- 《圓柱的體積》教案 推薦度:
- 圓柱的體積教案 推薦度:
- 《圓柱的體積》教案 推薦度:
- 相關(guān)推薦
《圓柱的體積》教案(集合15篇)
作為一名為他人授業(yè)解惑的教育工作者,總歸要編寫教案,借助教案可以恰當(dāng)?shù)剡x擇和運(yùn)用教學(xué)方法,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。寫教案需要注意哪些格式呢?下面是小編整理的《圓柱的體積》教案,僅供參考,歡迎大家閱讀。
《圓柱的體積》教案1
教學(xué)目標(biāo):
1.知識(shí)與技能:運(yùn)用遷移規(guī)律,引導(dǎo)學(xué)生借助圓面積計(jì)算公式的推導(dǎo)方法來(lái)推導(dǎo)圓柱的體積計(jì)算公式,會(huì)用圓柱的體積公式計(jì)算圓柱形物體的體積。
2.方法與過(guò)程:經(jīng)歷猜測(cè)、驗(yàn)證、合作、動(dòng)手操作等過(guò)程,體驗(yàn)和理解圓柱體體積公式的推導(dǎo)過(guò)程。
3情感、態(tài)度、價(jià)值觀:創(chuàng)設(shè)情境,激發(fā)學(xué)生學(xué)習(xí)的積極性。讓學(xué)生在主動(dòng)學(xué)習(xí)的基礎(chǔ)上,逐步學(xué)會(huì)轉(zhuǎn)化的數(shù)學(xué)思想和數(shù)學(xué)法,培養(yǎng)學(xué)生解決實(shí)際問(wèn)題的能力和培養(yǎng)學(xué)生抽象、概括的思維能力。
教學(xué)重點(diǎn)和難點(diǎn):
圓柱體積公式推導(dǎo)過(guò)程;正確理解圓柱體積公式推導(dǎo)過(guò)程。
教 具:
圓柱的體積公式演示教具,圓柱的體積公式演示課件
教學(xué)過(guò)程:
一、教學(xué)回顧
1、交代任務(wù):這節(jié)課我們來(lái)學(xué)習(xí)《圓柱的體積》。
2、回憶導(dǎo)入
。1)、請(qǐng)大家想一想,我們?cè)趯W(xué)習(xí)圓的面積時(shí),是怎樣把圓變成已學(xué)過(guò)的圖形再計(jì)算面積的?
。2)、我們都學(xué)過(guò)那些立體圖形的體積公式。
二、積極參與 探究感受
1、猜測(cè)圓柱的.體積和那些條件有關(guān)。(電腦演示)
2、.探究推導(dǎo)圓柱的體積計(jì)算公式。
小組合作討論:
(1)將圓柱體切割拼成我們學(xué)過(guò)的什么立體圖形?
(2)切拼前后的兩個(gè)物體什么變了?什么沒變?
(3)切拼前后的兩個(gè)物體有什么聯(lián)系?
課件演示拼、組的過(guò)程,同時(shí)演示一組動(dòng)畫(將圓柱底面等分成32份、64份??),讓學(xué)生明確:分成的扇形越多,拼成的立體圖形就越接近于長(zhǎng)方體。
①把圓柱拼成長(zhǎng)方體后,形狀變了,體積不變。(板書:長(zhǎng)方體的體積=圓柱的體積)
、谄闯傻拈L(zhǎng)方體的底面積等于圓柱的底面積,高就是圓柱的高。配合回答,演示課件,閃爍相應(yīng)的部位,并板書相應(yīng)的內(nèi)容。)
③圓柱的體積=底面積×高 字母公式是V=Sh(板書公式)
2、練一練:一根圓柱形木料,底面積為75平方厘米,長(zhǎng)90厘米,它的體積是多少?
3、要用這個(gè)公式計(jì)算圓柱的體積必須知道什么條件?
三、練習(xí)
1、填空
(1)、圓柱體通過(guò)切拼轉(zhuǎn)化成近似的 ( ) 體。這個(gè)長(zhǎng)方體的底面積等于圓柱體的( ),這個(gè)長(zhǎng)方體的高等于圓柱體() 。因?yàn)殚L(zhǎng)方體的體積等于( ),所以,圓柱體的體積等于( )用字母表示() 。
。2)、底面積是 10平方米,高是2米,體積是( )。
(3)、底面半徑是2分米,高是5分米,體積是( )。 2討論:
(1)已知圓柱底面的半徑和高,怎樣求圓柱的體積
V= 兀r2× h
(2)已知圓柱底面的直徑和高,怎樣求圓柱的體積
V=兀(d÷2)2×h
(3)已知圓柱底面的周長(zhǎng)和高,怎樣求圓柱的體積
V=兀(C÷!2) ×h
3、練習(xí):已知半徑和高求體積,已知直徑和高求體積。
四、小結(jié)或質(zhì)疑
五、作業(yè)
板書設(shè)計(jì):
圓柱的體積
長(zhǎng)方體的體積=底面積x高
圓柱的體積=底面積x高
V=Sh
《圓柱的體積》教案2
教學(xué)內(nèi)容:
P19-20頁(yè)例5、例6及補(bǔ)充例題,完成“做一做”及練習(xí)三第1~4題。
教學(xué)目標(biāo):
1、通過(guò)用切割拼合的方法借助長(zhǎng)方體的體積公式推導(dǎo)出圓柱的體積公式,能夠運(yùn)用公式正確地計(jì)算圓柱的體積和容積。
2、初步學(xué)會(huì)用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實(shí)際問(wèn)題的能力
3、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識(shí)。
教學(xué)重點(diǎn):
掌握?qǐng)A柱體積的計(jì)算公式。
教學(xué)難點(diǎn):
圓柱體積的計(jì)算公式的推導(dǎo)。
教學(xué)過(guò)程:
一、復(fù)習(xí)
1、復(fù)習(xí)圓面積計(jì)算公式的推導(dǎo)方法及過(guò)程。
2、什么叫物體的體積?長(zhǎng)方體、正方體的體積公式是什么?(長(zhǎng)方體的體積=長(zhǎng)×寬×高,正方體的體積=棱長(zhǎng)3,長(zhǎng)方體和正方體體積的統(tǒng)一公式=底面積×高)
二、新課
1、圓柱體積計(jì)算公式的推導(dǎo)。
。1)用將圓轉(zhuǎn)化成長(zhǎng)方形來(lái)求出圓的面積的方法來(lái)推導(dǎo)圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個(gè)近似長(zhǎng)方體的立體圖形——課件演示)
(2)由于我們分的不夠細(xì),所以看起來(lái)還不太像長(zhǎng)方體;如果分成的扇形越多,拼成的立體圖形就越接近于長(zhǎng)方體了。(課件演示將圓柱細(xì)分,拼成一個(gè)長(zhǎng)方體)
(3)通過(guò)觀察,使學(xué)生明確:長(zhǎng)方體的底面積等于圓柱的底面積,長(zhǎng)方體的高就是圓柱的高。(長(zhǎng)方體的體積=底面積×高,所以圓柱的體積=底面積×高,V=Sh)
2、教學(xué)補(bǔ)充例題
(1)出示補(bǔ)充例題:一根圓柱形鋼材,底面積是50平方厘米,高是2.1米。它的體積是多少?
。2)指名學(xué)生分別回答下面的問(wèn)題:
① 這道題已知什么?求什么?
② 能不能根據(jù)公式直接計(jì)算?
③ 計(jì)算之前要注意什么?(計(jì)算時(shí)既要分析已知條件和問(wèn)題,還要注意要先統(tǒng)一計(jì)量單位)
。3)出示下面幾種解答方案,讓學(xué)生判斷哪個(gè)是正確的.
、賄=Sh
50×2.1=105(立方厘米)
答:它的體積是105立方厘米。
、2.1米=210厘米
V=Sh
50×210=10500(立方厘米)
答:它的體積是10500立方厘米。
、50平方厘米=0.5平方米
V=Sh
0.5×2.1=1.05(立方米)
答:它的體積是1.05立方米。
、50平方厘米=0.005平方米
V=Sh
0.005×2.1=0.0105(立方米)
答:它的體積是0.0105立方米。
先讓學(xué)生思考,然后指名學(xué)生回答哪個(gè)是正確的解答,并比較一下哪一種解答更簡(jiǎn)單.對(duì)不正確的第①、③種解答要說(shuō)說(shuō)錯(cuò)在什么地方.
(4)做第20頁(yè)的“做一做”。
學(xué)生獨(dú)立做在練習(xí)本上,做完后集體訂正.
3、引導(dǎo)思考:如果已知圓柱底面半徑r和高h(yuǎn),圓柱體積的計(jì)算公式是怎樣的?(V=πr2h)
4、教學(xué)例6
(1)出示例5,并讓學(xué)生思考:要知道杯子能不能裝下這袋牛奶,得先知道什么?(應(yīng)先知道杯子的容積)
(2)學(xué)生嘗試完成例6。
① 杯子的底面積:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)
、 杯子的容積:50.24×10=502.4(cm3)=502.4(ml)
5、比較一下補(bǔ)充例題、例6有哪些相同的地方和不同的地方?(相同的是都要用圓柱的體積計(jì)算公式進(jìn)行計(jì)算;不同的是補(bǔ)充例題已給出底面積,可直接應(yīng)用公式計(jì)算;例6只知道底面直徑,要先求底面積,再求體積.)
三、鞏固練習(xí)
1、做第21頁(yè)練習(xí)三的第1題.
2、練習(xí)三的第2題.
這兩道題分別是已知底面半徑(或直徑)和高,求圓柱體積的習(xí)題.要求學(xué)生審題后,知道要先求出底面積,再求圓柱的體積。
四、布置作業(yè)
練習(xí)三第3、4題。
通過(guò)批閱作業(yè),發(fā)現(xiàn)圓柱體的表面積正確率極低,主要有幾方面原因:
1、計(jì)算錯(cuò)誤;
2審題不認(rèn)真,單位不統(tǒng)一;
3、靈活解決問(wèn)題時(shí),沒能正確判斷所求面積到底包含哪幾部分。
為提升正確率,所以今天補(bǔ)充了一節(jié)是練習(xí)課,主要是指導(dǎo)學(xué)生完成教材中的習(xí)題。在此,想談?wù)劸毩?xí)二的第11、19題。
第11題教材只要求學(xué)生根據(jù)切面形狀進(jìn)行連線,其實(shí)這題應(yīng)該充分利用挖掘,不僅培養(yǎng)學(xué)生的空間觀念,同時(shí)還可提升學(xué)生解決實(shí)際問(wèn)題的能力。所以在教學(xué)中,我補(bǔ)充了如下練習(xí):
。1將一根高5分米的圓柱形木料沿底面直徑垂直切成兩部分,(如11題第2幅圖),這時(shí)表面積比原來(lái)增加了40平方分米。這根圓柱形木料原來(lái)的表面積是多少平方分米?
(2一個(gè)圓柱的側(cè)面展開是一個(gè)正方形,正方形的邊長(zhǎng)是12.56分米,求這個(gè)圓柱體的表積。
第19題解決決起來(lái)很繁瑣,雖然課堂上我給予了學(xué)生十分充足的獨(dú)立嘗試練習(xí)時(shí)間,但在未給予任何提示的情況下全班僅4人全對(duì),另有4人結(jié)果計(jì)算正確,但卻未換算單位,正確率僅為7.4%。所以下次再教時(shí),此題應(yīng)加大指導(dǎo)力度。建議:先在小組內(nèi)討論“求涂油漆的面積也就是求什么?”然后強(qiáng)調(diào)單位換算,并復(fù)習(xí)平方米與平方厘米之間的進(jìn)率(10000),最后再讓學(xué)生分步列式解答。第2問(wèn)要求“一共需要多少元”結(jié)合生活實(shí)際,學(xué)生應(yīng)主動(dòng)對(duì)計(jì)算結(jié)果取近似值。
第四課時(shí)教學(xué)反思
開放的`設(shè)問(wèn)結(jié)碩果
因?yàn)榕R時(shí)換課,所以今天是本學(xué)期開學(xué)以來(lái)第一次在學(xué)生未預(yù)習(xí)的情況下教學(xué)新課。沒有預(yù)習(xí),給學(xué)生的自主探索以更廣闊的空間。當(dāng)學(xué)生提出可以將圓柱的底面分成許多相等的扇形,把圓柱切開,拼成一個(gè)近似的長(zhǎng)方體后,我請(qǐng)學(xué)生們觀察并思考“轉(zhuǎn)化后的長(zhǎng)方體與圓柱體之間有什么聯(lián)系呢?”
他們除了發(fā)現(xiàn)教材中所提到的體積不變、底面積不變、高不變外,還有不少新發(fā)現(xiàn)。如“長(zhǎng)方體的長(zhǎng)是圓柱體底面周長(zhǎng)的一半”,“長(zhǎng)方體的寬是圓柱體底面半徑”, “圓柱體的側(cè)面積是長(zhǎng)方體前后兩個(gè)面的面積總和”(魏勉)。當(dāng)學(xué)生的發(fā)現(xiàn)由底面積涉及到側(cè)面積時(shí),我根據(jù)本班學(xué)情適時(shí)進(jìn)行了拓展性提問(wèn),“將圓柱體轉(zhuǎn)化為長(zhǎng)方體,表面積有變化嗎?如果有,有怎樣的變化?”由此將圓柱體與長(zhǎng)方體轉(zhuǎn)化的探究由體積的變化引向了新的層面——表面積。
我將根據(jù)學(xué)情在練習(xí)課中補(bǔ)充相關(guān)練習(xí):把一個(gè)高15厘米的圓柱體分割成若干份,再拼成一個(gè)近似的長(zhǎng)方體,表面積增加了90平方厘米。那么這個(gè)圓柱的體積是多少?
今天的作業(yè)正確率明顯提升,但全班有4名學(xué)生將圓柱體側(cè)面積與體積公式混淆,列式全錯(cuò),因此要加強(qiáng)辨析指導(dǎo)。自從讓學(xué)生“創(chuàng)造”圓柱體表面積的另類推導(dǎo)方法及公式以來(lái),孩子們探索并“創(chuàng)造”新公式的熱情不斷高漲。雖然,今天由于種種原因沒能給學(xué)生上課,但他們?nèi)耘f將自己的新發(fā)現(xiàn)用紙條記錄了下來(lái)送到我的手中。
創(chuàng)新(一)圓柱體側(cè)面積:圓柱體的體積=(2πrh) :(πrrh)=2:r。(發(fā)現(xiàn)者:沈洪鑫)
創(chuàng)新(二)圓柱的體積=圓柱的側(cè)面積÷2×r(發(fā)現(xiàn)者:蘭晟)
根據(jù)這一發(fā)現(xiàn),能夠有效提高已知半徑和側(cè)面積求體積或已知體積求側(cè)面積的習(xí)題。如:一根圓柱形木頭的側(cè)面積是37.68平方分米,底面半徑是3分米,它的體積是多少平方分米?如果按常規(guī)做法為:首先求圓柱體的高37.68÷(3.14×2×3)=2(分米);然后再求圓柱體的體積3.14×32×2=56.52平方分米),共需要6步。如果根據(jù)上述發(fā)現(xiàn),解答此題就只需要將37.68÷2×3即可求了正確結(jié)果,大大提高速度。
《圓柱的體積》教案3
教學(xué)目標(biāo):
1、使學(xué)生掌握?qǐng)A柱體積公式,會(huì)用公式計(jì)算圓柱體積,能解決一些實(shí)際問(wèn)題。
2、讓學(xué)生經(jīng)歷觀察、操作、討論等數(shù)學(xué)活動(dòng)過(guò)程,理解圓柱體積公式的推導(dǎo)過(guò)程,引導(dǎo)學(xué)生探討問(wèn)題,體驗(yàn)轉(zhuǎn)化和極限的思想。
3、在圖形的變換中,培養(yǎng)學(xué)生的遷移能力、邏輯思維能力,并進(jìn)一步發(fā)展其空間觀念,領(lǐng)悟?qū)W習(xí)數(shù)學(xué)的方法,激發(fā)學(xué)生興趣,滲透事物是普遍聯(lián)系的唯物辨證思想。
教學(xué)重點(diǎn):
圓柱體積計(jì)算公式的推導(dǎo)過(guò)程并能正確應(yīng)用。
教學(xué)難點(diǎn):
借助教具演示,弄清圓柱與長(zhǎng)方體的關(guān)系。
教具準(zhǔn)備:
多媒體課件、長(zhǎng)方體、圓柱形容器若干個(gè);學(xué)生準(zhǔn)備推導(dǎo)圓柱體積計(jì)算公式用學(xué)具。
教學(xué)設(shè)想:
《 圓柱的體積 》是學(xué)生在有了圓柱、圓和長(zhǎng)方體的相關(guān)的基礎(chǔ)上進(jìn)行教學(xué)的。在知識(shí)與技能上,通過(guò)對(duì)圓柱的具體研究,理解圓柱的體積公式的推導(dǎo)過(guò)程,會(huì)計(jì)算圓柱的體積,在方法的選擇上,抓住新舊知識(shí)的聯(lián)系,通過(guò)想象、課件演示、實(shí)踐操作,從經(jīng)歷和體驗(yàn)中思考,培養(yǎng)學(xué)生科學(xué)的思維方法;貼近學(xué)生生活實(shí)際,創(chuàng)設(shè)情境,解決問(wèn)題,體現(xiàn)數(shù)學(xué)知識(shí)從生活中來(lái)到生活去的理念,激發(fā)學(xué)生的學(xué)習(xí)興趣和對(duì)科學(xué)知識(shí)的求知欲,使學(xué)生樂于探索,善于探索。
教學(xué)過(guò)程:
一、創(chuàng)設(shè)情境,激疑引入
水是生命之源!節(jié)約用水是我們每個(gè)公民應(yīng)盡的義務(wù)。前兩天,老師家的水龍頭出了問(wèn)題,擰上閥門之后,還是不停的滴水,你們看,一刻鐘就滴了這么多的水。
1、出示裝了水的圓柱容器。
。1)啟發(fā)思考:容器里面的水形成了什么形狀?(圓柱)你能知道這些水的體積?
。2)討論后匯報(bào)
生1:用量筒或量杯直接量出它的體積;
生2:用秤稱出水的重量,然后進(jìn)一步知道體積;
生3:把它倒入長(zhǎng)方體容器中,從里面量出長(zhǎng)、寬和水面的高后再計(jì)算。
師:現(xiàn)在老師只有這些工具(圓柱形容器,長(zhǎng)方形容器,半圓形容器和其他不規(guī)則容器),你怎么辦?
生1:把水到入長(zhǎng)方體容器中
生2:我們學(xué)過(guò)了長(zhǎng)方體的體積計(jì)算,只要量出長(zhǎng)、寬、高就行
[設(shè)計(jì)意圖:通過(guò)本環(huán)節(jié),給學(xué)生創(chuàng)設(shè)一個(gè)生活中的情境,提出問(wèn)題,學(xué)習(xí)身邊的數(shù)學(xué),激起學(xué)生的學(xué)習(xí)興趣;根據(jù)需要滲透圓柱體(新問(wèn)題)和長(zhǎng)方體(已知)的知識(shí)聯(lián)系為所學(xué)內(nèi)容作了鋪墊的準(zhǔn)備]
2、創(chuàng)設(shè)問(wèn)題情境。
師:(課件顯示)如果要求某些建筑中圓柱形柱子的體積,或是求壓路機(jī)圓柱形大前輪的體積,能用同學(xué)們想出來(lái)的辦法嗎?
[設(shè)計(jì)意圖:進(jìn)一步從實(shí)際需要提出問(wèn)題,激發(fā)學(xué)生從問(wèn)題中思考尋求一種更廣泛的方法來(lái)解決圓柱體積的問(wèn)題的欲望]
師:今天,就讓我們來(lái)研究解決任意圓柱體積的方法。(板書課題:圓柱的體積)
二、經(jīng)歷體驗(yàn),探究新知
1、回顧舊知,幫助遷移
。1)教師首先提出具體問(wèn)題:圓柱體和我們以前學(xué)過(guò)的哪些幾何圖形有聯(lián)系?
生1:圓柱的上下兩個(gè)底面是圓形
生2:側(cè)面展開是長(zhǎng)方形
生3:說(shuō)明圓柱和我們學(xué)過(guò)的圓和長(zhǎng)方形有聯(lián)系
師:請(qǐng)同學(xué)們想想圓柱的體積與什么有關(guān)?
生1:可能與它的大小有關(guān)
生2:不是吧,應(yīng)該與它的高有關(guān)
[設(shè)計(jì)意圖:溫故而知新,既復(fù)習(xí)了舊知識(shí)又引出了新知識(shí),學(xué)生在不知不覺中就學(xué)到了新知。]
(2)請(qǐng)大家回憶一下:在學(xué)習(xí)圓的面積時(shí),我們是怎樣將圓轉(zhuǎn)化成已學(xué)過(guò)的圖形,來(lái)推導(dǎo)出圓面積公式的。
配合學(xué)生回答演示課件。
[設(shè)計(jì)意圖:通過(guò)想象,進(jìn)一步發(fā)展學(xué)生的空間觀念,由形到體;同時(shí)使學(xué)生感悟圓柱的體積與它的底面積和高的聯(lián)系,通過(guò)圓面積推導(dǎo)過(guò)程的再現(xiàn),為實(shí)現(xiàn)經(jīng)驗(yàn)和方法的遷移作鋪墊]
2、小組合作,探究新知
。1)啟發(fā)猜想:我們要解決圓柱的體積的問(wèn)題,可以怎么辦?(引導(dǎo)學(xué)生說(shuō)出圓柱可能轉(zhuǎn)化成我們學(xué)過(guò)的長(zhǎng)方體。并通過(guò)討論得出:反圓柱的底面積分成許多相等的扇形,然后反圓柱切開,再拼起來(lái),就轉(zhuǎn)化近似的長(zhǎng)方體了。)
。2)學(xué)生以小組為單位操作體驗(yàn)。
把圓柱的底面積分成許多相等的'扇形,然后把圓柱切開,再把它拼起來(lái),就轉(zhuǎn)化成近似的長(zhǎng)方體了。使學(xué)生進(jìn)一步明確分的份數(shù)越多,形體中的 越接近 ,也就越接近長(zhǎng)方體。同時(shí)演示一組動(dòng)畫(將圓柱底面等分成32份、64等份、128等份)
[設(shè)計(jì)意圖:教師提出問(wèn)題,學(xué)生帶著問(wèn)題大膽猜測(cè)、動(dòng)手體驗(yàn)。這樣學(xué)生在自主探索、體驗(yàn)、領(lǐng)悟的過(guò)程中成為了發(fā)現(xiàn)者和創(chuàng)造者。]
。3)學(xué)生小組匯報(bào)交流
近似的長(zhǎng)方體的體積等于圓柱的體積, 近似的長(zhǎng)方體的底面積等于圓柱的底面積,近似的長(zhǎng)方體的高就是圓柱的高。根據(jù)長(zhǎng)方體的體積等于底面積乘高,得出圓柱的體積也等于底面積乘高。
教師根據(jù)學(xué)生匯報(bào),用教具進(jìn)行演示。
。4)概括板書:根據(jù)圓柱與近似長(zhǎng)方體的關(guān)系,推導(dǎo)公式
長(zhǎng)方體的體積 = 底面積 高
圓柱的體積 = 底面積 高
用字母表示計(jì)算公式V= sh
[設(shè)計(jì)意圖:首先通過(guò)學(xué)生的聯(lián)想建立圓柱體和長(zhǎng)方體的聯(lián)系,初步建立轉(zhuǎn)化的雛形,然后再通過(guò)實(shí)踐操作,動(dòng)畫演示,驗(yàn)證了學(xué)生的發(fā)現(xiàn),從學(xué)生的認(rèn)識(shí)和發(fā)現(xiàn)中,圍繞著圓柱體和長(zhǎng)方體之間的聯(lián)系,抽象出圓柱體的體積公式。這個(gè)過(guò)程,學(xué)生從形象具體的知識(shí)形成過(guò)程(想象、操作、演示)中,認(rèn)識(shí)得以升華(較抽象的認(rèn)識(shí) 公式)]
三、實(shí)踐應(yīng)用,鞏固新知。
1、火眼金睛判對(duì)錯(cuò)。
。1)長(zhǎng)方體、正方體、圓柱的體積都等于底面積乘高。( )
。2)圓柱的高越大,圓柱的體積就越大。( )
。3)如果兩個(gè)圓柱的體積相等,則它們一定等底等高。( )
[設(shè)計(jì)意圖:加深對(duì)剛學(xué)知識(shí)的分析和理解。]
2、計(jì)算下面各圓柱的體積。
。1)底面積是30平方厘米,高4厘米。
。2)底面周長(zhǎng)是12。56米,高是2米。
(3)底面半徑是2厘米,高10厘米。
[設(shè)計(jì)意圖:讓學(xué)生靈活運(yùn)用公式進(jìn)行計(jì)算。]
3、實(shí)踐練習(xí)。
提供在創(chuàng)設(shè)情景中圓柱形接水容器的內(nèi)底面直徑和高。
這個(gè)圓柱形容器,內(nèi)底面直徑是10厘米,高12厘米,水面高度10厘米。
[設(shè)計(jì)意圖:讓學(xué)生領(lǐng)悟數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系。]
4、課堂作業(yè)。
為了美化環(huán)境,陽(yáng)光小區(qū)在樓前的空地上建了四個(gè)同樣大小的圓柱形花壇;▔牡酌鎯(nèi)直徑為4米,高為0、6米,如果里面填土的高度是0、4米,這四個(gè)花壇共需要填土多少立方米?
[設(shè)計(jì)意圖:使學(xué)生進(jìn)一步感受到生活中處處有數(shù)學(xué),同時(shí)培養(yǎng)學(xué)生的環(huán)保意識(shí)。]
四、反思回顧
師:通過(guò)本節(jié)課的學(xué)習(xí),你有什么收獲嗎?
[設(shè)計(jì)意圖:讓不同層次的學(xué)生談學(xué)習(xí)收獲,可使每個(gè)學(xué)生都體驗(yàn)到成功的喜悅。這樣,學(xué)生的收獲不僅只有知識(shí),還包括能力、方法、情感等,學(xué)生體驗(yàn)到學(xué)習(xí)的樂趣,增強(qiáng)了學(xué)好數(shù)學(xué)的信心。]
板書設(shè)計(jì):
圓柱的體積
根據(jù)圓柱與近似長(zhǎng)方體的關(guān)系,推導(dǎo)公式
長(zhǎng)方體的體積 = 底面積 高
圓柱的體積 = 底面積 高
用字母表示計(jì)算公式V= sh
教學(xué)反思:
本節(jié)的教學(xué)從生活的實(shí)際創(chuàng)設(shè)情境,提出問(wèn)題,讓學(xué)生學(xué)習(xí)有用的數(shù)學(xué),提高了學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決身邊問(wèn)題的能力,從學(xué)數(shù)學(xué)的角度,注意了數(shù)學(xué)知識(shí)的特點(diǎn)。運(yùn)用已有的知識(shí)(長(zhǎng)方體體積的計(jì)算)經(jīng)驗(yàn)(圓面積公式的推導(dǎo))解決新的問(wèn)題,在新舊知識(shí)的聯(lián)系上,巧妙的利用想象、課件演示將圓和圓柱有機(jī)的聯(lián)系到一起,使學(xué)生想象合理、聯(lián)系有方。在探究新知中,通過(guò)想象和操作,讓學(xué)生充分經(jīng)歷了知識(shí)的形成過(guò)程,為較抽象的理論概括提供了必要而有效的感性材料,加強(qiáng)了實(shí)踐與知識(shí)的聯(lián)系,并創(chuàng)造性的補(bǔ)充了一些與學(xué)生身邊實(shí)際生活相聯(lián)系的練習(xí)題,提高了學(xué)生的學(xué)習(xí)興趣。
《圓柱的體積》教案4
最近,本人在《小學(xué)教學(xué)設(shè)計(jì)》看到一則“圓柱的體積”教學(xué)實(shí)錄精彩片段,它以一種全新的視角詮釋了新課標(biāo)所倡導(dǎo)的理念,給我留下了較為深刻的印象。現(xiàn)把它擷取下來(lái)與各位同行共賞。
……
師:圓柱有大有小,你覺得圓柱體積應(yīng)該怎樣計(jì)算呢?
生:(絕大部分學(xué)生舉起了手)底面積乘高。
師:那你們是怎樣理解這個(gè)計(jì)算方法的呢?
生1:我是從書上看到的。
(舉起的手放下了一大半。很明顯,大部分同學(xué)都看到或聽到這個(gè)結(jié)論,并不理解實(shí)質(zhì)的涵義。但仍有幾位學(xué)生的手高高舉起,躍躍欲試,臉上的神情告訴老師:他們有更高明的答案。老師便順?biāo)浦,讓他們?lái)講。)
生2:我是這樣思考的:長(zhǎng)方體、正方體和圓柱體它們都是立體圖形,體積都是指它們所占空間的大小。而長(zhǎng)方體、正方體的體積都可以用底面積乘高來(lái)計(jì)算,所以我想計(jì)算圓柱體的體積時(shí)也應(yīng)該可以用底面積乘高吧!
師:你能迅速地把圓柱體與以前學(xué)過(guò)的長(zhǎng)方體、正方體聯(lián)系起來(lái),進(jìn)而聯(lián)想到圓柱體的體積計(jì)算方法。真行!當(dāng)然這僅是你的猜測(cè),要是再能證明就好了。
生3:我可以證明。推導(dǎo)長(zhǎng)方體體積公式時(shí),我們是采用擺體積單位的方法,用每層個(gè)數(shù)(底面積)×層數(shù)(高)現(xiàn)在求圓柱體積我們也可以沿襲這種思路,在圓柱體內(nèi)部同樣擺上合適的體積單位,用每層個(gè)數(shù)×層數(shù),每層的個(gè)數(shù)也就是它的底面積,擺的層數(shù)也就是高。那不就證明了圓柱體積的計(jì)算公式就是用底面積乘高嗎?
(教室里立刻響起了熱烈的掌聲,許多同學(xué)被他精彩的發(fā)言折服了,理性的思維散發(fā)出誘人的魅力。)
師:你真聰明,能用以前學(xué)過(guò)的知識(shí)解決今天的難題!(這時(shí)舉起的手更多了。)
生4:我有個(gè)想法不知是否可行、在推導(dǎo)圓面積計(jì)算方法時(shí),我們是把圓轉(zhuǎn)化成了長(zhǎng)方形,圓柱的底面就是一個(gè)圓,所以我就想是否可以把圓柱體轉(zhuǎn)化成長(zhǎng)方體呢?
師:(翹起了大拇指)你這種想法很有意思!等會(huì)你可以試一試,想想怎樣分割能把一個(gè)圓柱體轉(zhuǎn)化成近似的長(zhǎng)方體。
生5:我還有一種想法:我們可以把圓柱體看成是無(wú)數(shù)個(gè)同樣大小的圓片疊加而成的。那么圓柱體的體積就應(yīng)該用每個(gè)圓片的面積×圓的個(gè)數(shù)。圓的個(gè)數(shù)也就相當(dāng)于圓柱的高。所以我認(rèn)為圓柱體的體積可以用每個(gè)圓的面積(底面積)×高。
師:了不起的一種想法!(師情不自禁的鼓起了掌。)
生6:我看過(guò)爸爸媽媽“扎筷子”。把十雙同樣的筷子扎在一起就變成了一個(gè)近似的圓柱體。我們可以把每根筷子看成一個(gè)長(zhǎng)方體,那么扎成的近似圓柱體的體積應(yīng)該是這二十個(gè)小長(zhǎng)方體的體積之和。又因?yàn)樗鼈兙哂型瑯拥母叨,運(yùn)用乘法分配律,就變成了這二十個(gè)小長(zhǎng)方體的底面積之和×高。
師:你真會(huì)思考問(wèn)題!
生7:我還有一種想法:學(xué)習(xí)圓的面積時(shí)我們知道,當(dāng)圓的半徑和一個(gè)正方形的邊長(zhǎng)相等時(shí),圓的面積約是這個(gè)正方形的3.14倍。把疊成這個(gè)圓柱體的`這無(wú)數(shù)個(gè)圓都這樣分割,那么圓柱體的體積不也大約是這個(gè)長(zhǎng)方體的體積的3.14倍嗎?長(zhǎng)方體的體積用它的底面積×高,圓柱體的體積就在這基礎(chǔ)上再乘3.14,也就是用圓柱體的底面積×高。
生8:把圓柱體形狀的橡皮泥捏成等高長(zhǎng)方體形狀的橡皮泥,長(zhǎng)方體體積用底面積乘高來(lái)計(jì)算,所以計(jì)算圓柱體的體積也是用底面積乘高吧!
師:沒想到一塊橡皮泥還有這樣的作用,你們可真是不簡(jiǎn)單!
……
整節(jié)課不時(shí)響起孩子們、聽課老師們熱烈的掌聲。
過(guò)去的數(shù)學(xué)課堂教學(xué),忠誠(chéng)于學(xué)科,卻背棄了學(xué)生,體現(xiàn)著權(quán)利,卻忘記了民主,追求著效率,卻忘記了意義。而這個(gè)片斷折射出,新課標(biāo)理念下的不再是教師一廂情愿的“獨(dú)白”,而是學(xué)生、數(shù)學(xué)材料、教師之間進(jìn)行的一次次真情的“對(duì)話”。
現(xiàn)從“對(duì)話”的視角來(lái)賞析這則精彩的片段。
一、“對(duì)話”喚發(fā)出學(xué)習(xí)熱情。
《新課程標(biāo)準(zhǔn)》指出:有意義的數(shù)學(xué)學(xué)習(xí)必須建立在學(xué)生的主觀愿望和知識(shí)經(jīng)驗(yàn)的基礎(chǔ)上,在這樣的氛圍中,學(xué)生的思考才能積極。在當(dāng)今數(shù)字化、信息化非常發(fā)達(dá)的社會(huì)中,學(xué)生接受信息獲取知識(shí)的途徑非常多,圓柱體的體積計(jì)算方法對(duì)學(xué)生來(lái)說(shuō)并不陌生,如果教師再按傳統(tǒng)的教學(xué)程序(創(chuàng)設(shè)情境——研究探討——獲得結(jié)論)展開,學(xué)生易造成這樣的錯(cuò)誤認(rèn)識(shí):認(rèn)為自己已經(jīng)掌握了這部分知識(shí)而失去對(duì)學(xué)習(xí)過(guò)程的熱情。而本課,教學(xué)伊始,教師提問(wèn)“圓柱體的體積如何計(jì)算”,讓學(xué)生先行呈現(xiàn)已有的知識(shí)結(jié)論,在通過(guò)問(wèn)題“你是怎樣理解這個(gè)公式的呢?”把學(xué)生的注意引向?qū)揭饬x的理解,學(xué)生積極主動(dòng)的投入思維活動(dòng),喚發(fā)學(xué)習(xí)熱情。
二、“對(duì)話”迸發(fā)出智慧的火花
“水本無(wú)華,相蕩而生漣漪;石本無(wú)火,相擊始發(fā)靈光。”思維的激活、靈性的噴發(fā)源于對(duì)話的啟迪和碰撞。本課如果按照教材的設(shè)計(jì):通過(guò)把圓柱體轉(zhuǎn)化為長(zhǎng)方體,研究圓柱體和長(zhǎng)方體間的關(guān)系,得出計(jì)算公式:底面積×高,經(jīng)歷這樣的學(xué)習(xí)過(guò)程學(xué)生的思維是千篇一律的,獲得的發(fā)展也是有限的。而這位教師對(duì)教材進(jìn)行相應(yīng)的拓展,先呈現(xiàn)公式,后提問(wèn)“你是怎樣理解這個(gè)公式的呢?”,使學(xué)生的思維沿著各自獨(dú)特的理解“決堤而出”。
三、“對(duì)話”贏得心靈的敞亮和溝通
“真行!當(dāng)然這僅是你的猜測(cè),要是再能證明就好了!薄澳阏媛斆鳎∧苡靡郧皩W(xué)過(guò)的知識(shí)解決今天的難題!”“你這種想法很有意思!等會(huì)你可以試一試,想想怎樣分割能把一個(gè)圓柱體轉(zhuǎn)化成近似的長(zhǎng)方體!薄處煵粩嗟乜隙ㄖ鴮W(xué)生的每一種觀點(diǎn),引燃學(xué)生的每一絲發(fā)現(xiàn)的火花;同時(shí)象一位節(jié)目主持人一樣,平和、真誠(chéng),傾聽、接納著學(xué)生的聲音,在課堂上,學(xué)生真是神了、奇了,說(shuō)出一種又一種的方法,連聽課老師也情不自禁的鼓起掌來(lái)。此情此景,我們不難看出,老師能注意蹲下身來(lái)與學(xué)生交流,注意尋求學(xué)生的聲音,讓學(xué)生在一種“零距離”的、活躍的心理狀態(tài)下敞亮心扉,放飛思想,進(jìn)行著師生“視界融合”的真情對(duì)話,贏得心靈的敞亮和溝通。
數(shù)學(xué)教學(xué)在對(duì)話中進(jìn)行,展示著民主與平等,凸現(xiàn)著創(chuàng)造與生成。有效的對(duì)話中不僅有信息的傳輸,更有思維的升華;不僅能增進(jìn)學(xué)生的理解,更能促進(jìn)教師的反思;不僅有繼承的喜悅,更有創(chuàng)造的激情。這則教學(xué)片斷,有很多的精彩值得我們欣賞與贊嘆。我想說(shuō):我的內(nèi)心很受鼓舞,我會(huì)向這位老師學(xué)習(xí),讓自己的課堂也能成就精彩的時(shí)刻!
《圓柱的體積》教案5
設(shè)計(jì)說(shuō)明
1.創(chuàng)設(shè)問(wèn)題情境,激發(fā)學(xué)習(xí)興趣。
興趣是最好的老師。新課伊始,為學(xué)生創(chuàng)設(shè)“圓柱形橡皮泥的體積你會(huì)求嗎?”的問(wèn)題情境,引導(dǎo)學(xué)生經(jīng)過(guò)思考、討論、交流,找到解決的方法。這樣的設(shè)計(jì)不僅自然滲透了圓柱(新問(wèn)題)和長(zhǎng)方體(已知)的知識(shí)聯(lián)系,還讓學(xué)生體會(huì)到可以有許多方法去解決生活中的實(shí)際問(wèn)題,激發(fā)了學(xué)生的學(xué)習(xí)興趣和探究新知的欲望。
2.實(shí)踐操作,促進(jìn)知識(shí)遷移。
知識(shí)和經(jīng)驗(yàn)的積累來(lái)源于大量的實(shí)踐活動(dòng)。動(dòng)手操作不但能使學(xué)生獲得感性的體驗(yàn),更能加深學(xué)生對(duì)知識(shí)的理解。本設(shè)計(jì)為學(xué)生創(chuàng)設(shè)動(dòng)手操作的情境,使學(xué)生通過(guò)動(dòng)手拼擺,充分感知圖形之間的關(guān)系,深刻理解圓柱的體積公式的合理性,充分認(rèn)識(shí)到圖形轉(zhuǎn)化過(guò)程中形變而質(zhì)不變的辯證關(guān)系,使學(xué)生在把舊知遷移、發(fā)展、轉(zhuǎn)化、構(gòu)建為新知的同時(shí),動(dòng)手操作、觀察及歸納能力也得到極大的提高。
課前準(zhǔn)備
教師準(zhǔn)備 圓柱的體積公式演示教具 多媒體課件
學(xué)生準(zhǔn)備 圓柱的體積公式演示學(xué)具
教學(xué)過(guò)程
第1課時(shí) 圓柱的體積(1)
⊙創(chuàng)設(shè)情境,導(dǎo)入新課
1.出示一塊圓柱形橡皮泥。
師:同學(xué)們,我們以前學(xué)過(guò)長(zhǎng)方體和正方體體積的計(jì)算方法,現(xiàn)在我想知道這塊圓柱形橡皮泥的體積是多少,你有好的辦法嗎?
2.學(xué)生小組討論交流并匯報(bào)。
預(yù)設(shè)
生1:可以把這塊橡皮泥捏成長(zhǎng)方體,利用長(zhǎng)方體的體積公式來(lái)解決。
生2:可以把它放到量杯中,計(jì)算上升的水的體積。
3.引入新課。
解決生活中的問(wèn)題有很多方法,需要我們?nèi)グl(fā)現(xiàn)、去探究。這節(jié)課我們就共同去探究圓柱體積的計(jì)算方法。
設(shè)計(jì)意圖:通過(guò)創(chuàng)設(shè)問(wèn)題情境,引發(fā)學(xué)生思考,進(jìn)一步體會(huì)“轉(zhuǎn)化”思想。
⊙新知探究
1.利用知識(shí)的遷移,猜想圓柱體積的計(jì)算方法。
(1)提出猜想。
師:在剛才的問(wèn)題中同學(xué)們提出可以將圓柱形橡皮泥捏成長(zhǎng)方體,這時(shí)會(huì)有什么變化?
(形狀變了,體積沒變)
師:我們已經(jīng)掌握了長(zhǎng)方體、正方體的體積計(jì)算方法,大家猜一猜:圓柱體積可能等于底面積×高嗎?
(2)學(xué)生討論、交流。
2.探究算法。
(1)提出問(wèn)題:能不能借鑒把圓轉(zhuǎn)化為長(zhǎng)方形的方法,把手中的圓柱形學(xué)具轉(zhuǎn)化為長(zhǎng)方體?
(2)動(dòng)手操作:把圓柱轉(zhuǎn)化為長(zhǎng)方體。
(3)匯報(bào)交流:介紹自己的轉(zhuǎn)化方法。
(結(jié)合學(xué)生回答,課件演示轉(zhuǎn)化過(guò)程:先沿圓柱底面的半徑把圓柱平均分成16份,然后拼成一個(gè)近似的長(zhǎng)方體)
(4)引導(dǎo)學(xué)生明確:由于我們分得不夠細(xì),所以看起來(lái)還不太像長(zhǎng)方體;分得越多,拼成的立體圖形就越接近長(zhǎng)方體。(課件演示將圓柱分成更多等份并拼成一個(gè)近似的長(zhǎng)方體的過(guò)程)
(5)匯報(bào)發(fā)現(xiàn)。
①拼成的`長(zhǎng)方體的體積與圓柱的體積有什么關(guān)系?
、陂L(zhǎng)方體的底面積、高分別與圓柱的底面積、高有什么關(guān)系?
③長(zhǎng)方體的體積等于什么?圓柱呢?
3.總結(jié)公式。
(1)圓柱的體積怎樣計(jì)算?為什么?
(圓柱通過(guò)分割、拼組,可以轉(zhuǎn)化成近似的長(zhǎng)方體。這個(gè)近似的長(zhǎng)方體的底面積與圓柱的底面積相等,高與圓柱的高相等。因?yàn)殚L(zhǎng)方體的體積等于底面積乘高,所以圓柱的體積=底面積×高)
(2)說(shuō)一說(shuō),怎樣用字母表示圓柱的體積公式?
(學(xué)生反饋:V=Sh)
(3)如果已知d、r、C和h,怎樣求圓柱的體積?
求圓柱體積的直接條件是S、h,間接條件是d、r和C,所以圓柱的體積公式也可以表示為V=πr2h、V=πh、V=πh。
(4)圓柱和長(zhǎng)方體、正方體一樣,都是直柱體,你能總結(jié)出求它們的體積的統(tǒng)一計(jì)算方法嗎?
(直柱體的體積都等于底面積×高)
《圓柱的體積》教案6
教學(xué)內(nèi)容:
教科書第8~9頁(yè)的圓柱體積公式的推導(dǎo)和例4,完成練習(xí)二的第1~4題。
教學(xué)目標(biāo):
1、通過(guò)學(xué)生動(dòng)手操作,分組交流,探究出圓柱體體積的計(jì)算方法。
2、使學(xué)生理解和掌握?qǐng)A柱體積的計(jì)算方法,并能結(jié)合實(shí)際計(jì)算出有關(guān)圓柱體的物體的體積。
教學(xué)重點(diǎn):
圓柱體積計(jì)算公式。
教學(xué)難點(diǎn):
圓柱體積計(jì)算公式的推導(dǎo)。
教學(xué)理念:
1、學(xué)習(xí)內(nèi)容緊密聯(lián)系生活實(shí)際。
2、學(xué)習(xí)的方式以多媒體展示、自主探索與小組討論為主。
教學(xué)設(shè)計(jì):
教學(xué)步驟:
教師活動(dòng)過(guò)程
學(xué)生活動(dòng)過(guò)程
一、激疑引入
1、求裝在圓柱形容器中水的體積。
2、求橡皮泥捏的圓柱形體積。
3、創(chuàng)設(shè)情境。
1、出示裝了水的圓柱容器。
2、師:容器里面的水什么形狀,你們能想什么方法求出水的體積嗎?
3、出示圓柱形橡皮泥。
4、你們有方法求這個(gè)圓柱形橡皮泥的體積嗎?
5、課件出示:圓形柱子、壓路機(jī)的圓柱形大前輪。你有辦法求出它們的體積嗎?
6、今天,就讓我們一起來(lái)研究圓柱體積的計(jì)算方法。
1、學(xué)生討論后匯報(bào)。
2、指名回答
二、媒體展示、引導(dǎo)探究
1、回顧舊知,幫助遷移
2、動(dòng)手操作,實(shí)現(xiàn)遷移。
3、得出公式。
圓柱的體積=底面積×高
4、教學(xué)例4
5、拓展圓柱的體積計(jì)算公式。
1、讓學(xué)生回憶我們?cè)鯓油茖?dǎo)出圓面積計(jì)算公式的?
2、課件演示。
3、想一想:怎樣計(jì)算圓柱的體積。
4、課件演示。
5、師:圓柱與所拼成的`長(zhǎng)方體有什么關(guān)系?
6、根據(jù)學(xué)生的匯報(bào)師生共同概括公式。
長(zhǎng)方體的體積=底面積×高
圓柱的體積=底面積×高
7、引導(dǎo)學(xué)生用字母表示公式。
8、出示例4,讓學(xué)生試做。提醒學(xué)生注意單位的處。
9、讓學(xué)生看可課本。
想一想:如果已知圓柱底面的半徑r和高h(yuǎn),圓柱的體積的計(jì)算公式師什么?
10、教師行間巡視檢查。
1、學(xué)生回答提問(wèn)。
2、學(xué)生匯報(bào)。
3、學(xué)生分小組討論。
3、學(xué)生操作學(xué)具,進(jìn)行拼組。
4、學(xué)生討論、交流、匯報(bào)。
5、學(xué)生齊讀。
6、學(xué)生試做。
7、學(xué)生獨(dú)立思考,相互交流。
三、利用資源、鞏固練習(xí)。
1、做一做
2、練習(xí)二第一題
3、實(shí)踐與應(yīng)用
4、提高練習(xí)
1、讓學(xué)生獨(dú)立完成。
2、師:完成練習(xí)二第一題。
3、讓學(xué)生取出所準(zhǔn)備的圓柱形實(shí)物。
師:計(jì)算它的表面積,需要測(cè)量哪些數(shù)據(jù)并計(jì)算。
4、課件出示圓柱形的大柱子。要知道這根柱子的體積,測(cè)量哪些數(shù)據(jù)比較方便?
1、學(xué)生練習(xí)。
2、同桌相互檢查,然后訂正。
3、學(xué)生獨(dú)立填表,反饋。
4、學(xué)生討論,小組內(nèi)交流。
5、各小組匯報(bào)。
6、學(xué)生討論,全班交流。
四、課堂小結(jié)
師:這節(jié)課學(xué)習(xí)了什么內(nèi)容?圓柱的體積怎樣計(jì)算,這個(gè)公式是怎樣得到的?
學(xué)生回答
五、布置作業(yè)
師: 課堂作業(yè):練習(xí)二第2,3題。
《圓柱的體積》教案7
【教學(xué)內(nèi)容】
教科書第34~35頁(yè)例3及課堂活動(dòng),練習(xí)八1,2,3題。
【教學(xué)目標(biāo)】
1.通過(guò)學(xué)生體驗(yàn)圓柱體積公式的推導(dǎo)過(guò)程,掌握?qǐng)A柱的體積公式并能應(yīng)用公式解決實(shí)際問(wèn)題。
2.倡導(dǎo)交流、合作、實(shí)驗(yàn)操作等學(xué)習(xí)方式,培養(yǎng)學(xué)生觀察、猜測(cè)、分析、比較、綜合的學(xué)習(xí)思考方法。
3.讓學(xué)生感受探索數(shù)學(xué)奧秘的樂趣,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極情感。
【教學(xué)重點(diǎn)】
圓柱體積計(jì)算方法及應(yīng)用。
【教學(xué)準(zhǔn)備】
教具:標(biāo)有厘米刻度的透明長(zhǎng)方體容器和圓柱容器、量筒、多媒體課件。
【教學(xué)過(guò)程】
一、實(shí)驗(yàn)回顧長(zhǎng)方體體積計(jì)算方法
(1)出示透明長(zhǎng)方體容器。
教師:現(xiàn)在我們向這個(gè)容器里倒入1厘米深的水,容器里的水會(huì)形成什么形體?(長(zhǎng)方體)
。ń處煬F(xiàn)場(chǎng)操作倒水)估計(jì)一下,有多少立方厘米?
怎樣才能知道這層長(zhǎng)方體的水有多少立方厘米?
。A(yù)設(shè):①計(jì)算;②倒入量筒測(cè)量)
(2)如果要計(jì)算的話,要測(cè)量哪些數(shù)據(jù)?
(請(qǐng)一名學(xué)生前臺(tái)測(cè)量,教師注意提醒從內(nèi)部量)
教師板書數(shù)據(jù),全體學(xué)生即時(shí)計(jì)算,一生板演。
學(xué)生講解,教師從算式中用紅線勾出表示底面積的部分。
說(shuō)明:長(zhǎng)方體的體積可以用底面積乘高來(lái)計(jì)算,當(dāng)高為1 cm時(shí),底面的面積數(shù)就是這個(gè)長(zhǎng)方體所含的體積單位數(shù)。
教師再往容器內(nèi)依次倒入2 cm,3 cm高的水,隨機(jī)請(qǐng)學(xué)生口答出體積數(shù)。
。3)揭示:當(dāng)長(zhǎng)方體的高度增加,我們就可以用一層的`體積數(shù)乘上高度(也就是層數(shù))來(lái)求得體積。
二、實(shí)驗(yàn)探究,學(xué)習(xí)新知
1.初次實(shí)驗(yàn)
出示標(biāo)有厘米刻度的圓柱形玻璃容器。
教師:向這個(gè)容器里倒入1厘米深的水,水會(huì)形成什么形狀?(圓柱)
教師操作倒水后:猜一猜,這個(gè)圓柱形水柱的體積如何計(jì)算?(教師板書學(xué)生猜測(cè)結(jié)果:V=Sh)
教師:假如這些猜測(cè)合理,我們需要測(cè)量哪些數(shù)據(jù)?(d或r)
一名學(xué)生上前臺(tái)在教師的協(xié)助下現(xiàn)場(chǎng)測(cè)量,記錄下數(shù)據(jù)。
學(xué)生集體按照自己猜測(cè)的方法演算結(jié)果,并進(jìn)行相關(guān)板演。
教師:怎樣證明這些結(jié)果的正確性?(量筒測(cè)量)
教師將容器中的水倒入量筒,直觀驗(yàn)證V=Sh的正確性。
2.二度實(shí)驗(yàn)
教師:一次實(shí)驗(yàn)還不能說(shuō)明問(wèn)題,我們?cè)龠M(jìn)行幾次行嗎?
教師往容器中倒入2 cm,4 cm,5 cm,10 cm高的水,學(xué)生計(jì)算后,師生共同用量筒直觀驗(yàn)證,并生成實(shí)驗(yàn)表格。
3.實(shí)驗(yàn)分析
教師:剛才的實(shí)驗(yàn)說(shuō)明了什么?觀察數(shù)據(jù)你還有哪些發(fā)現(xiàn)?
4.回歸課本,認(rèn)識(shí)轉(zhuǎn)化法推導(dǎo)圓柱體積,擴(kuò)展對(duì)公式的認(rèn)識(shí)
教師:圓柱體積V=Sh,關(guān)于這個(gè)方法,我們的數(shù)學(xué)家們用不同的方法進(jìn)行了相關(guān)的說(shuō)明,一起來(lái)看看。
課件配音演示:
教師:欣賞了數(shù)學(xué)家的推導(dǎo)方法,再回憶一下我們剛才的實(shí)驗(yàn),你想說(shuō)點(diǎn)什么嗎?
三、實(shí)踐應(yīng)用,鞏固新知
1.基本技能訓(xùn)練
練習(xí)八第1題。
2.拓展應(yīng)用,促進(jìn)發(fā)展
教學(xué)例3。
教師:不告訴圓柱的底面積,你能求出它的體積嗎?
課件出示例3:
集體感知題意。全體學(xué)生獨(dú)立完成,兩名學(xué)生板演后講解。
教師小結(jié):當(dāng)求體積的必要條件沒有直接告訴時(shí),我們應(yīng)先根據(jù)相關(guān)信息予以解決。
3.獨(dú)立作業(yè)
練習(xí)八第2,3題。
四、全課總結(jié):
教師:今天我們一起研究了什么知識(shí)?在今天的學(xué)習(xí)中你的最大收獲是什么?
《圓柱的體積》教案8
教學(xué)目標(biāo):
1、了解圓柱體體積(包括容積)的含義,進(jìn)一步理解體積和容積的含義。
2、經(jīng)歷探索圓柱體積計(jì)算方法的過(guò)程,掌握?qǐng)A柱體積的計(jì)算方法,能正確計(jì)算圓柱的體積,并會(huì)解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
3、培養(yǎng)初步的空間觀念和思維能力;進(jìn)一步認(rèn)識(shí)“轉(zhuǎn)化”的思考方法。
教學(xué)重點(diǎn):
理解和掌握?qǐng)A柱的體積計(jì)算公式,會(huì)求圓柱的體積
教學(xué)難點(diǎn):
理解圓柱體積計(jì)算公式的推導(dǎo)過(guò)程。
教學(xué)用具:
圓柱體積演示教具。
教學(xué)過(guò)程:
一、復(fù)述回顧,導(dǎo)入新課
以2人小組回顧下列內(nèi)容:(要求1題組員給組長(zhǎng)說(shuō),組長(zhǎng)補(bǔ)充。2題同桌互說(shuō)。說(shuō)完后坐好。)
1、說(shuō)一說(shuō):(1)什么叫體積?常用的體積單位有哪些?
(2)長(zhǎng)方體、正方體的體積怎樣計(jì)算?如何用字母表示?
長(zhǎng)方體、正方體的體積=()×()用字母表示()
2、求下面各圓的面積(只說(shuō)出解題思路,不計(jì)算。)
(1)r=1厘米;(2)d=4分米;(3)C=6.28米。
(二)揭示課題
你想知道課本第8頁(yè)左上方“柱子的體積”嗎?你想知道“一個(gè)圓柱形杯子能裝多少水”嗎?今天就來(lái)學(xué)習(xí)“圓柱的體積”。(板書課題)
二、設(shè)問(wèn)導(dǎo)讀
請(qǐng)仔細(xì)閱讀課本第8-9頁(yè)的內(nèi)容,完成下面問(wèn)題
(一)以小組合作完成1、2題。
1、猜一猜,圓柱的體積可能等于()×()
2、我們?cè)趯W(xué)習(xí)圓的面積計(jì)算公式時(shí),指出:把一個(gè)圓分成若干等份,可以拼成一個(gè)近似的.長(zhǎng)方形。這個(gè)長(zhǎng)方形的面積就是圓的面積。圓柱的底面也可以像上面說(shuō)的那樣轉(zhuǎn)化成一個(gè)近似的長(zhǎng)方形,通過(guò)切、拼的方法,把圓柱轉(zhuǎn)化為一個(gè)近似的長(zhǎng)方體(如課本第8頁(yè)右下圖所示)。(用自己手中的學(xué)具進(jìn)行切、拼)觀察拼成的長(zhǎng)方體與原來(lái)的圓柱之間的關(guān)系
(1)圓柱的底面積變成了長(zhǎng)方體的()。
(2)圓柱的高變成了長(zhǎng)方體的()。
(3)圓柱轉(zhuǎn)化成長(zhǎng)方體后,體積沒變。因?yàn)殚L(zhǎng)方體的體積=()×(),所以圓柱的體積=()×()。如果用字母V代表圓柱的體積,S代表底面積,h代表高,那么圓柱的體積公式可用字母表示為()
[匯報(bào)交流,教師用教具演示講解2題]
(二)獨(dú)立完成3、4題。
3、如果已知課本第8頁(yè)左上方柱子的底面半徑為0.4米,高5米,怎樣計(jì)算柱子的體積?
先求底面積,列式計(jì)算()
再求體積,列式計(jì)算()
綜合算式()
4、要想知道“一個(gè)圓柱形杯子能裝多少水?”可以用杯子的“()×()”(杯子厚度忽略不計(jì))
【要求:完成之后以小組互查,有爭(zhēng)議之處四人大組討論!
教師根據(jù)學(xué)生做題情況挑選一些小組進(jìn)行匯報(bào)、交流,并對(duì)小組學(xué)習(xí)情況進(jìn)行評(píng)價(jià)。
三、自我檢測(cè)
1、課本9頁(yè)試一試
2、課本9頁(yè)練一練1題(只列式,不計(jì)算)
【要求:完成后小組互查,教師評(píng)價(jià)】
四、鞏固練習(xí)
課本練一練的2、3、4題
【要求:組長(zhǎng)先給組員講解題思路,然后小組內(nèi)共同完成】
教師進(jìn)行錯(cuò)例分析。
五、拓展練習(xí)
1、課本練一練的5題
2、有一條圍糧的席子,長(zhǎng)6.28米,寬2.5米,把它圍成一個(gè)筒狀的糧食囤,怎樣圍盛的糧食多?最多能盛多少立方米的糧食?
【要求:先組內(nèi)討論確定解題思路,再完成】
六、課堂總結(jié),布置作業(yè)
1、總結(jié):這節(jié)我們利用轉(zhuǎn)化的方法,把圓柱轉(zhuǎn)化為長(zhǎng)方體來(lái)推導(dǎo)其體積公式,切記用“底面積×高”來(lái)求圓柱的體積。
2、作業(yè):課本練一練6題
《圓柱的體積》教案9
教學(xué)目標(biāo):
1、理解圓柱體積公式的推導(dǎo)過(guò)程。
2、能夠初步地學(xué)會(huì)運(yùn)用體積公式解決簡(jiǎn)單的實(shí)際問(wèn)題。
3、進(jìn)一步提高學(xué)生解決問(wèn)題的能力。
教學(xué)重、難點(diǎn):
1、理解圓柱體積公式的推導(dǎo)過(guò)程。
2、能夠初步地學(xué)會(huì)運(yùn)用體積公式解決簡(jiǎn)單的實(shí)際問(wèn)題。
3、理解圓柱體積公式的推導(dǎo)過(guò)程。
教學(xué)準(zhǔn)備:圓柱切割組合模具、小黑板。
教學(xué)過(guò)程:
一、創(chuàng)設(shè)情境,生成問(wèn)題
1、什么是體積?( 物體所占空間的大小叫做物體的體積。)
2、長(zhǎng)方體的體積該怎樣計(jì)算?歸納到底面積乘高上來(lái)。
3、圓的面積怎樣計(jì)算?
二、探索交流,解決問(wèn)題
1、計(jì)算圓的面積時(shí),是把圓面積轉(zhuǎn)化成我們學(xué)過(guò)的長(zhǎng)方形進(jìn)行計(jì)算的,能不能把圓柱轉(zhuǎn)化成我們學(xué)過(guò)的立體 圖形來(lái)計(jì)算它的體積?
。▎l(fā)學(xué)生思考。)
2、把圓柱的底面分成許多相等的扇形(16等分),然后把圓柱沿高切開,可能會(huì)拼成怎樣的圖形?教師演示,引導(dǎo)學(xué)生進(jìn)行觀察。
3、思考:
(1)圓柱切開后可以拼成一個(gè)什么形體?(長(zhǎng)方體)
(2)通過(guò)實(shí)驗(yàn)?zāi)惆l(fā)現(xiàn)了什么?
小組討論:實(shí)驗(yàn)前后,什么變了?什么沒變?
討論后,整理出來(lái),再進(jìn)行匯報(bào)。
。ㄆ闯傻慕崎L(zhǎng)方體體積大小沒變,形狀變了,拼成的近似長(zhǎng)方
體和圓柱相比,底面形狀變了,由圓變成了近似長(zhǎng)方形,而底面的面積大小沒有發(fā)生變化。近似長(zhǎng)方形的高就是圓柱的高,沒有變化。)
4、推導(dǎo)圓柱體積公式
小組討論:怎樣計(jì)算圓柱的體積?
學(xué)生匯報(bào)討論結(jié)果。
長(zhǎng)方體的體積可以用底面積乘高來(lái)計(jì)算,而在推導(dǎo)過(guò)程中,長(zhǎng)方體的底面積就是圓柱的底面積,高就是圓柱的高,所以圓柱的體積也可以用底面積乘高來(lái)計(jì)算。
師:圓柱的`體積怎樣計(jì)算?用字母公式,怎樣表示?
板書: V=Sh
5、算一算:已知一根柱子的底面半徑為0.4米,高為5米。你能算出它的體積嗎?
三、鞏固應(yīng)用練習(xí)。
1、一個(gè)圓柱形水桶,從桶內(nèi)量得底面直徑是3分米,高是4分米,
這個(gè)水桶的容積是多少升?
說(shuō)明:求水桶的容積,就是求水桶的體積。想一想先求什么?
2、一根圓柱形鐵棒,底面周長(zhǎng)是12.56厘米,長(zhǎng)是100厘米,它的體積是多少?
先求底面半徑再求底面積,最后求體積。
已知底面周長(zhǎng)對(duì)解決問(wèn)題有什么幫助嗎?必須先求出什么? 四:課堂小結(jié):
通過(guò)這節(jié)課你學(xué)會(huì)了哪些知識(shí),有什么收獲?五:課后作業(yè):
教材第9頁(yè),練一練第1、3、4、題
《圓柱的體積》教案10
教學(xué)目標(biāo):
1、使學(xué)生能夠運(yùn)用公式正確地計(jì)算圓柱的體積和容積。
2、初步學(xué)會(huì)用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實(shí)際問(wèn)題的能力
4、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識(shí)。
教學(xué)重點(diǎn):掌握?qǐng)A柱體積的計(jì)算公式。
教學(xué)難點(diǎn):靈活應(yīng)用圓柱的'體積公式解決實(shí)際問(wèn)題。
教學(xué)過(guò)程:
一、復(fù)習(xí)
1、復(fù)習(xí)圓柱體積的推導(dǎo)過(guò)程
長(zhǎng)方體的底面積等于圓柱的底面積,長(zhǎng)方體的高就是圓柱的高。
長(zhǎng)方體的體積=底面積高,所以圓柱的體積=底面積高,即V=Sh。
2、復(fù)習(xí)長(zhǎng)方體的體積公式后,讓學(xué)生獨(dú)立完成練習(xí)三第6題,并指名板演。
二、解決實(shí)際問(wèn)題
1、練習(xí)三第7題。
學(xué)生思考:要求糧囤所能裝的玉米的重量,需先知道什么?然后獨(dú)立完成。
2、練習(xí)三第5題。
。1)指導(dǎo)學(xué)生變換公式:因?yàn)閂=Sh,所以h=VS。也可以列方程解答。
。2)學(xué)生選擇喜愛的方法解答這道題目。
3、練習(xí)三第8題。
。1)學(xué)生讀題后,指名說(shuō)說(shuō)對(duì)題意的理解:求減少的土方石就是求月亮門所占的空間,而月亮門所占的空間是一個(gè)底面直徑為2米,高為0.25米的圓柱。
。2)在充分理解題意后學(xué)生獨(dú)立完成,集體訂正。
4、練習(xí)三第9、10題
。1)學(xué)生獨(dú)立審題,完成9、10兩題。
(2)評(píng)講第9題:要怎樣才能判斷出800ml的果汁夠倒三杯嗎?必須先求出什么?怎么求?(需先求出圓柱形玻璃杯的容積,用公式V=Sh)
。3)指名說(shuō)說(shuō)解答第10題的思路:根據(jù)兩個(gè)圓柱的底面積相等這一條件,先求出其中一個(gè)圓柱的底面積。利用這個(gè)底面積再求出另一個(gè)圓柱的體積。
三、布置作業(yè)
完成一課三練的相關(guān)練習(xí)。
《圓柱的體積》教案11
教學(xué)內(nèi)容:
人教版小學(xué)數(shù)學(xué)六年級(jí)下冊(cè)《圓柱的體積》P25-26。
教學(xué)目標(biāo):
1.經(jīng)歷探究和推導(dǎo)圓柱的體積公式的過(guò)程。
2.知道并能記住圓柱的體積公式,并能運(yùn)用公式進(jìn)行計(jì)算。
3.在自主探究圓柱的體積公式的過(guò)程中,體驗(yàn)、感悟數(shù)學(xué)規(guī)律的來(lái)龍去脈,知道長(zhǎng)方體與圓柱體底面和高各部分間的對(duì)應(yīng)關(guān)系。發(fā)展學(xué)生的觀察能力和分析、綜合、歸納推理能力。
4.激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生體驗(yàn)成功的快樂。
5.培養(yǎng)學(xué)生的轉(zhuǎn)化思想,滲透辯證法和極限的思想。
教學(xué)重點(diǎn):掌握和運(yùn)用圓柱體積計(jì)算公式
教學(xué)難點(diǎn):圓柱體積公式的推導(dǎo)過(guò)程
教具學(xué)具準(zhǔn)備:教學(xué)課件、圓柱體。
教學(xué)過(guò)程:
一、復(fù)習(xí)導(dǎo)入
1.同學(xué)們想一想,我們已經(jīng)學(xué)習(xí)了哪些立體圖形的體積?怎樣計(jì)算長(zhǎng)方體和正方體的體積?長(zhǎng)方體的體積和正方體的體積的通用公式是什么呢?用字母怎樣表示?
2.回憶一下圓面積的計(jì)算公式是如何推導(dǎo)出來(lái)的?
。ńY(jié)合課件演示)這是一個(gè)圓,我們把它平均分割,再拼合就變成了一個(gè)近似的平行四邊形。我們還可以往下繼續(xù)分割,無(wú)限分割就變成了一個(gè)長(zhǎng)方形。長(zhǎng)方形的長(zhǎng)相當(dāng)于圓周長(zhǎng)的一半,可以用πR表示,長(zhǎng)方形的寬就當(dāng)于圓的半徑,用R表示。所以用周長(zhǎng)的一半×半徑就可以求出圓的面積,所以推導(dǎo)出圓的面積公式是S=πR。
3.課件出示一個(gè)圓柱體
我們把圓轉(zhuǎn)化成了近似的.長(zhǎng)方形,同學(xué)們猜想一下圓柱可以轉(zhuǎn)化成什么圖形呢?
二、探索體驗(yàn)
1.學(xué)生猜想可以把圓柱轉(zhuǎn)化成什么圖形?
2.課件演示:把圓柱體轉(zhuǎn)化成長(zhǎng)方體
、偈窃鯓悠闯傻?
②觀察是不是標(biāo)準(zhǔn)的長(zhǎng)方體?
、垩菔32等份、64等份拼成的長(zhǎng)方體,比較一下發(fā)現(xiàn)了什么?引出課題并板書。
3.借鑒圓的面積公式的推導(dǎo)過(guò)程試著推導(dǎo)圓柱的體積公式。
課件出示要求:
、倨闯傻拈L(zhǎng)方體與原來(lái)的圓柱體比較什么變了?什么沒變?
、谕茖(dǎo)出圓柱體的體積公式。
學(xué)生結(jié)合老師提出的問(wèn)題自己試著推導(dǎo)。
4.交流展示
小組討論,交流匯報(bào)。
生匯報(bào)師結(jié)合講解板書。
圓柱體積=底面積×高
‖ ‖ ‖
長(zhǎng)方體體積=底面積×高
用字母公式怎樣表示呢? v、s、h各表示什么?
5.知道哪些條件可以求出圓柱的體積?
6.計(jì)算下面圓柱的體積。
、俚酌娣e24平方厘米,高12厘米
②底面半徑2厘米,高5厘米
、壑睆10厘米,高4厘米
④周長(zhǎng)18.84厘米,高12厘米
三、課堂檢測(cè)
1.判斷
①圓柱體、長(zhǎng)方體和正方體的體積都可以用底面積乘高的方法來(lái)計(jì)算。( )
、趫A柱的底面積擴(kuò)大3倍,體積也擴(kuò)大3倍。( )
、垡粋(gè)長(zhǎng)方體與一個(gè)圓柱體底面積相等,高也相等,那么它們的體積也相等。( )
、軋A柱體的底面直徑和高可以相等。( )
⑤兩個(gè)圓柱體的底面積相等,體積也一定相等。( )
⑥一個(gè)圓柱形的水桶能裝水15升,我們就說(shuō)水桶的體積是15立方分米。( )
2.聯(lián)系生活實(shí)際解決實(shí)際問(wèn)題。
下面的這個(gè)杯子能不能裝下這袋奶?
。ū拥臄(shù)據(jù)從里面量得到直徑8cm,高10cm;牛奶498ml)
學(xué)生獨(dú)立思考回答后自己做在練習(xí)本上。
3.一個(gè)壓路機(jī)的前輪是圓柱形,輪寬2米,半徑1米,它的體積是多少立方米?
4.生活中的數(shù)學(xué)
一個(gè)用塑料薄膜蓋的蔬菜大棚,長(zhǎng)15米,橫截面是一個(gè)半徑2米的半圓。
、俑采w在這個(gè)大棚上的塑料薄膜約有多少平方米?
、诖笈飪(nèi)的空間大約有多大?
獨(dú)立思考后小組討論,兩生板演。
四、全課總結(jié)
這節(jié)課你有什么收獲?
五、課后延伸
如果要測(cè)量圓柱形柱子的體積,測(cè)量哪些數(shù)據(jù)比較方便?試一試吧?
六、板書設(shè)計(jì)
圓柱體積= 底面積×高
長(zhǎng)方體體積=底面積×高
《圓柱的體積》教案12
一、教學(xué)目標(biāo)
。ㄒ唬┲R(shí)與技能
用已學(xué)的圓柱體積知識(shí)解決生活中的實(shí)際問(wèn)題,并滲透轉(zhuǎn)化思想。
。ǘ┻^(guò)程與方法
經(jīng)歷探究不規(guī)則物體體積的轉(zhuǎn)化、測(cè)量和計(jì)算過(guò)程,讓學(xué)生在動(dòng)手操作中初步建立“轉(zhuǎn)化”的數(shù)學(xué)思想,體驗(yàn)“等積變形”的轉(zhuǎn)化過(guò)程。
(三)情感態(tài)度和價(jià)值觀
通過(guò)實(shí)踐,讓學(xué)生在合作中建立協(xié)作精神,并增強(qiáng)學(xué)生“用數(shù)學(xué)”的意識(shí)。
二、教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):利用所學(xué)知識(shí)合理靈活地分析、解決不規(guī)則物體的體積的計(jì)算方法。
教學(xué)難點(diǎn):轉(zhuǎn)化前后的溝通。
三、教學(xué)準(zhǔn)備
每組一個(gè)礦泉水瓶(課前統(tǒng)一搜集農(nóng)夫山泉礦泉水瓶,裝有適量清水,水高度分別為6、7、8、9厘米),直尺。
四、教學(xué)過(guò)程
。ㄒ唬⿵(fù)習(xí)舊知,做好鋪墊
1、板書:圓柱的體積。
問(wèn):圓柱的體積怎么計(jì)算?體積和容積有什么區(qū)別?
2、揭題:這節(jié)課,我們要根據(jù)這些體積和容積的知識(shí)來(lái)解決生活中的實(shí)際問(wèn)題。(完整板書:用圓柱的體積解決問(wèn)題)
【設(shè)計(jì)意圖】通過(guò)復(fù)習(xí)圓柱的體積計(jì)算方法以及體積和容積之間的聯(lián)系和區(qū)別,為學(xué)習(xí)新知做好知識(shí)上的`準(zhǔn)備。
(二)探索實(shí)踐,體驗(yàn)轉(zhuǎn)化過(guò)程
1、創(chuàng)設(shè)情境,提出問(wèn)題。
每個(gè)小組桌子上有一個(gè)沒有裝滿水的礦泉水瓶。
教師:原本這是一瓶裝滿水的礦泉水,已經(jīng)喝了一部分,你能根據(jù)它來(lái)提一個(gè)數(shù)學(xué)問(wèn)題嗎?(隨機(jī)板書)
預(yù)設(shè)1:瓶子還有多少水?(剩下多少水?)
預(yù)設(shè)2:喝了多少水?(也就是瓶子的空氣部分。)
預(yù)設(shè)3:這個(gè)瓶子一共能裝多少水?(也就是這個(gè)瓶子的容積是多少?)
2、你覺得你能輕松解決什么問(wèn)題?
。1)預(yù)設(shè)1:瓶子有多少水?(怎么解決?)
學(xué)生:瓶子里剩下的水呈圓柱狀,只要量出這個(gè)圓柱的底面直徑和高就能算出它的體積。
教師:需要用到什么工具?(直尺)你想利用直尺得到哪些數(shù)據(jù)?(底面直徑、水的高度)
小結(jié):知道了底面直徑和水的高度,要解決這個(gè)問(wèn)題的確輕而易舉。請(qǐng)你準(zhǔn)備好直尺,或許等會(huì)兒有用哦!
。2)預(yù)設(shè)2:喝了多少水?
學(xué)生:喝掉部分的形狀是不規(guī)則,沒有辦法計(jì)算。
教師:當(dāng)物體形狀不規(guī)則時(shí),我們想求出它的體積可以怎么辦?
教師相機(jī)引導(dǎo):能否將空氣部分變成一個(gè)規(guī)則的立體圖形呢?
學(xué)生能說(shuō)出方法更好,不能說(shuō)出則引導(dǎo):我們不妨把瓶子倒過(guò)來(lái)看看,你發(fā)現(xiàn)了什么?
引導(dǎo)學(xué)生發(fā)現(xiàn):在瓶子倒置前后,水的體積不變,空氣的體積不變,因此,喝了多少水=倒置后空氣部分的體積,倒置后空氣部分是一個(gè)圓柱,要求出它的體積需要哪些數(shù)據(jù)?(倒置后空氣的高度)
小結(jié):這個(gè)方法不錯(cuò),我們利用水的流動(dòng)性成功地將不規(guī)則的空氣部分轉(zhuǎn)化成了一個(gè)圓柱體,得到所需數(shù)據(jù)后能求出它的體積。這樣一來(lái),第3個(gè)問(wèn)題還難得到你嗎?
《圓柱的體積》教案13
教學(xué)內(nèi)容:
北師大版教學(xué)六年級(jí)《圓柱的體積》
教學(xué)目標(biāo):
1、結(jié)合具體的情境和實(shí)踐活動(dòng),理解圓柱體體積的含義。
2、經(jīng)歷探索圓柱體積計(jì)算方法的過(guò)程,掌握?qǐng)A柱體積的計(jì)算方法,能正確計(jì)算圓柱的體積,并會(huì)解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
3、培養(yǎng)學(xué)生初步的空間觀念和思維能力;
教學(xué)重點(diǎn):
理解和掌握?qǐng)A柱的體積計(jì)算公式,會(huì)求圓柱的體積。
教學(xué)難點(diǎn):
理解圓柱體積計(jì)算公式的推導(dǎo)過(guò)程。
教具準(zhǔn)備:
圓柱體積演示教具。
教學(xué)過(guò)程:
一、舊知鋪墊
1、談話引入
最近我們認(rèn)識(shí)了圓柱和圓錐,還學(xué)會(huì)了計(jì)算圓柱的表面積。現(xiàn)在請(qǐng)看老師的這個(gè)圓柱形杯子和這個(gè)圓柱比較,誰(shuí)大?這里所說(shuō)的大小實(shí)際是指它們的什么?(生答)
2、提出問(wèn)題:什么叫體積?我們學(xué)過(guò)那些圖形的體積?怎么算的?(生答師隨之板書)
這節(jié)課我們就來(lái)學(xué)習(xí)圓柱的體積。
二、自主探究,解決問(wèn)題
。ㄒ唬┱J(rèn)識(shí)圓柱體積的意義。
圓柱的體積到底是指什么?誰(shuí)能舉例說(shuō)呢?
。ǘ﹫A柱體積的計(jì)算公式的推導(dǎo)。
1、我們學(xué)過(guò)長(zhǎng)方體和正方體體積的'計(jì)算,圓柱體的體積跟什么有關(guān)呢?你會(huì)有怎樣的猜想?(小組內(nèi)說(shuō)說(shuō))
2、回憶圓面積的推導(dǎo)過(guò)程。
3、教具演示。
(1)取圓柱體模型。
。2)將圓柱體切成兩半。
(3)分別將兩半均分成若干小塊。
。4)動(dòng)手拼成一個(gè)近似的長(zhǎng)方體。
。ㄈw納公式。
(板書:圓柱的體積=底面積高)
用字母表示:(板書:V=Sh)
三、鞏固新知
1、這個(gè)杯子的底面半徑為6厘米,高為16厘米,它的體積是多少?
審題。提問(wèn):你能獨(dú)立完成這題嗎?指名一同學(xué)板演,其余學(xué)生做在練習(xí)本上。
現(xiàn)在這個(gè)杯子裝了2/3的水,裝了多少水呢?
2、完成試一試
3、跳一跳:統(tǒng)一直柱體的體積的計(jì)算方法。
四、課堂總結(jié)、拓展延伸
這節(jié)課學(xué)習(xí)了什么內(nèi)容?圓柱的體積怎樣計(jì)算,這個(gè)公式是怎樣得到的?這個(gè)公式適合哪些圖形?他們有什么共同特點(diǎn)?
五、布置作業(yè)
練一練1-5題。
《圓柱的體積》教案14
設(shè)計(jì)說(shuō)明
本節(jié)課是在學(xué)生已經(jīng)了解了圓柱的特征,掌握了長(zhǎng)方體體積的計(jì)算方法以及圓的面積計(jì)算公式的推導(dǎo)過(guò)程的基礎(chǔ)上進(jìn)行教學(xué)的。根據(jù)學(xué)生的認(rèn)知水平和已有經(jīng)驗(yàn),本節(jié)課在教學(xué)設(shè)計(jì)上體現(xiàn)了以下幾個(gè)特點(diǎn):
1.創(chuàng)設(shè)問(wèn)題情境,點(diǎn)燃探索激情。
基于“數(shù)學(xué)來(lái)源于生活,又應(yīng)用于生活”這一理念,教學(xué)過(guò)程中通過(guò)呈現(xiàn)身邊圓柱的體積問(wèn)題,使學(xué)生感受到數(shù)學(xué)與現(xiàn)實(shí)生活的密切聯(lián)系,認(rèn)識(shí)到學(xué)習(xí)圓柱的體積計(jì)算公式的必要性,從而激發(fā)了學(xué)生的探究興趣,使學(xué)習(xí)成為學(xué)生自覺的需求。
2.注重直觀教學(xué),引導(dǎo)合作遷移。
數(shù)學(xué)理論的表述往往是抽象的,它影響了學(xué)生數(shù)學(xué)思維的發(fā)展,而引導(dǎo)學(xué)生從觀察和分析有關(guān)具體實(shí)物入手,就比較容易理解概念的本質(zhì)特征。所以,教學(xué)中不但設(shè)計(jì)了通過(guò)排水法理解圓柱體積的實(shí)驗(yàn),而且還借助教具演示、課件演示等直觀教學(xué)手段幫助學(xué)生推導(dǎo)出圓柱體積的計(jì)算公式,使學(xué)生從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),體會(huì)到知識(shí)的由來(lái)。
3.滲透數(shù)學(xué)思想,發(fā)展數(shù)學(xué)思考。
在本節(jié)課的教學(xué)中,充分利用教材內(nèi)容,對(duì)學(xué)生有效地進(jìn)行轉(zhuǎn)化思想的滲透,使學(xué)生在體會(huì)運(yùn)用轉(zhuǎn)化思想可以化難為易、化復(fù)雜為簡(jiǎn)單、化生疏為熟悉等作用的`同時(shí),參與數(shù)學(xué)活動(dòng),提高解決問(wèn)題的能力。
課前準(zhǔn)備
教師準(zhǔn)備 PPT課件
學(xué)生準(zhǔn)備 圓柱形實(shí)物
教學(xué)過(guò)程
⊙情境引入
1.操作感知體積的意義。
通過(guò)出示一個(gè)裝了半杯水的燒杯,引導(dǎo)學(xué)生猜測(cè):在燒杯中投入一個(gè)圓柱形物體,會(huì)有什么現(xiàn)象發(fā)生?
(水面升高或者水會(huì)溢出來(lái))
師:為什么會(huì)有這種現(xiàn)象發(fā)生?
預(yù)設(shè)
生1:圓柱占有一定的空間。
生2:圓柱占據(jù)了原來(lái)水占有的空間。
生3:圓柱是立體圖形,它具有一定的體積。
2.討論、概括圓柱的體積的意義。
師:你認(rèn)為什么是圓柱的體積?
(圓柱所占空間的大小,叫做圓柱的體積)
3.引入:這節(jié)課我們就一起來(lái)探究圓柱體積的計(jì)算方法。
(板書課題:圓柱的體積)
設(shè)計(jì)意圖:通過(guò)操作、演示,使學(xué)生在猜測(cè)、觀察、討論中加深對(duì)抽象的“體積”概念的理解,自主概括出圓柱的體積的意義,為下面的探究活動(dòng)做好充分的準(zhǔn)備。
⊙自主探究
1.探究影響圓柱的體積大小的相關(guān)因素。
(1)課件出示兩個(gè)大小不等的圓柱。
師:哪個(gè)圓柱的體積比較大?為什么?
預(yù)設(shè)
生1:左面的圓柱的體積比較大,因?yàn)樗咭恍?/p>
生2:右面的圓柱的體積比較大,因?yàn)樗忠恍?/p>
生3:不好比較。因?yàn)樽竺娴膱A柱雖然高,但比較細(xì);右面的圓柱雖然粗,但比較矮。
(2)討論、概括。
師:圓柱的體積的大小與哪些因素有關(guān)?
(圓柱的體積的大小與圓柱的高及圓柱的底面積的大小有關(guān))
《圓柱的體積》教案15
教學(xué)目標(biāo)
1.使學(xué)生理解和掌握?qǐng)A柱的體積計(jì)算公式,能運(yùn)用公式計(jì)算圓柱的體積、容積,解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
2.滲透極限思想,發(fā)展學(xué)生的空間觀念。
3、培養(yǎng)學(xué)生仔細(xì)計(jì)算的良好習(xí)慣。
重難點(diǎn)
1、圓柱體體積的計(jì)算
2、圓柱體體積公式的推導(dǎo)
教學(xué)過(guò)程
一、復(fù)習(xí)導(dǎo)入
1.解答下面各題
。1)圓的半徑是2厘米。圓的面積是多少平方厘米?
。2)一個(gè)長(zhǎng)方體,底面積是20平方米,高是2米,體積是多少?
2.導(dǎo)入
我們以前學(xué)過(guò)了長(zhǎng)方體、立方體的體積的計(jì)算方法,都可以用公式V=SH進(jìn)行計(jì)算,圓柱體的體積又該怎樣計(jì)算呢?這節(jié)課我們一起來(lái)研究圓柱體體積的'計(jì)算方法。(揭示課題)
二、探索新知
1.公式推導(dǎo)
。1)自學(xué)課本,初步感知圓柱是怎樣轉(zhuǎn)化成長(zhǎng)方體的,讓學(xué)生去發(fā)現(xiàn)兩柱體之間的聯(lián)系。
。2)操作研討:演示操作,討論:拼成的長(zhǎng)方體跟圓柱體有什么異同點(diǎn)?
異:長(zhǎng)方體變成圓柱體。同:體積、底面積、高都相同。
。3)比較歸納
在自學(xué)、操作、觀察、討論的基礎(chǔ)上得出:
圓柱體體積=圓柱底面積圓柱的高
V=SH
2.公式應(yīng)用
。1)例1.讀題,學(xué)生獨(dú)立解答,板演、反饋,說(shuō)說(shuō)列式依據(jù)與應(yīng)注意的問(wèn)題。(單位)
類似題練習(xí):
書本試一試和練一練
請(qǐng)同學(xué)板演計(jì)算的過(guò)程,并說(shuō)明列式的依據(jù).同學(xué)之間評(píng).
(3).深入練習(xí),書本第5題.
(4)實(shí)際應(yīng)用:
測(cè)量生活中常見圓柱物體:茶葉罐、搪瓷杯,學(xué)生自由選擇。量底面直徑和高,并計(jì)算它的體積.
三、課堂總結(jié)
回顧學(xué)習(xí)全過(guò)程,知道求圓柱體積所需要的條件。質(zhì)疑問(wèn)難。
四、布置作業(yè)
作業(yè)本一面。
【《圓柱的體積》教案】相關(guān)文章:
圓柱的體積教案03-19
《圓柱的體積》教案09-01
《圓柱的體積》教案15篇01-02
《圓柱的體積》教案(15篇)01-02
實(shí)用的《圓柱的體積》教案3篇06-07
實(shí)用的《圓柱的體積》教案4篇06-28
《圓柱的體積》教案(匯編15篇)04-01
《圓柱的體積》教案通用15篇01-27