《等腰三角形》教學(xué)設(shè)計(jì)
作為一名為他人授業(yè)解惑的教育工作者,時(shí)常要開展教學(xué)設(shè)計(jì)的準(zhǔn)備工作,借助教學(xué)設(shè)計(jì)可以更大幅度地提高學(xué)生各方面的能力,從而使學(xué)生獲得良好的發(fā)展。你知道什么樣的教學(xué)設(shè)計(jì)才能切實(shí)有效地幫助到我們嗎?以下是小編為大家整理的《等腰三角形》教學(xué)設(shè)計(jì),希望能夠幫助到大家。
教材分析:
《等腰三角形》是冀教版八年級(jí)數(shù)學(xué)上冊(cè)第十七章第一節(jié)內(nèi)容。是在學(xué)習(xí)了軸對(duì)稱之后編排的,是軸對(duì)稱知識(shí)的延伸和應(yīng)用。等腰三角形的性質(zhì)及判定是探究線段相等、角相等、及兩條直線互相垂直的重要工具,在教材中起著承上啟下的作用。
學(xué)情分析
學(xué)生在本節(jié)課學(xué)習(xí)之前,已經(jīng)知道了全等三角形和軸對(duì)稱相關(guān)知識(shí),那么等腰三角形又有怎樣性質(zhì)呢?鑒于八年級(jí)學(xué)生的年齡、心理特點(diǎn)及認(rèn)知水平,有進(jìn)一步探究新知的愿望。本節(jié)課采用層層遞進(jìn)的問題啟發(fā)學(xué)生的思考,讓學(xué)生自主探究、合作交流中獲取知識(shí)。
教學(xué)目標(biāo):
知識(shí)目標(biāo):掌握等腰三角形的有關(guān)概念和相關(guān)性質(zhì)。并能用其解決有關(guān)問題。
能力目標(biāo):通過對(duì)性質(zhì)的探究活動(dòng)和例題的分析,提高學(xué)生分析問題和解決問題的能力。
情感目標(biāo):在探究對(duì)等腰三角形性質(zhì)活動(dòng)中,讓學(xué)生多動(dòng)手、多思考,培養(yǎng)學(xué)生之間的合作精神。
教學(xué)重難點(diǎn):
教學(xué)重點(diǎn):探索等腰三角形“等邊對(duì)等角”和“三線合一”的性質(zhì)。
教學(xué)難點(diǎn):利用等腰三角形的性質(zhì)解決有關(guān)問題。
教學(xué)方法:
本課立足于學(xué)生的“學(xué)”,采用小組合作探究,師生互動(dòng),突出“學(xué)生是學(xué)習(xí)的主體”,讓他們?cè)诟惺苤R(shí)的過程中,提高他們的知識(shí)運(yùn)用能力。學(xué)習(xí)中要求學(xué)生多動(dòng)手、多觀察、多思考,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,更好的讓學(xué)生處在“做中學(xué)”“學(xué)中做”的良好學(xué)習(xí)氛圍之中。
教學(xué)過程:
課前準(zhǔn)備:課前安排學(xué)生帶著五個(gè)問題預(yù)習(xí)課本140頁和141頁的教材內(nèi)容,同時(shí)讓學(xué)生做一個(gè)等腰三角形的紙片,各小組長負(fù)責(zé)預(yù)習(xí)等工作。
(一)、導(dǎo)入
先復(fù)習(xí)“軸對(duì)稱圖形”的相關(guān)知識(shí),根據(jù)本節(jié)課的特點(diǎn),讓學(xué)生帶著問觀察圖片,找出圖片里面的軸對(duì)稱圖形。
。ǘ⑺伎
1、自主學(xué)習(xí),獨(dú)立思考問題:
。1)什么是等腰三角形?
。2)等腰三角形各邊都叫什么名稱?各角呢?
。3)等腰三角形的性質(zhì)?
。4)如何證明等腰三角形的性質(zhì)?
。5)等邊三角形的概念及性質(zhì)?
2、動(dòng)手操作、演示探究
——等腰三角形的性質(zhì)
請(qǐng)同學(xué)們把等腰三角形紙片對(duì)折,讓兩腰重合。娔X演示)發(fā)現(xiàn)什么現(xiàn)象?請(qǐng)盡可能多的寫出結(jié)論、(從構(gòu)成要素:邊、角;相關(guān)要素:線、對(duì)稱性方面考慮)
。ㄈ⒆h展
1、探討交流、得出結(jié)論:
重合的線段
重合的角
AB=AC
∠B=∠C
BD=CD
∠BAD=∠CAD
AD=AD
∠ADB=∠ADC
由這些重合的部分,猜想等腰三角形的性質(zhì)。
構(gòu)成要素:
邊:等腰三角形的兩邊相等、
角:等腰三角形的兩底角相等、簡稱“等邊對(duì)等角”
相關(guān)要素:
線:等腰三角形頂角的平分線,底邊上的中線,底邊上的高互相重合、簡稱“三線合一”
對(duì)稱性:等腰三角形是軸對(duì)稱圖形
2、學(xué)生展示
證明“等邊對(duì)等角”(學(xué)生展示)
三種方法證明等腰三角形性質(zhì)“等邊對(duì)等角”
已知:在△ABC中,AB=AC,求證:∠B=∠C
方法一:
證明:作底邊BC上的中線AD。
在△ABD與△ACD中:
BD=DC(作圖)
AD=AD(公共邊)
∴△ABD≌△ACD(SSS)
∴∠B=∠C(全等三角形對(duì)應(yīng)角相等)
方法二:
作頂角∠BAC的平分線AD。
∵AD平分∠BAC
∴∠1=∠2
在△ABD與△ACD中
AB=AC(已知)
∠1=∠2(已證)
AD=AD(公共邊)
∴ △ABD ≌ △ACD(SAS)
∴ ∠B=∠C
方法三:
作底邊BC的高AD。
∵AD⊥BC
∴∠ADB=∠ADC=90°
在RT△ABD與RT△ACD中
AB=AC(已知)
AD=AD(公共邊)
∴ △ABD ≌ △ACD(HL)
∴ ∠B=∠C
。ㄋ模Ⅻc(diǎn)評(píng)
找各小組代表分別展示答案之后,其他小組進(jìn)行評(píng)價(jià),查漏補(bǔ)缺。然后通過老師講解,再指出其實(shí)這作三種輔助線的位置根本沒有發(fā)生改變,從而自然的過度到“三線合一”從中得出結(jié)論,達(dá)到對(duì)知識(shí)點(diǎn)的理解和掌握。
等腰三角形性質(zhì)的幾何語言
∵ AB=AC(已知)
∴ ∠B=∠C(等邊對(duì)等角)
。1)等腰三角形的頂角的平分線,既是底邊上的中線,又是底邊上的高。
幾何語言:
在△ABC中,∵AB=AC,∠1=∠2(已知)
∴BD=DC,AD⊥BC(等腰三角形三線合一)
(2)等腰三角形的底邊上中線,既是底邊上的高,又是頂角平分線。
幾何語言:
在△ABC中,∵AB=AC,BD=DC(已知)
∴AD⊥BC,∠1=∠2(等腰三角形三線合一)
(3)等腰三角形的底邊上的高,既是底邊上的中線,又是頂角平分線。
幾何語言:
在△ABC中,∵AB=AC,AD⊥BC(已知)
∴BD=DC,∠1=∠2(等腰三角形三線合一)
在學(xué)生掌握了等腰三角形的有關(guān)概念和性質(zhì)之后,引出等邊三角形的教學(xué)。
等邊三角形定義:三邊都相等的三角形叫做等邊三角形
等邊三角形的性質(zhì)定理:等邊三角形的三個(gè)角都相等,并且每一個(gè)角都等于60°、
等邊三角形性質(zhì)的證明:(學(xué)生在練習(xí)本完成后,再用課件展示證明過程)
例題:
已知:在△ABC中,AB=AC,BD,CE分別為∠ABC,∠ACB的平分線。
求證:BD=CE、
。ㄎ澹、練習(xí)
為了檢測(cè)學(xué)生對(duì)本課教學(xué)目標(biāo)的完成情況,進(jìn)一步加強(qiáng)知識(shí)的應(yīng)用訓(xùn)練,我設(shè)計(jì)了三組練習(xí)由易到難,由簡單到復(fù)雜,滿足不同層次學(xué)生需求。
練習(xí)1:知識(shí)點(diǎn):(邊:等腰三角形的兩邊相等、)
1、在等腰△ABC中,AB=3,AC=4,則△ABC的周長=()
2、在等腰△ABC中,AB=3,AC=7,則△ABC的周長=()
練習(xí)2:知識(shí)點(diǎn):(角:“等邊對(duì)等角”)
1、在等腰△ABC中,AB=AC,∠B=50°,則∠A=__,∠C =_
2、在等腰△ABC中,∠A =100°,則∠B=___,∠C=___
練習(xí)3:(判斷)知識(shí)點(diǎn):(“三線合一”)
1、等腰三角形的頂角一定是銳角。()
2、等腰三角形的底角可能是銳角或者直角、鈍角都可以。()
3、等腰三角形的頂角平分線一定垂直底邊。()
4、等腰三角形底邊上的中線一定平分頂角。()
5、等腰三角形的角平分線、中線和高互相重合。()
。、總結(jié)
師生合作,共同歸納:
1、等腰三角形的兩底角相等(簡寫成“等邊對(duì)等角”)
2、等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合(簡稱“三線合一”)
3、等邊三角形的性質(zhì)定理:等邊三角形的三個(gè)角都相等,并且每一個(gè)角都等于60°
布置作業(yè)
鞏固性作業(yè):143頁習(xí)題1、2、(必做),143頁習(xí)題3、4、(選做)
拓展性作業(yè):
1、如圖,在△ABC中,AB=AC,BD,CE分別為AB,AC邊上的中線,試判斷BD 、CE相等嗎?并說明理由。
2、如圖,在△ABC中,AB=AC,BD,CE分別為AB,AC邊上的高線,試判斷BD 、CE相等嗎?并說明理由。
板書設(shè)計(jì)
17.1等腰三角形
等腰三角形相關(guān)概念:證明例題
等腰三角形的性質(zhì):
“等邊對(duì)等角”
“三線合一”
等邊三角形相關(guān)知識(shí)布置作業(yè)
課后反思
這節(jié)課從學(xué)生的實(shí)際認(rèn)知出發(fā),以“學(xué)生為主體,教師為主導(dǎo)”,課堂活動(dòng)中充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,在整個(gè)教學(xué)過程中我以“啟發(fā)學(xué)生,挖掘?qū)W生潛力,培養(yǎng)學(xué)生能力”為主旨而進(jìn)行!充分地發(fā)揮學(xué)生的主觀能動(dòng)性。突出了重點(diǎn),突破了難點(diǎn),達(dá)到了知識(shí)能力情感的三合一,達(dá)到了預(yù)期的教學(xué)效果。不足之處的是,習(xí)題練習(xí)有限,未設(shè)置限時(shí)小測(cè)等等
【《等腰三角形》教學(xué)設(shè)計(jì)】相關(guān)文章:
初中數(shù)學(xué)《等腰三角形》優(yōu)秀教學(xué)設(shè)計(jì)優(yōu)秀09-12
《冰花》教學(xué)設(shè)計(jì) 冰花教學(xué)設(shè)計(jì)12-12
《頭飾設(shè)計(jì)》教學(xué)設(shè)計(jì)06-06
欣賞與設(shè)計(jì)教學(xué)設(shè)計(jì)05-24
教學(xué)設(shè)計(jì)04-19