- 《圓柱的體積》教案 推薦度:
- 《圓柱的體積》教案 推薦度:
- 《圓柱的體積》教案 推薦度:
- 相關(guān)推薦
實(shí)用的《圓柱的體積》教案4篇
作為一名老師,就不得不需要編寫教案,通過教案準(zhǔn)備可以更好地根據(jù)具體情況對教學(xué)進(jìn)程做適當(dāng)?shù)谋匾恼{(diào)整。教案要怎么寫呢?以下是小編幫大家整理的《圓柱的體積》教案4篇,歡迎閱讀,希望大家能夠喜歡。
《圓柱的體積》教案 篇1
最近,本人在《小學(xué)教學(xué)設(shè)計(jì)》看到一則“圓柱的體積”教學(xué)實(shí)錄精彩片段,它以一種全新的視角詮釋了新課標(biāo)所倡導(dǎo)的理念,給我留下了較為深刻的印象。現(xiàn)把它擷取下來與各位同行共賞。
……
師:圓柱有大有小,你覺得圓柱體積應(yīng)該怎樣計(jì)算呢?
生:(絕大部分學(xué)生舉起了手)底面積乘高。
師:那你們是怎樣理解這個計(jì)算方法的呢?
生1:我是從書上看到的。
(舉起的手放下了一大半。很明顯,大部分同學(xué)都看到或聽到這個結(jié)論,并不理解實(shí)質(zhì)的涵義。但仍有幾位學(xué)生的手高高舉起,躍躍欲試,臉上的神情告訴老師:他們有更高明的答案。老師便順?biāo)浦,讓他們來講。)
生2:我是這樣思考的:長方體、正方體和圓柱體它們都是立體圖形,體積都是指它們所占空間的大小。而長方體、正方體的體積都可以用底面積乘高來計(jì)算,所以我想計(jì)算圓柱體的體積時也應(yīng)該可以用底面積乘高吧!
師:你能迅速地把圓柱體與以前學(xué)過的長方體、正方體聯(lián)系起來,進(jìn)而聯(lián)想到圓柱體的體積計(jì)算方法。真行!當(dāng)然這僅是你的猜測,要是再能證明就好了。
生3:我可以證明。推導(dǎo)長方體體積公式時,我們是采用擺體積單位的方法,用每層個數(shù)(底面積)×層數(shù)(高)現(xiàn)在求圓柱體積我們也可以沿襲這種思路,在圓柱體內(nèi)部同樣擺上合適的體積單位,用每層個數(shù)×層數(shù),每層的個數(shù)也就是它的底面積,擺的層數(shù)也就是高。那不就證明了圓柱體積的計(jì)算公式就是用底面積乘高嗎?
(教室里立刻響起了熱烈的掌聲,許多同學(xué)被他精彩的發(fā)言折服了,理性的思維散發(fā)出誘人的魅力。)
師:你真聰明,能用以前學(xué)過的知識解決今天的難題!(這時舉起的手更多了。)
生4:我有個想法不知是否可行、在推導(dǎo)圓面積計(jì)算方法時,我們是把圓轉(zhuǎn)化成了長方形,圓柱的底面就是一個圓,所以我就想是否可以把圓柱體轉(zhuǎn)化成長方體呢?
師:(翹起了大拇指)你這種想法很有意思!等會你可以試一試,想想怎樣分割能把一個圓柱體轉(zhuǎn)化成近似的.長方體。
生5:我還有一種想法:我們可以把圓柱體看成是無數(shù)個同樣大小的圓片疊加而成的。那么圓柱體的體積就應(yīng)該用每個圓片的面積×圓的個數(shù)。圓的個數(shù)也就相當(dāng)于圓柱的高。所以我認(rèn)為圓柱體的體積可以用每個圓的面積(底面積)×高。
師:了不起的一種想法!(師情不自禁的鼓起了掌。)
生6:我看過爸爸媽媽“扎筷子”。把十雙同樣的筷子扎在一起就變成了一個近似的圓柱體。我們可以把每根筷子看成一個長方體,那么扎成的近似圓柱體的體積應(yīng)該是這二十個小長方體的體積之和。又因?yàn)樗鼈兙哂型瑯拥母叨,運(yùn)用乘法分配律,就變成了這二十個小長方體的底面積之和×高。
師:你真會思考問題!
生7:我還有一種想法:學(xué)習(xí)圓的面積時我們知道,當(dāng)圓的半徑和一個正方形的邊長相等時,圓的面積約是這個正方形的3.14倍。把疊成這個圓柱體的這無數(shù)個圓都這樣分割,那么圓柱體的體積不也大約是這個長方體的體積的3.14倍嗎?長方體的體積用它的底面積×高,圓柱體的體積就在這基礎(chǔ)上再乘3.14,也就是用圓柱體的底面積×高。
生8:把圓柱體形狀的橡皮泥捏成等高長方體形狀的橡皮泥,長方體體積用底面積乘高來計(jì)算,所以計(jì)算圓柱體的體積也是用底面積乘高吧!
師:沒想到一塊橡皮泥還有這樣的作用,你們可真是不簡單!
……
整節(jié)課不時響起孩子們、聽課老師們熱烈的掌聲。
過去的數(shù)學(xué)課堂教學(xué),忠誠于學(xué)科,卻背棄了學(xué)生,體現(xiàn)著權(quán)利,卻忘記了民主,追求著效率,卻忘記了意義。而這個片斷折射出,新課標(biāo)理念下的不再是教師一廂情愿的“獨(dú)白”,而是學(xué)生、數(shù)學(xué)材料、教師之間進(jìn)行的一次次真情的“對話”。
現(xiàn)從“對話”的視角來賞析這則精彩的片段。
一、“對話”喚發(fā)出學(xué)習(xí)熱情。
《新課程標(biāo)準(zhǔn)》指出:有意義的數(shù)學(xué)學(xué)習(xí)必須建立在學(xué)生的主觀愿望和知識經(jīng)驗(yàn)的基礎(chǔ)上,在這樣的氛圍中,學(xué)生的思考才能積極。在當(dāng)今數(shù)字化、信息化非常發(fā)達(dá)的社會中,學(xué)生接受信息獲取知識的途徑非常多,圓柱體的體積計(jì)算方法對學(xué)生來說并不陌生,如果教師再按傳統(tǒng)的教學(xué)程序(創(chuàng)設(shè)情境——研究探討——獲得結(jié)論)展開,學(xué)生易造成這樣的錯誤認(rèn)識:認(rèn)為自己已經(jīng)掌握了這部分知識而失去對學(xué)習(xí)過程的熱情。而本課,教學(xué)伊始,教師提問“圓柱體的體積如何計(jì)算”,讓學(xué)生先行呈現(xiàn)已有的知識結(jié)論,在通過問題“你是怎樣理解這個公式的呢?”把學(xué)生的注意引向?qū)揭饬x的理解,學(xué)生積極主動的投入思維活動,喚發(fā)學(xué)習(xí)熱情。
二、“對話”迸發(fā)出智慧的火花
“水本無華,相蕩而生漣漪;石本無火,相擊始發(fā)靈光!彼季S的激活、靈性的噴發(fā)源于對話的啟迪和碰撞。本課如果按照教材的設(shè)計(jì):通過把圓柱體轉(zhuǎn)化為長方體,研究圓柱體和長方體間的關(guān)系,得出計(jì)算公式:底面積×高,經(jīng)歷這樣的學(xué)習(xí)過程學(xué)生的思維是千篇一律的,獲得的發(fā)展也是有限的。而這位教師對教材進(jìn)行相應(yīng)的拓展,先呈現(xiàn)公式,后提問“你是怎樣理解這個公式的呢?”,使學(xué)生的思維沿著各自獨(dú)特的理解“決堤而出”。
三、“對話”贏得心靈的敞亮和溝通
“真行!當(dāng)然這僅是你的猜測,要是再能證明就好了!薄澳阏媛斆!能用以前學(xué)過的知識解決今天的難題!”“你這種想法很有意思!等會你可以試一試,想想怎樣分割能把一個圓柱體轉(zhuǎn)化成近似的長方體。”……教師不斷地肯定著學(xué)生的每一種觀點(diǎn),引燃學(xué)生的每一絲發(fā)現(xiàn)的火花;同時象一位節(jié)目主持人一樣,平和、真誠,傾聽、接納著學(xué)生的聲音,在課堂上,學(xué)生真是神了、奇了,說出一種又一種的方法,連聽課老師也情不自禁的鼓起掌來。此情此景,我們不難看出,老師能注意蹲下身來與學(xué)生交流,注意尋求學(xué)生的聲音,讓學(xué)生在一種“零距離”的、活躍的心理狀態(tài)下敞亮心扉,放飛思想,進(jìn)行著師生“視界融合”的真情對話,贏得心靈的敞亮和溝通。
數(shù)學(xué)教學(xué)在對話中進(jìn)行,展示著民主與平等,凸現(xiàn)著創(chuàng)造與生成。有效的對話中不僅有信息的傳輸,更有思維的升華;不僅能增進(jìn)學(xué)生的理解,更能促進(jìn)教師的反思;不僅有繼承的喜悅,更有創(chuàng)造的激情。這則教學(xué)片斷,有很多的精彩值得我們欣賞與贊嘆。我想說:我的內(nèi)心很受鼓舞,我會向這位老師學(xué)習(xí),讓自己的課堂也能成就精彩的時刻!
《圓柱的體積》教案 篇2
設(shè)計(jì)說明
1.創(chuàng)設(shè)問題情境,激發(fā)學(xué)習(xí)興趣。
興趣是最好的老師。新課伊始,為學(xué)生創(chuàng)設(shè)“圓柱形橡皮泥的體積你會求嗎?”的問題情境,引導(dǎo)學(xué)生經(jīng)過思考、討論、交流,找到解決的方法。這樣的設(shè)計(jì)不僅自然滲透了圓柱(新問題)和長方體(已知)的知識聯(lián)系,還讓學(xué)生體會到可以有許多方法去解決生活中的實(shí)際問題,激發(fā)了學(xué)生的學(xué)習(xí)興趣和探究新知的欲望。
2.實(shí)踐操作,促進(jìn)知識遷移。
知識和經(jīng)驗(yàn)的積累來源于大量的實(shí)踐活動。動手操作不但能使學(xué)生獲得感性的體驗(yàn),更能加深學(xué)生對知識的理解。本設(shè)計(jì)為學(xué)生創(chuàng)設(shè)動手操作的情境,使學(xué)生通過動手拼擺,充分感知圖形之間的關(guān)系,深刻理解圓柱的體積公式的合理性,充分認(rèn)識到圖形轉(zhuǎn)化過程中形變而質(zhì)不變的`辯證關(guān)系,使學(xué)生在把舊知遷移、發(fā)展、轉(zhuǎn)化、構(gòu)建為新知的同時,動手操作、觀察及歸納能力也得到極大的提高。
課前準(zhǔn)備
教師準(zhǔn)備 圓柱的體積公式演示教具 多媒體課件
學(xué)生準(zhǔn)備 圓柱的體積公式演示學(xué)具
教學(xué)過程
第1課時 圓柱的體積(1)
⊙創(chuàng)設(shè)情境,導(dǎo)入新課
1.出示一塊圓柱形橡皮泥。
師:同學(xué)們,我們以前學(xué)過長方體和正方體體積的計(jì)算方法,現(xiàn)在我想知道這塊圓柱形橡皮泥的體積是多少,你有好的辦法嗎?
2.學(xué)生小組討論交流并匯報(bào)。
預(yù)設(shè)
生1:可以把這塊橡皮泥捏成長方體,利用長方體的體積公式來解決。
生2:可以把它放到量杯中,計(jì)算上升的水的體積。
3.引入新課。
解決生活中的問題有很多方法,需要我們?nèi)グl(fā)現(xiàn)、去探究。這節(jié)課我們就共同去探究圓柱體積的計(jì)算方法。
設(shè)計(jì)意圖:通過創(chuàng)設(shè)問題情境,引發(fā)學(xué)生思考,進(jìn)一步體會“轉(zhuǎn)化”思想。
⊙新知探究
1.利用知識的遷移,猜想圓柱體積的計(jì)算方法。
(1)提出猜想。
師:在剛才的問題中同學(xué)們提出可以將圓柱形橡皮泥捏成長方體,這時會有什么變化?
(形狀變了,體積沒變)
師:我們已經(jīng)掌握了長方體、正方體的體積計(jì)算方法,大家猜一猜:圓柱體積可能等于底面積×高嗎?
(2)學(xué)生討論、交流。
2.探究算法。
(1)提出問題:能不能借鑒把圓轉(zhuǎn)化為長方形的方法,把手中的圓柱形學(xué)具轉(zhuǎn)化為長方體?
(2)動手操作:把圓柱轉(zhuǎn)化為長方體。
(3)匯報(bào)交流:介紹自己的轉(zhuǎn)化方法。
(結(jié)合學(xué)生回答,課件演示轉(zhuǎn)化過程:先沿圓柱底面的半徑把圓柱平均分成16份,然后拼成一個近似的長方體)
(4)引導(dǎo)學(xué)生明確:由于我們分得不夠細(xì),所以看起來還不太像長方體;分得越多,拼成的立體圖形就越接近長方體。(課件演示將圓柱分成更多等份并拼成一個近似的長方體的過程)
(5)匯報(bào)發(fā)現(xiàn)。
、倨闯傻拈L方體的體積與圓柱的體積有什么關(guān)系?
、陂L方體的底面積、高分別與圓柱的底面積、高有什么關(guān)系?
、坶L方體的體積等于什么?圓柱呢?
3.總結(jié)公式。
(1)圓柱的體積怎樣計(jì)算?為什么?
(圓柱通過分割、拼組,可以轉(zhuǎn)化成近似的長方體。這個近似的長方體的底面積與圓柱的底面積相等,高與圓柱的高相等。因?yàn)殚L方體的體積等于底面積乘高,所以圓柱的體積=底面積×高)
(2)說一說,怎樣用字母表示圓柱的體積公式?
(學(xué)生反饋:V=Sh)
(3)如果已知d、r、C和h,怎樣求圓柱的體積?
求圓柱體積的直接條件是S、h,間接條件是d、r和C,所以圓柱的體積公式也可以表示為V=πr2h、V=πh、V=πh。
(4)圓柱和長方體、正方體一樣,都是直柱體,你能總結(jié)出求它們的體積的統(tǒng)一計(jì)算方法嗎?
(直柱體的體積都等于底面積×高)
《圓柱的體積》教案 篇3
教學(xué)內(nèi)容:
P19-20頁例5、例6及補(bǔ)充例題,完成做一做及練習(xí)三第1~4題。
教學(xué)目標(biāo):
1、通過用切割拼合的方法借助長方體的體積公式推導(dǎo)出圓柱的體積公式,能夠運(yùn)用公式正確地計(jì)算圓柱的體積和容積。
2、初步學(xué)會用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實(shí)際問題的能力
3、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識。
教學(xué)重點(diǎn):
掌握圓柱體積的計(jì)算公式。
教學(xué)難點(diǎn):
圓柱體積的計(jì)算公式的推導(dǎo)。
教學(xué)過程:
一、復(fù)習(xí)
1、長方體的體積公式是什么?正方體呢?(長方體的體積=長寬高,長方體和正方體體積的統(tǒng)一公式底面積高,即長方體的體積=底面積高)
2、拿出一個圓柱形物體,指名學(xué)生指出圓柱的底面、高、側(cè)面、表面各是什么,怎么求。(刪掉)
3、復(fù)習(xí)圓面積計(jì)算公式的推導(dǎo)過程:把圓等分切割,拼成一個近似的長方形,找出圓和所拼成的長方形之間的關(guān)系,再利用求長方形面積的`計(jì)算公式導(dǎo)出求圓面積的計(jì)算公式。
師小結(jié):圓的面積公式的推導(dǎo)是利用轉(zhuǎn)化的思想把一個曲面圖形轉(zhuǎn)化成以前學(xué)的長方形,今天我們學(xué)習(xí)圓柱體體積公式的推導(dǎo)也要運(yùn)用轉(zhuǎn)化的思想同學(xué)們猜猜會轉(zhuǎn)化成什么圖形?
二、新課
1、圓柱體積計(jì)算公式的推導(dǎo)。
。1)用將圓轉(zhuǎn)化成長方形來求出圓的面積的方法來推導(dǎo)圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個近似長方體的立體圖形課件演示)
。2)由于我們分的不夠細(xì),所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。(課件演示將圓柱細(xì)分,拼成一個長方體)
反復(fù)播放這個過程,引導(dǎo)學(xué)生觀察思考,討論:在變化的過程中,什么變了什么沒變?
長方體和圓柱體的底面積和體積有怎樣的關(guān)系?
學(xué)生說演示過程,總結(jié)推倒公式。
。3)通過觀察,使學(xué)生明確:長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。(長方體的體積=底面積高,所以圓柱的體積=底面積高,V=Sh)
《圓柱的體積》教案 篇4
教學(xué)內(nèi)容:
人教版小學(xué)數(shù)學(xué)六年級下冊《圓柱的體積》P25-26。
教學(xué)目標(biāo):
1.經(jīng)歷探究和推導(dǎo)圓柱的體積公式的過程。
2.知道并能記住圓柱的體積公式,并能運(yùn)用公式進(jìn)行計(jì)算。
3.在自主探究圓柱的體積公式的過程中,體驗(yàn)、感悟數(shù)學(xué)規(guī)律的來龍去脈,知道長方體與圓柱體底面和高各部分間的對應(yīng)關(guān)系。發(fā)展學(xué)生的觀察能力和分析、綜合、歸納推理能力。
4.激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生體驗(yàn)成功的快樂。
5.培養(yǎng)學(xué)生的轉(zhuǎn)化思想,滲透辯證法和極限的思想。
教學(xué)重點(diǎn):掌握和運(yùn)用圓柱體積計(jì)算公式
教學(xué)難點(diǎn):圓柱體積公式的推導(dǎo)過程
教具學(xué)具準(zhǔn)備:教學(xué)課件、圓柱體。
教學(xué)過程:
一、復(fù)習(xí)導(dǎo)入
1.同學(xué)們想一想,我們已經(jīng)學(xué)習(xí)了哪些立體圖形的體積?怎樣計(jì)算長方體和正方體的體積?長方體的體積和正方體的體積的通用公式是什么呢?用字母怎樣表示?
2.回憶一下圓面積的計(jì)算公式是如何推導(dǎo)出來的?
。ńY(jié)合課件演示)這是一個圓,我們把它平均分割,再拼合就變成了一個近似的平行四邊形。我們還可以往下繼續(xù)分割,無限分割就變成了一個長方形。長方形的長相當(dāng)于圓周長的一半,可以用πR表示,長方形的寬就當(dāng)于圓的半徑,用R表示。所以用周長的一半×半徑就可以求出圓的面積,所以推導(dǎo)出圓的面積公式是S=πR。
3.課件出示一個圓柱體
我們把圓轉(zhuǎn)化成了近似的長方形,同學(xué)們猜想一下圓柱可以轉(zhuǎn)化成什么圖形呢?
二、探索體驗(yàn)
1.學(xué)生猜想可以把圓柱轉(zhuǎn)化成什么圖形?
2.課件演示:把圓柱體轉(zhuǎn)化成長方體
、偈窃鯓悠闯傻?
②觀察是不是標(biāo)準(zhǔn)的長方體?
、垩菔32等份、64等份拼成的長方體,比較一下發(fā)現(xiàn)了什么?引出課題并板書。
3.借鑒圓的面積公式的推導(dǎo)過程試著推導(dǎo)圓柱的體積公式。
課件出示要求:
、倨闯傻拈L方體與原來的圓柱體比較什么變了?什么沒變?
②推導(dǎo)出圓柱體的體積公式。
學(xué)生結(jié)合老師提出的問題自己試著推導(dǎo)。
4.交流展示
小組討論,交流匯報(bào)。
生匯報(bào)師結(jié)合講解板書。
圓柱體積=底面積×高
‖ ‖ ‖
長方體體積=底面積×高
用字母公式怎樣表示呢? v、s、h各表示什么?
5.知道哪些條件可以求出圓柱的體積?
6.計(jì)算下面圓柱的.體積。
、俚酌娣e24平方厘米,高12厘米
、诘酌姘霃2厘米,高5厘米
、壑睆10厘米,高4厘米
、苤荛L18.84厘米,高12厘米
三、課堂檢測
1.判斷
、賵A柱體、長方體和正方體的體積都可以用底面積乘高的方法來計(jì)算。( )
、趫A柱的底面積擴(kuò)大3倍,體積也擴(kuò)大3倍。( )
、垡粋長方體與一個圓柱體底面積相等,高也相等,那么它們的體積也相等。( )
、軋A柱體的底面直徑和高可以相等。( )
、輧蓚圓柱體的底面積相等,體積也一定相等。( )
⑥一個圓柱形的水桶能裝水15升,我們就說水桶的體積是15立方分米。( )
2.聯(lián)系生活實(shí)際解決實(shí)際問題。
下面的這個杯子能不能裝下這袋奶?
。ū拥臄(shù)據(jù)從里面量得到直徑8cm,高10cm;牛奶498ml)
學(xué)生獨(dú)立思考回答后自己做在練習(xí)本上。
3.一個壓路機(jī)的前輪是圓柱形,輪寬2米,半徑1米,它的體積是多少立方米?
4.生活中的數(shù)學(xué)
一個用塑料薄膜蓋的蔬菜大棚,長15米,橫截面是一個半徑2米的半圓。
、俑采w在這個大棚上的塑料薄膜約有多少平方米?
、诖笈飪(nèi)的空間大約有多大?
獨(dú)立思考后小組討論,兩生板演。
四、全課總結(jié)
這節(jié)課你有什么收獲?
五、課后延伸
如果要測量圓柱形柱子的體積,測量哪些數(shù)據(jù)比較方便?試一試吧?
六、板書設(shè)計(jì)
圓柱體積= 底面積×高
長方體體積=底面積×高
【《圓柱的體積》教案】相關(guān)文章:
圓柱的體積教案03-19
《圓柱的體積》教案09-01
《圓柱的體積》教案15篇01-02
《圓柱的體積》教案(通用22篇)06-15
《圓柱的體積》教案通用15篇01-27
《圓柱的體積》教案(匯編15篇)04-01
《圓柱的體積》教案(集合15篇)04-01
實(shí)用的《圓柱的體積》教案3篇06-07