- 相關(guān)推薦
正弦定理的教學(xué)反思
身為一名人民教師,課堂教學(xué)是重要的工作之一,寫教學(xué)反思可以很好的把我們的教學(xué)記錄下來,那么應(yīng)當(dāng)如何寫教學(xué)反思呢?以下是小編為大家收集的正弦定理的教學(xué)反思,歡迎閱讀,希望大家能夠喜歡。
正弦定理的教學(xué)反思1
本節(jié)課是“正弦定理”教學(xué)的第二節(jié)課,其主要任務(wù)是通過對正弦定理的進(jìn)一步理解,明確它在“已知三角形的兩邊及一邊所對的角解三角形”方面的應(yīng)用和運(yùn)用正弦定理的變式來求三角形中的角和判斷三角形的形狀。
在知識目標(biāo)方面:通過創(chuàng)設(shè)適宜的數(shù)學(xué)情境,引導(dǎo)鼓勵(lì)學(xué)生大膽地提出問題、引導(dǎo)學(xué)生對所提的問題進(jìn)行分析、整理,篩選出有價(jià)值的問題,注意啟發(fā)學(xué)生揭示問題的數(shù)學(xué)實(shí)質(zhì),將提問推向深入。通過問題的提出、解題方法的探索、到問題的解決、方法的總結(jié)、及練習(xí)題中方法的應(yīng)用,都能緊抓公式及公式的變式,運(yùn)用從特殊到一般、再從一般到特殊的思想方法達(dá)成知識目標(biāo)。通過練習(xí)及六個(gè)變式問題調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情,進(jìn)而采用“正弦定理”、“大邊對大角”、“三角形內(nèi)角和定理”、“數(shù)形結(jié)合”等知識與方法有效突破本節(jié)課的教學(xué)難點(diǎn)。使學(xué)生明白這一類數(shù)學(xué)問題該怎樣解,讓學(xué)生做到“學(xué)會數(shù)學(xué),會學(xué)數(shù)學(xué)”。
在能力目標(biāo)方面:通過例題、練習(xí)及六個(gè)變式問題,培養(yǎng)學(xué)生觀察、歸納、概括新知識的能力;通過“故意出錯(cuò)”,讓學(xué)生“質(zhì)疑”、“找錯(cuò)”、“改錯(cuò)”,從而使學(xué)生的思維具有批判性,優(yōu)化他們的'思維品質(zhì);通過課后練習(xí)及課后思考,進(jìn)一步培養(yǎng)學(xué)生的數(shù)學(xué)意識,解決數(shù)學(xué)問題的能力。
在情感態(tài)度與價(jià)值觀方面:本節(jié)課也很注重對學(xué)生非智力因素的培養(yǎng),注重情感交流與情感的建立與培養(yǎng)。并在教學(xué)過程中做到:與學(xué)生真誠相處、平等交流;依據(jù)自己的個(gè)人特點(diǎn)采取適當(dāng)?shù)姆椒ㄅc技巧,注重充分發(fā)揮教師的個(gè)人人格魅力,而非千篇一律的“柔聲細(xì)語”;能借助信息技術(shù)及其它手段,營造一種氛圍,一種情境,通過“課前音樂背景”的設(shè)置,“課堂上的掌聲鼓勵(lì)”“形體語言與語言藝術(shù)”的運(yùn)用等,力爭營造一種愉快、輕松的氛圍,創(chuàng)建一個(gè)有助于師生,生生思維交流的“情感場”,使數(shù)學(xué)教學(xué)更具有生命力,感染力。使學(xué)生在感悟數(shù)學(xué)的過程中感受數(shù)學(xué)的魅力,體驗(yàn)數(shù)學(xué)產(chǎn)生的美感與幸福感。
通過這節(jié)課的學(xué)習(xí),不僅復(fù)習(xí)鞏固了舊知識,使學(xué)生掌握了新的有用的知識,體會聯(lián)系、發(fā)展等辯證觀點(diǎn),而且培養(yǎng)了學(xué)生的應(yīng)用意識和實(shí)踐操作能力,以及提出問題、解決問題等研究性學(xué)習(xí)的能力。
正弦定理的教學(xué)反思2
在備這節(jié)課時(shí),我有兩個(gè)問題需要精心設(shè)計(jì)。一個(gè)是問題的引入,一個(gè)是定理的證明。本節(jié)課以學(xué)生為主體,“問題提出———問題解決為主線”,采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實(shí)際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。
上完這節(jié)課,讓我有這樣一些體會:
1、問題是思維的起點(diǎn),是學(xué)生主動(dòng)探索的動(dòng)力。本節(jié)課在教學(xué)過程中充分發(fā)揮學(xué)生主體作用,始終以問題的形式引導(dǎo)學(xué)生主動(dòng)參與,在師生互動(dòng)、生生互動(dòng)中讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動(dòng)認(rèn)知過程,做到了把握重點(diǎn)、突破難點(diǎn)。
2、在教學(xué)中恰當(dāng)?shù)乩枚嗝襟w技術(shù),是突破教學(xué)難點(diǎn)的一個(gè)重要手段。本節(jié)課利用《幾何畫板》探究比值,的值,由動(dòng)到靜,取得了很好的效果!
3、做練習(xí)時(shí),有學(xué)生提出解三角形時(shí),正弦定理可以解決哪些問題?學(xué)生有這樣歸納的意識,在課堂及時(shí)肯定,表揚(yáng),并在課后刻意留一道思考題,任務(wù)后延,自主探究,使學(xué)生發(fā)現(xiàn)用正弦定理解決兩邊一對角問題時(shí)可能會出現(xiàn)兩解,一解或無解的情況,那么自然過渡到下一節(jié)內(nèi)容,已知兩邊和其中一邊的對角解三角形時(shí)判斷解的個(gè)數(shù)問題。
4、正弦定理的證明方法很多,如利用三角形的面積公式、利用三角形的外接圓、利用向量證明等,本節(jié)課將斜三角形的邊角關(guān)系轉(zhuǎn)化為直角三角形的邊角關(guān)系導(dǎo)出正弦定理,采用轉(zhuǎn)化,分類討論的的數(shù)學(xué)思想,是學(xué)生們易于接受的一種證明方法。但在具體的推導(dǎo)時(shí),發(fā)現(xiàn)學(xué)生可以想到對三角形進(jìn)行分類討論,并將斜三角形轉(zhuǎn)化成直角三角形證明,但在轉(zhuǎn)化時(shí),不僅可以通過作高,還可以有別的方法,比如外接圓法。但在證明時(shí)只用了作高這種方法,這種思路雖然簡單,但不是從學(xué)生的頭腦中產(chǎn)生的,而是教師強(qiáng)加給學(xué)生的,只注意教學(xué)的結(jié)果而沒有注意學(xué)生思維過程的發(fā)展,思路再好對學(xué)生的也沒有指導(dǎo)意義。所以今后要注意尊重學(xué)生思維的發(fā)展的過程,這是一種理念,也是一種能力。上好一堂課不僅有好的教學(xué)設(shè)計(jì),還應(yīng)有靈活應(yīng)變的能力,要尊重學(xué)生的思路,善于發(fā)現(xiàn)學(xué)生的'閃光點(diǎn),并及時(shí)引導(dǎo),才不會為了進(jìn)度而導(dǎo)下,將學(xué)生強(qiáng)拉進(jìn)自己事先設(shè)計(jì)好的軌道。
5、在教學(xué)設(shè)計(jì)和課堂教學(xué)中應(yīng)充分了解學(xué)生、研究學(xué)生,備課不僅是備知識,更重要的是備學(xué)生。作為教師只有真正樹立以學(xué)生的發(fā)展為本的教學(xué)理念,才能尊重學(xué)生思維過程的發(fā)生、發(fā)展,才能從學(xué)生的知識水平和理解能力出發(fā),創(chuàng)設(shè)合理的教學(xué)情境,才能為學(xué)生提供充分的數(shù)學(xué)活動(dòng)和交流的機(jī)會,使學(xué)生從單純的知識接受者轉(zhuǎn)變?yōu)閿?shù)學(xué)學(xué)習(xí)的主人。
【正弦定理的教學(xué)反思】相關(guān)文章:
《正弦定理和余弦定理》復(fù)習(xí)課教學(xué)設(shè)計(jì)07-12
《正弦定理、余弦定理》教學(xué)設(shè)計(jì)范文(通用10篇)05-10
八年級勾股定理教學(xué)反思04-22
《勾股定理》教學(xué)設(shè)計(jì)11篇04-30
《勾股定理》教學(xué)設(shè)計(jì)10篇05-28
初中數(shù)學(xué)《勾股定理》教學(xué)設(shè)計(jì)10-17
《勾股定理》教學(xué)設(shè)計(jì)13篇06-30