線是:
提出問題—直覺猜測—實驗探究—合作交流—實驗驗證—得出結(jié)論—實踐運用。
新課一開始,我讓學(xué)生觀察,先猜測圓錐的體積和圓柱體的體積什么有關(guān)?學(xué)生聯(lián)系到圓柱的體積,在猜想中激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生明白學(xué)習(xí)的目標(biāo),接著我讓學(xué)生親自動手實踐,用自制的學(xué)具去實驗圓錐和圓柱的體積關(guān)系,通過反饋4種小組的實驗結(jié)果,得出只有在等底等高的情況下,圓錐的體積是圓柱體積的1/3,接著我又用多媒體課件演示,讓學(xué)生再次體驗這一結(jié)論。這一過程讓孩子親歷教學(xué)驗證,有一種水到渠成的感覺,學(xué)生自己很容易地推導(dǎo)出圓錐體的體積公式。
對圓錐體積建立了鮮明的印象之后,就應(yīng)用公式解決實際生活中的教學(xué)問題,起到了深化知識點的作用。教學(xué)中讓學(xué)生真正成為活動的主動參與者,讓學(xué)生真正的感受自己是學(xué)習(xí)的`主人。在整個學(xué)習(xí)過程中,學(xué)生獲得的不僅是新活的數(shù)學(xué)知識,同時也獲得了更多的是探究學(xué)習(xí)的科學(xué)方法,探究成功的喜悅以及探究失敗的深刻反思,在這樣的學(xué)習(xí)中,學(xué)生會逐步變的有思想、會思考、會逐漸發(fā)現(xiàn)自身的價值。同時,在操作與實踐的過程中讓一些學(xué)困生也有參與的興趣,讓他們也能感受數(shù)學(xué)學(xué)習(xí)的快樂,使他們懂得他們也可以通過玩掌握到數(shù)學(xué)的知識。
但在教學(xué)之后感覺到遺憾的是:學(xué)生動手能力太差,不能按要求制作學(xué)具,實驗時出現(xiàn)差錯;還有個別學(xué)生不能積極參與實驗,自主學(xué)習(xí)、自主探究意識較差,以后在教學(xué)中應(yīng)在這些地方對學(xué)生加以指導(dǎo);另外,個別學(xué)生計算能力太差,計算準(zhǔn)確率低,而且個別學(xué)困學(xué)生對于一些需要靈活判斷的題目還是不能有較好的把握,從而可以看出,他們對于該體積公式的理解也只是停留在較簡單和較低的層面上。同時還有一些學(xué)生在計算過程中常常忘記乘1/3,因此,以后需要加強訓(xùn)練。
圓錐的體積教學(xué)反思14
實踐出真知,我覺得這句話講得非常的好。對于學(xué)生的學(xué)習(xí),我覺得也是這樣。讓學(xué)生真正成為活動的主動者,才能讓學(xué)生真正的感受自己是學(xué)習(xí)的主人。特別是在圖形的教學(xué)中,根據(jù)學(xué)習(xí)內(nèi)容的特點,注重操作,注重實踐,可以讓教學(xué)達到最高效。在教學(xué)圓錐的體積時,我感悟特深刻。
以前教學(xué)圓錐的體積后,學(xué)生在實際運用公式時容易出錯誤的地方還是和往屆一樣,圓錐的.體積=等底等高圓柱體積的三分之一,這個三分之一,在計算的時候經(jīng)常出現(xiàn)遺漏。
怎樣讓學(xué)生自己探究出圓錐的體積公式,并且時時記住那個容易被人遺忘的三分之一呢?我這次把學(xué)習(xí)的主動權(quán)交給了學(xué)生,讓每個學(xué)生都經(jīng)歷提出猜測--設(shè)計實驗--動手操作--得出公式的自主探究學(xué)習(xí)的過程,我讓學(xué)生拿出自己的學(xué)具等底等高的圓柱和圓錐,走出課堂,深入實踐,到操場上去裝沙子,到水池邊去裝水,看幾個圓錐的體積才能把圓柱裝滿。在我適當(dāng)?shù)囊龑?dǎo)下,讓學(xué)生根據(jù)自己的設(shè)想自由探究等底等高的圓錐體和圓柱體體積之間的關(guān)系,圓錐體體積的計算方法。讓每個學(xué)生都經(jīng)歷一次探究學(xué)習(xí)的過程。教學(xué)中我感到學(xué)生真正地成為了學(xué)習(xí)的主人,我沒有牽著學(xué)生走,只是為他們創(chuàng)設(shè)了一個猜想圓錐體積方法的情境,讓學(xué)生在猜測中找到驗證的方法,并且通過動手操作驗證自己的猜測。最后得出圓錐體積的計算方法,激發(fā)了他們主動探究的欲望。
推導(dǎo)公式時,我沒有代替學(xué)生的操作,始終只以組織者、引導(dǎo)者與合作者的身份參與其中,使學(xué)生與學(xué)生之間,教師與學(xué)生之間互動起來,在這種形式下,學(xué)生運用獨立思考、合作討論、動手操作等多種方式進行了探索。另外,為了突出等底、等高這個條件的重要性,我巧置陷阱,我還特意安排了一組等底不等高,一組不等底也不等高的圓柱和圓錐,結(jié)果學(xué)生的實驗結(jié)論和其他組的不一致,這時候就出現(xiàn)了爭論,這時,我時機引導(dǎo)學(xué)生與上次演示比較,1比3的關(guān)系是在什么基礎(chǔ)上建立的?學(xué)生恍然大悟,明白圓錐體和圓柱體等底、等高,圓錐體體積才是圓柱體體積的三分之一。相信今天通過同學(xué)們自己的動手體驗,對圓錐的體積計算方法印象深刻,只有自己經(jīng)歷了才會牢牢記!
圓錐的體積教學(xué)反思15
通過本節(jié)課的教學(xué),我意識到在平時的課堂教學(xué)中,我們要善于利用以學(xué)生認識發(fā)展規(guī)律為依托 :發(fā)現(xiàn)問題,提出問題探究解決問題,探究解決問題得出結(jié)論,實際應(yīng)用使學(xué)生在“認識—實踐—再認識、再實踐”中理解運用知識。反思教學(xué)過程,主要有以下幾點體會:
一、觀察引導(dǎo)
讓學(xué)生觀察用卷筆刀削鉛筆,明白剛才那一截是圓柱體,現(xiàn)在這一截變成了圓錐體。啟發(fā)學(xué)生:削成后的這一部分體積與原體積比較有無變化?學(xué)生回答是肯定的,削后體積變小了。變小了以后的圓錐體是原圓柱體的幾分之幾?也就是說圓錐體體積與圓柱體體積有什么聯(lián)系?圓錐體體積公式如何推導(dǎo)?帶著問題去看書。
二、巧置陷阱
學(xué)生看書后知道圓錐體體積等于等底等高圓柱體積的三分之一。但對“等底、等高”這個條件往往不注意。為了突出“等底、等高”這個條件的重要性,我巧置陷阱,讓學(xué)生分組操作,(有一組的圓柱和圓錐體的容器不是等底等高的,有一組的圓柱和圓錐體的容器是等底等高的),去驗證課本上的知識。學(xué)生進行倒水實驗:用圓錐體容器盛滿水倒入圓柱體容器。過了一會兒,一個小組倒了3次水,還沒灌滿;而另一小組的同學(xué)卻大叫:“水溢出來了!”這是什么緣故呢?學(xué)生們議論紛紛。
三、柳暗花明
這時正是學(xué)生思維活動進入高潮時,我拿出等底等高的圓柱體和圓錐體兩個容器,用圓錐體量水三次正好灌滿圓柱體,引導(dǎo)學(xué)生與上次演示比較,1比3的關(guān)系是在什么基礎(chǔ)上建立的?學(xué)生恍然大悟,明白圓錐體和圓柱體等底、等高,圓錐體體積才是圓柱體體積的三分之一。而在這樣的過程中我放手讓學(xué)生去想、去做,鼓勵學(xué)生以多角度去思考問題。學(xué)生在學(xué)習(xí)的過程中,始終是一個探索者、研究者、發(fā)現(xiàn)者,并獲得了富有成效的學(xué)習(xí)體驗。
四、歸納總結(jié)
剛才同學(xué)們發(fā)現(xiàn)圓錐體體積等于等底、等高圓柱體體積的,現(xiàn)在圓錐體體積公式如何推導(dǎo)?學(xué)生很容易得出:
v圓錐體=sh÷3
但在教學(xué)過程中我發(fā)現(xiàn)了幾個值得我思考和改正的問題:
1、在教學(xué)之后感覺到遺憾的是,由于教具有限,參與實驗的學(xué)生不多。
2、有些學(xué)生在計算過程中常忘記除以3,需要加強練習(xí)。
3、對學(xué)生的操作關(guān)注不夠到位。
采取的措施:
1、培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣,做題時認真仔細。
2、上課要用心去感受學(xué)生課堂上出現(xiàn)的各種情況,使自己更有激情,把自己更好地融入到課堂教學(xué)中去。同時也會把時間更多的放在鉆研教材上,把每一節(jié)課上得有聲有色。
《圓錐的體積》教學(xué)反思
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“有效的數(shù)學(xué)學(xué)習(xí)活動不能單純地依賴模仿和記憶,動手實踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式!币虼,在教學(xué)圓錐體積計算時,一改以前教師演示或在教師指令下實驗的做法;采取提供學(xué)生材料和機會,引導(dǎo)學(xué)生自主探究的學(xué)習(xí)方式。具體表現(xiàn)在:
。1)密切數(shù)學(xué)與現(xiàn)實的聯(lián)系,富有兒童情趣。
學(xué)生從熟悉的經(jīng)典歷史故事《曹操稱象》中,理解了“大象”轉(zhuǎn)化為“石頭”的等量代換的`數(shù)學(xué)方法,滲透轉(zhuǎn)化的方法,為新知識作好鋪墊和準(zhǔn)備。又從刨鉛筆直觀引入,引發(fā)學(xué)生大膽猜想,學(xué)生的主動性,探究性得到培養(yǎng)。實驗中的米;最后,習(xí)題中又回歸生活,延伸了課堂。
。2)致力于改變學(xué)生的學(xué)習(xí)方式。
在教學(xué)過程中,能夠在學(xué)生已有的知識經(jīng)驗基礎(chǔ)和動手操作上,經(jīng)過學(xué)生自主探索與合作交流,解決了與生活經(jīng)驗密切聯(lián)系,具有挑戰(zhàn)性的問題。課堂中,啟發(fā)學(xué)生提問,猜想,動手測量,注重了解決問題能力的培養(yǎng),體驗到了成功的快樂。
。3)學(xué)習(xí)過程中揭示了一般科學(xué)的研究方法。
提出問題——直覺猜想——實驗探索——合作交流——實驗驗證——得出結(jié)論——實踐運用。這為以后的探究學(xué)習(xí)提供了一個基本方法,使學(xué)生在自主探索中掌握了知識,同時獲得了最廣泛的數(shù)學(xué)活動經(jīng)驗、理想和方法,更發(fā)展了學(xué)生的反思意識、小組自我評價意識。
縱觀本節(jié)課的設(shè)計,運用現(xiàn)代教學(xué)理論,以新課程的理念指導(dǎo)教學(xué),較好的處理了主導(dǎo)和主體、知識和能力、過程和結(jié)論的關(guān)系,充分調(diào)動了學(xué)生的積極性,引導(dǎo)全體學(xué)生動腦、動手、動口參與學(xué)習(xí)的全過程。整節(jié)課教學(xué)目標(biāo)明確,教學(xué)層次清楚。結(jié)構(gòu)嚴(yán)謹,重點突出,取得了良好的教學(xué)效果。
【圓錐的體積教學(xué)反思】相關(guān)文章:
《圓錐的體積》教學(xué)反思02-10
《圓錐的體積》教學(xué)反思04-27
圓錐的體積教學(xué)反思04-13
圓錐的體積教學(xué)反思04-06
《圓錐的體積》數(shù)學(xué)教學(xué)反思03-24
圓錐的體積教學(xué)反思(精選3篇)03-30