- 相關(guān)推薦
多項(xiàng)式除以單項(xiàng)式教案
作為一位優(yōu)秀的人民教師,通常需要用到教案來輔助教學(xué),教案是教學(xué)藍(lán)圖,可以有效提高教學(xué)效率。那要怎么寫好教案呢?下面是小編收集整理的多項(xiàng)式除以單項(xiàng)式教案,希望能夠幫助到大家。
多項(xiàng)式除以單項(xiàng)式教案1
多項(xiàng)式除以單項(xiàng)式
教學(xué)建議
知識(shí)結(jié)構(gòu)
重點(diǎn)、難點(diǎn)分析
重點(diǎn)是多項(xiàng)式除以單項(xiàng)式的法則及其應(yīng)用。多項(xiàng)式除以單項(xiàng)式,其基本方法與步驟是化歸為單項(xiàng)式除以單項(xiàng)式,結(jié)果仍是多項(xiàng)式,其項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)相同。因此多項(xiàng)式除以單項(xiàng)式的運(yùn)算關(guān)鍵是將它轉(zhuǎn)化為單項(xiàng)式除法的運(yùn)算,再準(zhǔn)確應(yīng)用相關(guān)的運(yùn)算法則。
難點(diǎn)是理解法則導(dǎo)出的根據(jù)。根據(jù)除法是乘法的逆運(yùn)算可知,多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則的實(shí)質(zhì)是把多項(xiàng)式除以單項(xiàng)式的的運(yùn)算轉(zhuǎn)化為單項(xiàng)式的除法運(yùn)算。由于,故多項(xiàng)式除以單項(xiàng)式的法則也可以看做是乘法對(duì)加法的分配律的應(yīng)用。
教法建議
(1)多項(xiàng)式除以單項(xiàng)式運(yùn)算的實(shí)質(zhì)是把多項(xiàng)式除以單項(xiàng)式的運(yùn)算轉(zhuǎn)化為單項(xiàng)式的除法運(yùn)算,因此建議在學(xué)習(xí)本課知識(shí)之前對(duì)單項(xiàng)式的除法運(yùn)算進(jìn)行復(fù)習(xí)鞏固。
。2)多項(xiàng)式除以單項(xiàng)式所得商的.項(xiàng)數(shù)與這個(gè)多項(xiàng)式的項(xiàng)數(shù)相同,不要漏項(xiàng)。
。3)要熟練地進(jìn)行多項(xiàng)式除以單項(xiàng)式的運(yùn)算,必須掌握它的基本運(yùn)算,冪的運(yùn)算性質(zhì)是整式乘除法的基礎(chǔ),只要抓住這關(guān)鍵的一步,才能準(zhǔn)確地進(jìn)行多項(xiàng)式除以單項(xiàng)式的運(yùn)算。
。4)符號(hào)仍是運(yùn)算中的重要問題,用多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式時(shí),要注意每一項(xiàng)的符號(hào)和單項(xiàng)式的符號(hào)。
教學(xué)設(shè)計(jì)示例
教學(xué)目標(biāo):
1.理解和掌握多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則。
2.運(yùn)用多項(xiàng)式除以單項(xiàng)式的法則,熟練、準(zhǔn)確地進(jìn)行計(jì)算.
3.通過總結(jié)法則,培養(yǎng)學(xué)生的抽象概括能力.訓(xùn)練學(xué)生的綜合解題能力和計(jì)算能力.
4.培養(yǎng)學(xué)生耐心細(xì)致、嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)思維品質(zhì).
重點(diǎn)、難點(diǎn):
1.多項(xiàng)式除以單項(xiàng)式的法則及其應(yīng)用.
2.理解法則導(dǎo)出的根據(jù)。
課時(shí)安排:
一課時(shí).
教具學(xué)具:
投影儀、膠片.
教學(xué)過程:
1.復(fù)習(xí)導(dǎo)入
(l)用式子表示乘法分配律.
。2)單項(xiàng)式除以單項(xiàng)式法則是什么?
(3)計(jì)算:
、
、
、
。4)填空:
規(guī)律:多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以這個(gè)單項(xiàng)式,再把所得的商相加.
2.講授新課
例1計(jì)算:
解:(1)原式
。2)原式
注意:(l)多項(xiàng)式除以單項(xiàng)式,商式與被除式的項(xiàng)數(shù)相同,不可丟項(xiàng),如(l)中容易丟掉最后一項(xiàng).
(2)要求學(xué)生說出式子每步變形的依據(jù).
。3)讓學(xué)生養(yǎng)成檢驗(yàn)的習(xí)慣,利用乘除逆運(yùn)算,檢驗(yàn)除的對(duì)不對(duì).
例2化簡(jiǎn):
解:原式
說明:注意弄清題中運(yùn)算順序,正確運(yùn)用有關(guān)法則、公式。
練習(xí)(1)P150 1,2,。
。2)錯(cuò)例辯析:
有兩個(gè)錯(cuò)誤:第一,丟項(xiàng),被除式有三項(xiàng),商式只有二項(xiàng),丟了最后一項(xiàng)1;第二項(xiàng)是符號(hào)上錯(cuò)誤,商式第一項(xiàng)的符號(hào)為“-”,正確答案為。
3.小結(jié)
1.多項(xiàng)式除以單項(xiàng)式的法則是什么?
2.運(yùn)用該法則應(yīng)注意什么?
正確地把多項(xiàng)式除以單項(xiàng)式問題轉(zhuǎn)化為單項(xiàng)式除以單項(xiàng)式問題。計(jì)算不可丟項(xiàng),分清“約掉”與“消掉”的區(qū)別:“約掉”對(duì)乘除法則言,不減項(xiàng);“消掉”對(duì)加減法而言,減項(xiàng)。
4.作業(yè)
P152 A組1,2。
B組1,2。
多項(xiàng)式除以單項(xiàng)式教案2
教學(xué)目的:
使學(xué)生熟練地掌握多項(xiàng)式除以單項(xiàng)式的法則,并能準(zhǔn)確地進(jìn)行運(yùn)算.
教學(xué)重點(diǎn):
多項(xiàng)式除以單項(xiàng)式的法則是本節(jié)的重點(diǎn).
教學(xué)過程:
一、復(fù)習(xí)提問
1.計(jì)算并回答問題:
(1)4a3b4c÷2a2b2c;(2)(-a2b2c)÷3ab2.
(3)以上的計(jì)算是什么運(yùn)算?能否敘述這種運(yùn)算的法則?
2.計(jì)算并回答問題:
(1)3x(x2-x+1);(2)-4a·(a2-a+2).
(3)以上的計(jì)算是什么運(yùn)算?能否敘述這種運(yùn)算的法則?
3.請(qǐng)同學(xué)利用2、3、6其間的數(shù)量關(guān)系,寫出僅含以上三個(gè)數(shù)的等式.
說明:希望學(xué)生能寫出
2×3=6,(2的3倍是6)
3×2=6,(3的2倍是6)
6÷2=3,(6是2的3倍)
6÷3=2.(6是3的2倍)
然后向大家指明,以上四個(gè)式子所表示的三個(gè)數(shù)間的關(guān)系是相同的,只是表示的角度不同,讓學(xué)生理解被除式、除式與商式間的關(guān)系.
二、新課
1.新課引入.
對(duì)照整式乘法的學(xué)習(xí)順序,下面我們應(yīng)該研究整式除法的什么內(nèi)容?在學(xué)生思考的基礎(chǔ)上,點(diǎn)明本節(jié)的主題,并板書標(biāo)題.
2.法則的推導(dǎo).
引例:(8x3-12x2+4x)÷4x=(?)
分析:
利用除法是乘法的逆運(yùn)算的規(guī)定,我們可將上式化為
4x · ( ? ) =8x3-12x2+4x.
原乘法運(yùn)算: 乘式 乘式 積
(現(xiàn)除法運(yùn)算):(除式) (待求的商式) (被除式)
然后充分利用單項(xiàng)式乘多項(xiàng)式的運(yùn)算法則,引導(dǎo)學(xué)生對(duì)“待求的商式”做大膽的猜測(cè):大體上可以從結(jié)構(gòu)(應(yīng)是單項(xiàng)式還是多項(xiàng)式)、項(xiàng)數(shù)、各項(xiàng)的符號(hào)能否確定、各具體的項(xiàng)能否“猜”出幾方面去思考.根據(jù)課上學(xué)生領(lǐng)悟的情況,考慮是否由學(xué)生完成引例的解答.
解:(8x3-12x2+4x)÷4x
=8x3÷4x-12x2÷4x+4x÷4x
=2x2-3x+4x.
思考題:(8x3-12x2+4x)÷(-4x)=?
以上的思想,可以概括為“法則”:
(am+mb+cm)÷m=am÷m+bc÷m+cm÷m
法則的語(yǔ)言表達(dá)是:
多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每
一項(xiàng)除以這個(gè)單項(xiàng)式,再把所得的商相加.
3.鞏固法則.
例1 計(jì)算:
(1)(28a3-14a2+7a)÷7a;
(2)(36x4y3-24x3y2+3x2y2)÷(-6x2y).
小結(jié):
(1)當(dāng)除式的系數(shù)為負(fù)數(shù)時(shí),商式的各項(xiàng)符號(hào)與被除多項(xiàng)式各項(xiàng)的符號(hào)相反,要特別注意;
(2)多項(xiàng)式除以單項(xiàng)式是利用相應(yīng)法則,轉(zhuǎn)化為單項(xiàng)式除以單項(xiàng)式而求得結(jié)果的`.
(3)在學(xué)習(xí)、鞏固新的法則階段,應(yīng)盡量要求學(xué)生寫出表現(xiàn)法則的那一步.
本節(jié)是學(xué)習(xí)多項(xiàng)式與單項(xiàng)式的除法,因此對(duì)于單項(xiàng)式除以單項(xiàng)式的計(jì)算則可以從簡(jiǎn).
練習(xí)
1.計(jì)算:
(1)(6xy+5x)÷x;(2)(15x2y-10xy2)÷5xy;
(3)(8a2b-4ab2)÷4ab;(4)(4c2d+c3d3)÷(-2c2d).
例2 化簡(jiǎn)[(2x+y)2-y(y+4x)-8x]÷2x.
解:[(2x+y)2-y(y+4x)-8x]÷2x
=(4x2+4xy+y2-y2-4xy-8x)÷2x
=(4x2-8x)÷2x=2x-4.
三、小結(jié)
1.多項(xiàng)式除以單項(xiàng)式的法則寫成下面的形式是否正確?
(a+b+c)÷m=a÷m+b÷m+c÷m.
答:上面的等式也反映出多項(xiàng)式除以單項(xiàng)式的基本方法(兩個(gè)要點(diǎn)):
(1)多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式;
(2)所得的商相加.
所以它也可以是多項(xiàng)式除以單項(xiàng)式法則的數(shù)字表示形成.
學(xué)習(xí)了負(fù)指數(shù)之后,我們可以理解a、b、c是否能被m整除不是關(guān)鍵問題.
2.多項(xiàng)式除以單項(xiàng)式的商在項(xiàng)數(shù)與各項(xiàng)的符號(hào)與什么式子有聯(lián)系?有何聯(lián)系?
教后記:
【多項(xiàng)式除以單項(xiàng)式教案】相關(guān)文章:
單項(xiàng)式與多項(xiàng)式相乘教案08-26
單項(xiàng)式與多項(xiàng)式相乘教案2篇08-30
《單項(xiàng)式乘以多項(xiàng)式》教學(xué)反思(精選5篇)05-19
單項(xiàng)式教學(xué)反思04-10
《一個(gè)數(shù)除以小數(shù)》的教案08-31