成年女人色视频在线观看网站_一本久精品无码免费_亚洲成a人片在线观看无码专区_开心婷婷五月综合基地六月

初中數(shù)學(xué)教學(xué)設(shè)計

時間:2023-02-01 18:54:29 教學(xué)資源 投訴 投稿

初中數(shù)學(xué)教學(xué)設(shè)計

  在教學(xué)工作者實際的教學(xué)活動中,常常要根據(jù)教學(xué)需要編寫教學(xué)設(shè)計,教學(xué)設(shè)計一般包括教學(xué)目標(biāo)、教學(xué)重難點、教學(xué)方法、教學(xué)步驟與時間分配等環(huán)節(jié)。怎樣寫教學(xué)設(shè)計才更能起到其作用呢?以下是小編整理的初中數(shù)學(xué)教學(xué)設(shè)計,希望對大家有所幫助。

初中數(shù)學(xué)教學(xué)設(shè)計

初中數(shù)學(xué)教學(xué)設(shè)計1

  [教學(xué)目標(biāo)]

  1.會說出怎樣的兩個圖形是全等形,并會用符號語言表示兩個三角形全等。

  2.知道全等三角形的有關(guān)概念,會在全等三角形中正確地找出對應(yīng)頂點、對應(yīng)邊、對應(yīng)角。

  3.會說出全等三角形的對應(yīng)邊、對應(yīng)角相等的性質(zhì)。

  此外,通過把兩個重合的三角形變換其中一個的位置,使它們呈現(xiàn)各種不同位置的活動,讓學(xué)生從中了解并體會圖形變換的思想,逐步培養(yǎng)學(xué)生

  動態(tài)的研究幾何圖形的意思。

  [引導(dǎo)性材料]

  我們身邊經(jīng)常看到"一模一樣"的圖形,比如同一版面的記念郵票,同一版面的人民幣、用兩張紙疊在一起剪出的兩張窗花等,請大家舉出這類圖形的例子。

  說明:讓學(xué)生在舉出實際例子以及對所舉例子的辨析中獲得對全等圖形盡可能多的精確的感知。

  [教學(xué)設(shè)計]

  問題1:幾何中,我們把上述所例舉的"一模一樣"的圖形叫做"全等形",以下是描述全等形的三種不同的說法,你認(rèn)為哪種說法是恰當(dāng)?shù)?(l)形狀相同的兩個圖形叫全等形。

  (2)大小相等的兩個圖形叫全等形。

  (3)能夠完全重合的兩個圖形叫全等形。

  (學(xué)生閱讀課本第21頁,全等三角形的有關(guān)概念、全等三解形的表示方法。)操作和觀察(學(xué)生用兩塊透明塑料片疊合在一起,任意剪兩個全等的三角形,教師制作兩個全等三角形的復(fù)合投影片演示。)(1)將重合的兩塊全等三角形塑料片中的一個沿著一邊所在的直線移動,觀察移動過程中這兩個三角形有哪幾種不同位置?畫出這兩個全等三角形不同位置的組合圖形。

  (2)圖是上述移動過程中的兩個全等三角形組合的圖形,說出它們的對應(yīng)頂點、對應(yīng)邊、對應(yīng)角。

  (3)將重合的兩塊三角形塑料片,以一邊所在的直線為軸,把其中一個三角形翻折180,請你畫出翻折后的兩個全等三角形組合的圖形。

  (4)將兩塊全等的三角形塑料片拼合成如圖中的圖形,并指出它們的對應(yīng)頂點、對應(yīng)邊、對應(yīng)角。

  [小結(jié)]

  1.識別全等三角形的對應(yīng)邊、對應(yīng)角的關(guān)鍵是正確識別它們的對應(yīng)頂點。

  2.用全等三變換的方法觀察圖形,有助于正確、迅速的從復(fù)雜圖形中識別出全等三角形。

  [作業(yè)]課本組第2、3、4題。

  初中數(shù)學(xué)實踐課教案設(shè)計三一、教材分析本節(jié)課是人民教育出版社義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書(六三學(xué)制)七年級下冊第七章第三節(jié)多邊形內(nèi)角和。

  二、教學(xué)目標(biāo)1、知識目標(biāo):了解多邊形內(nèi)角和公式。

  2、數(shù)學(xué)思考:通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的運用,同時讓學(xué)生體會從特殊到一般的認(rèn)識問題的方法。

  3、解決問題:通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。

  4、情感態(tài)度目標(biāo):通過猜想、推理活動感受數(shù)學(xué)活動充滿著探索以及

  數(shù)學(xué)結(jié)論的確定性,提高學(xué)生學(xué)習(xí)熱情。

  三、教學(xué)重、難點重點:探索多邊形內(nèi)角和。

  難點:探索多邊形內(nèi)角和時,如何把多邊形轉(zhuǎn)化成三角形。

  四、教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、討論法五、教具、學(xué)具教具:多媒體課件學(xué)具:三角板、量角器六、教學(xué)媒體:大屏幕、實物投影七、教學(xué)過程:

  (一)創(chuàng)設(shè)情境,設(shè)疑激思師:大家都知道三角形的內(nèi)角和是180o,那么四邊形的內(nèi)角和,你知道嗎?活動一:探究四邊形內(nèi)角和。

  在獨立探索的基礎(chǔ)上,學(xué)生分組交流與研討,并匯總解決問題的方法。

  方法一:用量角器量出四個角的度數(shù),然后把四個角加起來,發(fā)現(xiàn)內(nèi)角和是360o。

  方法二:把兩個三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個三角形內(nèi)角和相加是360o。

  接下來,教師在方法二的基礎(chǔ)上引導(dǎo)學(xué)生利用作輔助線的方法,連結(jié)四邊形的對角線,把一個四邊形轉(zhuǎn)化成兩個三角形。

  師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?

  活動二:探究五邊形、六邊形、十邊形的內(nèi)角和。

  學(xué)生先獨立思考每個問題再分組討論。

  關(guān)注:(1)學(xué)生能否類比四邊形的方式解決問題得出正確的結(jié)論。

  (2)學(xué)生能否采用不同的方法。

  學(xué)生分組討論后進(jìn)行交流(五邊形的內(nèi)角和)方法1:把五邊形分成三個三角形,3個180o的和是540o。

  方法2:從五邊形內(nèi)部一點出發(fā),把五邊形分成五個三角形,然后用5個180o的和減去一個周角360o。結(jié)果得540o。

  方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180o的`和減去一個平角180o,結(jié)果得540o。

  方法4:把五邊形分成一個三角形和一個四邊形,然后用180o加上360o,結(jié)果得540o。

  師:你真聰明!做到了學(xué)以致用。

  交流后,學(xué)生運用幾何畫板演示并驗證得到的方法。

  得到五邊形的內(nèi)角和之后,同學(xué)們又認(rèn)真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720o,十邊形內(nèi)角和是1440o。

  (二)引申思考,培養(yǎng)創(chuàng)新師:通過前面的討論,你能知道多邊形內(nèi)角和嗎?活動三:探究任意多邊形的內(nèi)角和公式。

  思考:(1)多邊形內(nèi)角和與三角形內(nèi)角和的關(guān)系?(2)多邊形的邊數(shù)與內(nèi)角和的關(guān)系?

  (3)從多邊形一個頂點引的對角線分三角形的個數(shù)與多邊形邊數(shù)的關(guān)系?學(xué)生結(jié)合思考題進(jìn)行討論,并把討論后的結(jié)果進(jìn)行交流。

  發(fā)現(xiàn)1:四邊形內(nèi)角和是2個180o的和,五邊形內(nèi)角和是3個180o的和,六邊形內(nèi)角和是4個180o的和,十邊形內(nèi)角和是8個180o的和。

  發(fā)現(xiàn)2:多邊形的邊數(shù)增加1,內(nèi)角和增加180o。

  發(fā)現(xiàn)3:一個n邊形從一個頂點引出的對角線分三角形的個數(shù)與邊數(shù)n存在(n-2)的關(guān)系。

  得出結(jié)論:多邊形內(nèi)角和公式:(n-2)180。

  (三)實際應(yīng)用,優(yōu)勢互補

  1、口答:

  (1)七邊形內(nèi)角和xx

  (2)九邊形內(nèi)角和xx

  (3)十邊形內(nèi)角和xx

  2、搶答:

  (1)一個多邊形的內(nèi)角和等于1260o,它是幾邊形?

  (2)一個多邊形的內(nèi)角和是1440o,且每個內(nèi)角都相等,則每個內(nèi)角的度數(shù)是xx。

  3、討論回答:一個多邊形的內(nèi)角和比四邊形的內(nèi)角和多540o,并且這個多邊形的各個內(nèi)角都相等,這個多邊形每個內(nèi)角等于多少度?(四)概括存儲學(xué)生自己歸納總結(jié):

  1、多邊形內(nèi)角和公式

  2、運用轉(zhuǎn)化思想解決數(shù)學(xué)問題

  3、用數(shù)形結(jié)合的思想解決問題(五)作業(yè):練習(xí)冊第93頁1、2、3

  八、教學(xué)反思:

  1、教的轉(zhuǎn)變本節(jié)課教師的角色從知識的傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者,在引導(dǎo)學(xué)生畫圖、測量發(fā)現(xiàn)結(jié)論后,利用幾何畫板直觀地展示,激發(fā)學(xué)生自覺探究數(shù)學(xué)問題,體驗發(fā)現(xiàn)的樂趣。

  2、學(xué)的轉(zhuǎn)變學(xué)生的角色從學(xué)會轉(zhuǎn)變?yōu)闀䦟W(xué)。本節(jié)課學(xué)生不是停留在學(xué)會課本知識層面,而是站在研究者的角度深入其境。

  3、課堂氛圍的轉(zhuǎn)變整節(jié)課以"流暢、開放、合作、隱導(dǎo)"為基本特征,教師對學(xué)生的思維減少干預(yù),教學(xué)過程呈現(xiàn)一種比較流暢的特征。整節(jié)課學(xué)生與學(xué)生,學(xué)生與教師之間以"對話"、"討論"為出發(fā)點,以互助合作為手段,以解決問題為目的,讓學(xué)生在一個比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。

初中數(shù)學(xué)教學(xué)設(shè)計2

  教材分析

  1.這節(jié)的重點為:去括號。因此,本節(jié)所學(xué)的知識實際上就是對前面所學(xué)知識的一個鞏固和深化,要突破這個重點,只有在掌握方法的前提下,通過一定的練習(xí)來掌握。

  2.去括號是整式加減的一個重要內(nèi)容,也是下一章一元一次方程的直接基礎(chǔ),也是今后繼續(xù)學(xué)習(xí)整式的乘除、因式分解、方程,以及分式、函數(shù)等的重要基礎(chǔ)。

  學(xué)情分析

  1.去括號法則是教材上的教學(xué)內(nèi)容,學(xué)生學(xué)習(xí)時會經(jīng)常出現(xiàn)錯用法則的現(xiàn)象。實驗表明:完全可以用乘法分配律取代去括號法則.這是由于:(1)“去括號法則”,增加了記憶負(fù)擔(dān)和出錯的機會,容易出錯;(2)去括號的法則增加了解題長度,降低了學(xué)習(xí)效率;(3)用乘法分配律去括號的學(xué)習(xí)是同化而非順應(yīng),易于理解與掌握;(4)用乘法分配律去括號是回歸本質(zhì),返璞歸真,且既可減少學(xué)習(xí)時間,又能提高運算的正確率。

  教學(xué)目標(biāo)

  1.熟練掌握去括號時符號的變化規(guī)律;

  2.能正確運用去括號進(jìn)行合并同類項;

  3.理解去括號的'依據(jù)是乘法分配律。

  教學(xué)重點和難點

  重點

  去括號時符號的變化規(guī)律。

  難點

  括號外的因數(shù)是負(fù)數(shù)時符號的變化規(guī)律。

  教學(xué)過程

  一、創(chuàng)設(shè)情景問題

  青藏鐵路線上,列車在凍土地段的行駛速度是100千米/時,在非凍土地段的形式速度可以達(dá)到120千米/時。

  請問:(3)在格爾木到拉薩路段,列車通過凍土地段比通過非凍土地段多用0.5小時,如果通過凍土地段需要t小時,則這段鐵路的全長可以怎么樣表示?凍土地段與非凍土地段相差多少千米?

  解:這段鐵路的全長為100t+120(t-0.5)(千米)

  凍土地段與非凍土地段相差100t-120(t-0.5)(千米)。

  提出問題,如何化簡上面的兩個式子?引出本節(jié)課的學(xué)習(xí)內(nèi)容。

  二、探索新知

  1.回顧:

  1你記得乘法分配率嗎?怎么用字母來表示呢?

  a(b+c)=ab+ac

  2-(-2)=(-1)*(-2)=2+(-3)=(+1)*(-3)=-3

  2.探究

  計算(試著把括號去掉)

 。1)13+(7-5)(2)13-(7-5)

  類比數(shù)的運算,去掉下面式子的括號

 。3)a+(b-c)(4)a-(b-c)

  3.解決問題

  100t+120(t-0.5)=100t-120(t-0.5)=

  思考:

  去掉括號前,括號內(nèi)有幾項、是什么符號?去括號后呢?

  去括號的依據(jù)是什么?

  三、知識點歸納

  去括號法則:

  如果括號外的因數(shù)是正數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相同;

  如果括號外的因數(shù)是負(fù)數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相反.

  注意事項

 。1)去括號規(guī)律要準(zhǔn)確理解,去括號應(yīng)對括號的每一項的符號都予考慮,做到要變都變;要不變,則誰也不變;

 。2)括號內(nèi)原有幾項去掉括號后仍有幾項.

  四、例題精講

  例4化簡下列各式:

 。1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).

  五、鞏固練習(xí)

  課本P68練習(xí)第一題.

  六、課堂小結(jié)

  1.今天你收獲了什么?

  2.你覺得去括號時,應(yīng)特別注意什么?

  七、布置作業(yè)

  課本P71習(xí)題2.2第2題

初中數(shù)學(xué)教學(xué)設(shè)計3

  一、 教學(xué)目標(biāo)

  1、 知識與技能目標(biāo)

  掌握有理數(shù)乘法法則,能利用乘法法則正確進(jìn)行有理數(shù)乘法運算。

  2、 能力與過程目標(biāo)

  經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學(xué)生觀察、歸納、猜測、驗證等能力。

  3、 情感與態(tài)度目標(biāo)

  通過學(xué)生自己探索出法則,讓學(xué)生獲得成功的喜悅。

  二、 教學(xué)重點、難點

  重點:運用有理數(shù)乘法法則正確進(jìn)行計算。

  難點:有理數(shù)乘法法則的探索過程,符號法則及對法則的理解。

  三、 教學(xué)過程

  1、 創(chuàng)設(shè)問題情景,激發(fā)學(xué)生的求知欲望,導(dǎo)入新課。

  教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?

  學(xué)生:26米。

  教師:能寫出算式嗎?學(xué)生:……

  教師:這涉及有理數(shù)乘法運算法則,正是我們今天需要討論的問題

  2、 小組探索、歸納法則

 。1)教師出示以下問題,學(xué)生以組為單位探索。

  以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負(fù)方向。

 、 2 ×3

  2看作向東運動2米,×3看作向原方向運動3次。

  結(jié)果:向 運動 米

  2 ×3=

 、 -2 ×3

  -2看作向西運動2米,×3看作向原方向運動3次。

  結(jié)果:向 運動 米

  -2 ×3=

 、 2 ×(-3)

  2看作向東運動2米,×(-3)看作向反方向運動3次。

  結(jié)果:向 運動 米

  2 ×(-3)=

 、 (-2) ×(-3)

  -2看作向西運動2米,×(-3)看作向反方向運動3次。

  結(jié)果:向 運動 米

 。-2) ×(-3)=

 。2)學(xué)生歸納法則

  ①符號:在上述4個式子中,我們只看符號,有什么規(guī)律?

  (+)×(+)=( ) 同號得

 。-)×(+)=( ) 異號得

  (+)×(-)=( ) 異號得

 。-)×(-)=( ) 同號得

  ②積的絕對值等于 。

  ③任何數(shù)與零相乘,積仍為 。

 。3)師生共同用文字?jǐn)⑹鲇欣頂?shù)乘法法則。

  3、 運用法則計算,鞏固法則。

 。1)教師按課本P75 例1板書,要求學(xué)生述說每一步理由。

 。2)引導(dǎo)學(xué)生觀察、分析例子中兩因數(shù)的.關(guān)系,得出兩個有理數(shù)互為倒數(shù),它們的積為 。

  (3)學(xué)生做練習(xí),教師評析。

 。4)教師引導(dǎo)學(xué)生做例題,讓學(xué)生說出每步法則,使之進(jìn)一步熟悉法則,同時讓學(xué)生總結(jié)出多因數(shù)相乘的符號法則。

初中數(shù)學(xué)教學(xué)設(shè)計4

  我在這次國培中學(xué)習(xí)了“初中數(shù)學(xué)概念課堂教學(xué)設(shè)計”。雖只有短短的時間,卻讓我受益匪淺。

  數(shù)學(xué)概念是數(shù)學(xué)命題、數(shù)學(xué)推理的基礎(chǔ),數(shù)學(xué)學(xué)習(xí)的真正開始是從對數(shù)學(xué)概念的學(xué)習(xí)開始的,作為一名初中數(shù)學(xué)老師,我也常常在思考,如何進(jìn)行概念教學(xué)?如何充分利用有限的45分鐘,讓學(xué)生真正理解概念?通過這次國培,給我們今后的數(shù)學(xué)概念教學(xué)提供了一種可以借鑒的教學(xué)模式:即“創(chuàng)設(shè)問題情景,歸納共同特征——建立數(shù)學(xué)模型,抽象出概念——在交流中深化概念,辨析概念的`內(nèi)涵與外延——鞏固、應(yīng)用與拓展!备拍罱虒W(xué)注意以下幾點:

  1、注重了數(shù)學(xué)與生活之間的聯(lián)系。

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》要求:“讓學(xué)生親身經(jīng)歷將實際問題抽象成數(shù)學(xué)模型并進(jìn)行解釋與應(yīng)用的過程!睌(shù)學(xué)的每一個概念都是一個數(shù)學(xué)模型,老師們從學(xué)生實際出發(fā),創(chuàng)設(shè)了許多有利于學(xué)生學(xué)習(xí)的現(xiàn)實背景與材料,極大的鼓起了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  2、概念的得出注重了探究過程、分析過程,體現(xiàn)了活動主題。

  通過一組實例,分析共性,找共同特征。

  3、鋪墊導(dǎo)入恰當(dāng),讓預(yù)設(shè)與生成合情合理。

  課堂教學(xué)的優(yōu)秀與否,既要看預(yù)設(shè),又要看生成。做到了新知不新,新概念是在舊概念的基礎(chǔ)上滋生和發(fā)展出來的,她們這樣的引入,符合學(xué)生的最近發(fā)展區(qū)需要,教師適時搭建了一個新舊知識的橋梁,然后引導(dǎo)學(xué)生分析、觀察,學(xué)生就會印象深刻。

  4、注重了數(shù)學(xué)陷阱的設(shè)置。

  把學(xué)生對概念理解中的易錯點、易混淆點列出來,讓學(xué)生判斷、研究可以讓學(xué)生對概念理解更深刻。

  5、注重了學(xué)科間的滲透。

  在數(shù)學(xué)教學(xué)中,如何使學(xué)生形成數(shù)學(xué)概念,正確的理解和掌握概念是極為重要的,這是學(xué)好數(shù)學(xué)的基礎(chǔ)之一。要讓學(xué)生真正理解概念,要把握好以下三點:一要注重聯(lián)系生活原型,對概念作通俗解釋,體驗探究數(shù)學(xué)問題的樂趣;二要注重揭示概念的本質(zhì),準(zhǔn)確理解概念的內(nèi)涵與外延;三要注重概念的實際應(yīng)用,實現(xiàn)知識的升華。

初中數(shù)學(xué)教學(xué)設(shè)計5

  摘 要:本著對課堂練習(xí)分層教學(xué)設(shè)計的要求與目的,本節(jié)課設(shè)計了三個層次。針對學(xué)困生的特殊情況,課堂練習(xí)通過誦讀定理和抄寫例題來使其加深印象;在鞏固練習(xí)中中等生要求書面寫出步驟并進(jìn)行展示;對于優(yōu)等生在快結(jié)束本節(jié)課時拋出變式讓他們進(jìn)行思考,并交流思路。這三個層次都貫穿于整個課堂教學(xué),使每位學(xué)生上課都有事可做,根據(jù)自己的能力來解決能力范圍內(nèi)的問題。

  關(guān)鍵詞:相切;環(huán)節(jié)說明;分層體現(xiàn);

  一、案例背景介紹

 。ㄒ唬┙虒W(xué)環(huán)境

  在我們著手進(jìn)行課題《初中數(shù)學(xué)分層教學(xué)方式與策略研究》的研究開始后,大家齊心協(xié)力探索、研究方法,組內(nèi)各種分層招數(shù)可謂是百花齊放,為此我代表課題組上了一節(jié)分層教學(xué)的展示課,以供同仁觀摩點評,為促進(jìn)數(shù)學(xué)教學(xué)的分層設(shè)計向更好的方向前行作貢獻(xiàn)。

 。ǘ⿲W(xué)生情況

  我校學(xué)生大部分來自韓莊鎮(zhèn)不同的自然村,由于小學(xué)地域的不同,所以學(xué)生的基礎(chǔ)各不相同,很多學(xué)生的基礎(chǔ)還相當(dāng)薄弱。因此這種情況特別適合分層教學(xué)。

 。ㄈ┙滩那闆r

  本課是人教版初三數(shù)學(xué)上冊第24章圓第2節(jié)點和圓、直線和圓的位置關(guān)系中的一個課時:直線和圓相切的情況。學(xué)生已經(jīng)有了點和圓的位置關(guān)系的基礎(chǔ)以及直線和圓的位置關(guān)系的數(shù)量的認(rèn)識,本節(jié)課研究直線與圓的特殊位置關(guān)系相切,將相切從位置到數(shù)量的邏輯自然過渡,進(jìn)而引出圓的切線的判定和性質(zhì)。重點是圓的切線的判定定理和性質(zhì)定理。難點是判定定理的理解和性質(zhì)定理證明中反證法的理解。

  二、案例內(nèi)容設(shè)計及說明

  環(huán)節(jié)一:復(fù)習(xí)引入

  通過回顧舊知再次加深圓與直線的位置關(guān)系,在全班集體朗讀中體會d與r的關(guān)系,并順勢將位置關(guān)系量化這一問題顯化,同時自然引出特殊情況――相切

  環(huán)節(jié)說明:俗話說書讀百遍,其意自現(xiàn)。數(shù)學(xué)概念在朗讀中更能逐漸理解其本質(zhì),因此不光語文需要朗讀,數(shù)學(xué)也要朗讀。而且針對我班學(xué)困生上課聽不懂,不會做的現(xiàn)象,這樣來設(shè)計復(fù)習(xí)方式更能調(diào)動我班學(xué)生學(xué)習(xí)的動力,讓每位學(xué)生都參與到課堂教學(xué)中來。這也是這個環(huán)節(jié)分層的體現(xiàn)。

  環(huán)節(jié)二:新知探究

  活動

  1、引導(dǎo)學(xué)生從直線與圓相切的位置及數(shù)量關(guān)系上來深入探究,通過動態(tài)演示來理解一條直線何時變成圓的切線。

  環(huán)節(jié)說明:上節(jié)課得到的圓與直線相切是數(shù)量上的關(guān)系,通過動態(tài)的演示讓學(xué)生明確位置的變化,從而總結(jié)出切線的判定。但是引導(dǎo)很重要,從兩個方面去觀察:直線經(jīng)過哪里?與圓的半徑有什么位置關(guān)系?需要老師點撥。并要等待學(xué)生來總結(jié),不能操之過急。分層體現(xiàn)1對觀察的結(jié)果分別讓兩位程度較差的學(xué)生回答,再讓中等程度的學(xué)生來總結(jié);體現(xiàn)2對定理的數(shù)學(xué)表達(dá)讓全體學(xué)生寫在練習(xí)本上,老師選擇展示,并修改;體現(xiàn)3對總結(jié)出的判定進(jìn)行朗讀。

  活動

  2、將判定的題設(shè)和結(jié)論互換后的探究。

  環(huán)節(jié)說明:反證法在過三點做圓時已有所涉及,所以在這里用反證法證明切線的性質(zhì)時讓學(xué)生互相交流討論然后進(jìn)行匯報就行,不要進(jìn)行過多的引申,否則淡化了主題。分層體現(xiàn)1討論交流時采取師傅和徒弟在同一組,師傅負(fù)責(zé)解釋證明的'方法;體現(xiàn)2數(shù)學(xué)語言的書寫讓學(xué)生自己寫并派代表寫在黑板上。

  環(huán)節(jié)三:鞏固和應(yīng)用

  通過判斷題加深對切線的判定和性質(zhì)的理解。通過師生共同分析解決幾何解答證明題,并由學(xué)生書寫證明步驟。

  環(huán)節(jié)說明:判斷題中設(shè)置了3道小題,并給出了反例,能使學(xué)生更加明確定理的意義。這里教學(xué)的分層體現(xiàn)在針對反例來問學(xué)困生為什么不對,讓學(xué)生說出違背了所需條件的哪一條,強化切線判定條件在這部分學(xué)生頭腦中的印象。例題的分析采取了小組討論交流的方法,與環(huán)節(jié)二中的分組一樣,分層體現(xiàn)在“師帶徒”弄清解題思路,師傅增強了解題的邏輯性,更嚴(yán)密,徒弟學(xué)會了解題的分析,拓寬了視野,打開了思路。在有思路的前提下,全班安靜書寫步驟。還可以展示在投影下,由學(xué)生來評判書寫的是否清楚。

  環(huán)節(jié)四:課堂小結(jié)

  在小結(jié)中,除了總結(jié)出本節(jié)課所學(xué)的判定和性質(zhì)外,將相關(guān)的判定和性質(zhì)做一歸納很有必要,“在不斷的總結(jié)中收獲、進(jìn)步”不是嗎?同時提出下節(jié)課要學(xué)習(xí)的相關(guān)性質(zhì)更能激起學(xué)生學(xué)習(xí)的積極性。

  環(huán)節(jié)說明:在小結(jié)的分層中判定由程度稍差點的學(xué)生總結(jié),哪怕照著書上找都行,并進(jìn)行誦讀,使其再次熟知所學(xué)知識。在性質(zhì)的總結(jié)中,老師拋出兩條本節(jié)未涉及的性質(zhì)給學(xué)生,讓學(xué)生課后思考證明,在下節(jié)課時可由學(xué)生簡要發(fā)表見解并證明。

  環(huán)節(jié)五:拓展練習(xí)

  通過引導(dǎo)學(xué)生添加輔助線,點撥學(xué)生圓中常用輔助線的做法,分情況添加恰當(dāng)?shù)妮o助線。這兩個練習(xí)旨在拓展尖子生的思維。

  環(huán)節(jié)六:作業(yè)布置

  通過分層布置,使每位學(xué)生都能在自己能力范圍內(nèi)進(jìn)行鞏固練習(xí)。

  環(huán)節(jié)說明:作業(yè)

  1、重點面向?qū)W困生考察其掌握基礎(chǔ)的程度。作業(yè)

  2、針對待優(yōu)生夯實基礎(chǔ)的基礎(chǔ)上,提高其運用能力。作業(yè)

  3、是設(shè)計的培優(yōu)計劃,對學(xué)有余力的學(xué)生來說是個很好的鍛煉機會。

  三、案例分析與反思

  實際上本節(jié)課中圓的切線的判定定理是為了便于應(yīng)用而對直線和圓相切的定義改寫得到的一種形式,而圓的切線的性質(zhì)定理的證明僅僅要求學(xué)生再次感受反證法,并不要求會應(yīng)用,所以本節(jié)的設(shè)計在分層中很注重理解和感知,通過互幫互助和朗讀感知達(dá)到難點的突破,另外圓是學(xué)生學(xué)習(xí)的第一個曲線形,由直線形到曲線形,在知識上是一個飛躍,本節(jié)利用圖形運動變化過程發(fā)現(xiàn)其中圖形的性質(zhì),做好了知識前后的銜接,同時加強了新舊知識的聯(lián)系,發(fā)揮出了知識的遷移作用。類比也是本節(jié)課所用到的一個重要的學(xué)習(xí)方法,而且在教授過程中難度的控制非常適當(dāng),分層的影子處處可見?v觀整節(jié)課的分層之處進(jìn)入都很自然,也落到了實處,但分層效果的檢測沒有體現(xiàn)出來,這也是遺憾之處。

初中數(shù)學(xué)教學(xué)設(shè)計6

  (一)創(chuàng)設(shè)情境導(dǎo)入新課

  不利用工具,請你將一張用紙片做的角分成兩個相等的角。你有什么辦法?

  如果前面活動中的紙片換成木板、鋼板等沒法折的角,又該怎么辦呢?

  設(shè)計目的:能聚攏學(xué)生的思維為新課的開展創(chuàng)造了良好的教學(xué)氛圍。

  (二)合作交流探究新知

  (活動一)探究角平分儀的原理。具體過程如下:

  播放美訪問我國的錄像資料------引出雨傘-----觀察它的截面圖,使學(xué)生認(rèn)清其中的邊角關(guān)系-----引出角平分線;并且運用幾何畫板對傘的開合進(jìn)行動態(tài)演示,讓學(xué)生直觀感受傘面形成的角與主桿的關(guān)系-----讓學(xué)生設(shè)計制作角平分儀;并利用以前所學(xué)的知識尋找理論上的依據(jù),說明這個儀器的制作原理。

  設(shè)計目的:用生活中的實例感知。以最近大事作引入點,以最常見的事物為載體,讓學(xué)生感受到生活中處處都有數(shù)學(xué),認(rèn)識到數(shù)學(xué)的價值。其中設(shè)計制作角平分儀,可培養(yǎng)學(xué)生的創(chuàng)造力和成就感以及學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生很輕松的'完成活動二。

  (活動二)通過上述探究,能否總結(jié)出尺規(guī)作已知角的平分線的一般方法.自己動手做做看.然后與同伴交流操作心得.

  分小組完成這項活動,教師可參與到學(xué)生活動中,及時發(fā)現(xiàn)問題,給予啟發(fā)和指導(dǎo),使講評更具有針對性。

  討論結(jié)果展示:教師根據(jù)學(xué)生的敘述,利用多媒體課件演示作已知角的平分線的方法:

  已知:∠AO B.

  求作:∠AOB的平分線.

  作法:

  (1)以O(shè)為圓心,適當(dāng)長為半徑作弧,分別交OA、OB于M、N.

  (2)分別以M、N為圓心,大于1/2MN的長為半徑作弧.兩弧在∠AOB內(nèi)部交于點C.

  (3)作射線OC,射線OC即為所求.

  設(shè)計目的:使學(xué)生能更直觀地理解畫法,提高學(xué)習(xí)數(shù)學(xué)的興趣。

  議一議:

  1.在上面作法的第二步中,去掉“大于MN的長”這個條件行嗎?

  2.第二步中所作的兩弧交點一定在∠AOB的內(nèi)部嗎?

  設(shè)計這兩個問題的目的在于加深對角的平分線的作法的理解,培養(yǎng)數(shù)學(xué)嚴(yán)密性的良好學(xué)習(xí)習(xí)慣。

  學(xué)生討論結(jié)果總結(jié):

  1.去掉“大于MN的長”這個條件,所作的兩弧可能沒有交點,所以就找不到角的平分線.

  2.若分別以M、N為圓心,大于MN的長為半徑畫兩弧,兩弧的交點可能在∠AOB的內(nèi)部,也可能在∠AOB的外部,而我們要找的是∠AOB內(nèi)部的交點,否則兩弧交點與頂點連線得到的射線就不是∠AOB的平分線了.

  3.角的平分線是一條射線.它不是線段,也不是直線,所以第二步中的兩個限制缺一不可.

  4.這種作法的可行性可以通過全等三角形來證明.

  (活動三)探究角平分線的性質(zhì)

  思考:已知一角及其角平分線添加輔助線構(gòu)成全等三角形;構(gòu)成全等的直角三角形。這樣的三角形有多少對?

  這樣設(shè)計的目的是加深對全等的認(rèn)識。

初中數(shù)學(xué)教學(xué)設(shè)計7

生活中的平移

  ●教學(xué)目標(biāo)

  (一)教學(xué)知識點

  1.平移的定義

  2.平移的基本性質(zhì)

 。ǘ┠芰τ(xùn)練要求

  1.通過具體實例認(rèn)識平移,理解平移的基本內(nèi)涵.

  2.探索平移的基本性質(zhì),理解平移前后兩個圖形對應(yīng)點連線平行且相等,對應(yīng)線段和對應(yīng)角分別相等的性質(zhì).

 。ㄈ┣楦信c價值觀要求

  經(jīng)歷觀察、分析、操作、欣賞以及抽象、概括等過程,經(jīng)歷探索圖形平移的基本性質(zhì)的過程以及與他人合作交流的過程,進(jìn)一步發(fā)展空間觀念,增強審美意識。

  ●教學(xué)重點

  平移的基本性質(zhì).

  ●教學(xué)難點

  平移的基本內(nèi)涵的理解.

  ●教學(xué)方法

  探索、發(fā)現(xiàn)法.

  ●教具準(zhǔn)備

  圖片:一些游樂園的圖片、轆轤、電梯等.

  電腦演示:平移的過程,粒子運動及行星運轉(zhuǎn)等.

  投影片四張:

  第一張:想一想,議一議(記作投影片§3.1A);

  第二張:想一想(記作投影片§3.1B);

  第三張:平移的性質(zhì)(記作投影片§3.1C);

  第四張:例1(記作投影片§3.1D).

  ●教學(xué)過程

 、瘢稍O(shè)情景問題,引入課題

 。蹘煟萃瑢W(xué)們,還記得游樂園內(nèi)的一些項目嗎?(或投影片放圖片,或在電腦上演示幻燈片):旋轉(zhuǎn)木馬、蕩秋千、小火車、滑梯……它們曾經(jīng)使我們許多人樂而忘返.不過,你想過沒有:小火車在筆直的鐵軌上開動時,火車頭走了200米,那車尾走了多少米呢?

  [生齊]也走了200米.

 。蹘煟莺芎茫鋵崳瑪(shù)學(xué)就在我們身邊,它有很多規(guī)律等待我們?nèi)ヌ剿鳎グl(fā)現(xiàn)!無論是年代久遠(yuǎn)的老牛上的轆轤(出示圖片);還是剛剛聳立起的高樓大廈里的電梯,(出示圖片),無論是微觀世界里的粒子運動(電腦演示),還是浩翰宇宙中的行星運轉(zhuǎn)(電腦演示).其中最簡捷的運動變化形式主要是平移和旋轉(zhuǎn),讓我們走進(jìn)圖形變換的`天地,繼續(xù)探索圖形變換的奧秘吧!

  從今天開始,我們就來探索第三章:圖形的平移和旋轉(zhuǎn).

 、颍v授新課

  [師]下面我們來看第一節(jié):生活中的平移(電腦演示:P57的圖3—1,然后提出問題)

 。1)圖3—1中,傳送帶上的電視機的形狀、大小在運動前后是否發(fā)生了變化?手扶電梯上的人呢?

 。凵R]傳送帶上的電視機的形狀、大小在運動前后沒有發(fā)生改變.

  手扶電梯上的人也沒有變化.

  [師]很好,我們再看(電腦演示):

  在傳送帶上,如果電視機的某一按鍵向前移動了80cm,那么電視機的其他部位向什么方向移動?移動了多少距離?

 。凵蓦娨暀C的其他部位也向前移動,也移動了80cm.

 。蹘煟莺茫娔X出示問題,并演示四邊形ABCD移動到四邊形EFGH的位置的過程)

  如果把移動前后的同一臺電視機的屏幕分別記為四邊形ABCD和四邊形EFGH(如下圖),那么四邊形ABCD與四邊形EFGH的形狀、大小是否相同?

 。凵菟倪呅ABCD與四邊形EFGH的形狀、大小相同.

 。蹘煟莺芎茫峭瑢W(xué)們來想一想,議一議(出示投影片§3.1A).

  傳送帶運送電視機的過程中,電視機的形狀、大小、位置等因素中,哪些沒有發(fā)生改變?哪些發(fā)生了變化?手扶電梯上的人呢?

初中數(shù)學(xué)教學(xué)設(shè)計8

  在初中的數(shù)學(xué)教學(xué)過程中,函數(shù)教學(xué)是比較難的章節(jié),我們該如何設(shè)計我們的教學(xué)過程呢?下面我來談?wù)勎业囊恍┖軠\的看法:首先函數(shù)是刻畫和研究現(xiàn)實世界變化規(guī)律的重要模型,也是初中數(shù)學(xué)里代數(shù)領(lǐng)域的重要內(nèi)容,它在初中數(shù)學(xué)中具有較強的綜合性。在教學(xué)中,學(xué)生常常覺得函數(shù)抽象深奧,高不可攀,老師也覺得函數(shù)難講,講了學(xué)生也理解不了,理解了也不會解題。事實果真如此難教又難學(xué)嗎?下面我談?wù)勗诮虒W(xué)設(shè)計方面一些方法和實踐。

  一、注重類比教學(xué)

  不同的事物往往具有一些相同或相似的屬性,人們正是利用相似事物具有的這種屬性,通過對一事物的認(rèn)識來認(rèn)識與它相似的另一事物,這種認(rèn)識事物的思維方法就是類比法,利用類比的思想進(jìn)行教學(xué)設(shè)計實施教學(xué),可稱為類比教學(xué).在函數(shù)教學(xué)中我們期望的是通過對前面知識的學(xué)習(xí)方法的傳授,達(dá)到對后續(xù)知識的學(xué)習(xí)產(chǎn)生影響,使學(xué)生達(dá)到舉一反三,觸類旁通的目的,讓學(xué)生順利地由學(xué)會到會學(xué),真正實現(xiàn)教是為了不教的目的.有經(jīng)驗的老師都會發(fā)現(xiàn),初中學(xué)習(xí)的正比例函數(shù)、一次函數(shù)、反比例函數(shù)、二次函數(shù)在概念的得來、圖象性質(zhì)的研究、及基本解題方法上都有著本質(zhì)上的相似。因此采用類比的教學(xué)方法不但省時、省力,還有助于學(xué)生的理解和應(yīng)用。是一種既經(jīng)濟又實效的教學(xué)方法。下面我就舉例說明如何采用類比的方法實現(xiàn)函數(shù)的教學(xué)。

  首先是正比例函數(shù),它是一次函數(shù)特例,也是初中數(shù)學(xué)中的一種簡單最基本的函數(shù)。但是,我們有些教師卻因為正比例函數(shù)過于簡單,而輕視。匆匆給出概念,然后應(yīng)用。等到講到一次函數(shù)、反比例函數(shù)、二次函數(shù)又感到力不從心,學(xué)生接受起來概念模糊,性質(zhì)混亂,解題方法不明確。造成這種困擾的原因是因為忽視正比例函數(shù)的基礎(chǔ)作用,我們應(yīng)該借助正比例函數(shù)這個最簡單的函數(shù)載體,把函數(shù)研究經(jīng)典流程完整呈現(xiàn),正所謂麻雀雖小,五臟俱全。再學(xué)習(xí)其他函數(shù)時,在此基礎(chǔ)上類比學(xué)習(xí),循序漸進(jìn),螺旋上升。例如:

  《正比例函數(shù)》教學(xué)流程

 。ㄒ唬┉h(huán)節(jié)一:概念的建立

  通過對問題的處理用函數(shù)y=200x來反映汽車的行程與時間的對應(yīng)規(guī)律引入新課。學(xué)生自覺思考教師提問,共同得出每個問題的函數(shù)關(guān)系式。引導(dǎo)學(xué)生觀察以上函數(shù)關(guān)系式的特點得出正比例函數(shù)的描述定義及解析式特點。

 。ǘ┉h(huán)節(jié)二:函數(shù)圖象

  這個環(huán)節(jié)是教學(xué)的重點,由學(xué)生先動手按列表——描點——連線的過程畫函數(shù)y=2x和y=-2x的圖象,相互交流比較然后教師利用多媒體展示畫函數(shù)圖象的過程并通過比較使學(xué)生正確掌握畫函數(shù)圖象的方法。

 。ㄈ┉h(huán)節(jié)三:探究函數(shù)性質(zhì)

  讓學(xué)生觀察函數(shù)圖象并引導(dǎo)學(xué)生通過比較來歸納正比例函數(shù)的性質(zhì),這個環(huán)節(jié)是本課的難點,教師要引導(dǎo)學(xué)生從圖象的形狀,從左往右的升降情況,經(jīng)過的象限及自變量變化時函數(shù)值的變化規(guī)律。這幾個方面來歸納,最終得出正比例函數(shù)的性質(zhì)。

 。ㄋ模┉h(huán)節(jié)四:概念的歸納

  將觀察、探究出的函數(shù)圖象的特征、函數(shù)的性質(zhì)等做出系統(tǒng)的歸納。

  二、注重數(shù)形結(jié)合的教學(xué)

  數(shù)形結(jié)合的思想方法是初中數(shù)學(xué)中一種重要的思想方法。數(shù)學(xué)是研究現(xiàn)實世界數(shù)量關(guān)系和空間形式的科學(xué)。而數(shù)形結(jié)合就是通過數(shù)與形之間的對應(yīng)和轉(zhuǎn)化來解決數(shù)學(xué)問題。它包含以形助數(shù)和以數(shù)解形兩個方面,利用它可使復(fù)雜問題簡單化,抽象問題具體化,它兼有數(shù)的嚴(yán)謹(jǐn)與形的直觀之長。

  函數(shù)的三種表示方法:解析法、列表法、圖象法本身就體現(xiàn)著函數(shù)的數(shù)形結(jié)合。函數(shù)圖象就是將變化抽象的函數(shù)拍照下來研究的有效工具,函數(shù)教學(xué)離不開函數(shù)圖象的研究。在借助圖象研究函數(shù)的過程中,我們需要注意以下幾點原則:

 。1)讓學(xué)生經(jīng)歷繪制函數(shù)圖象的具體過程。首先,對于函數(shù)圖象的意義,只有學(xué)生在親身經(jīng)歷了列表、描點、連線等繪制函數(shù)圖象的具體過程,才能知道函數(shù)圖象的由來,才能了解圖象上點的橫、縱坐標(biāo)與自變量值、函數(shù)值的對應(yīng)關(guān)系,為學(xué)生利用函數(shù)圖象數(shù)形結(jié)合研究函數(shù)性質(zhì)打好基礎(chǔ)。其次,對于具體的一次函數(shù)、反比例函數(shù)、二次函數(shù)的圖象的認(rèn)識,學(xué)生通過親身畫圖,自己發(fā)現(xiàn)函數(shù)圖象的形狀、變化趨勢,感悟不同函數(shù)圖象之間的`關(guān)系,為發(fā)現(xiàn)函數(shù)圖象間的規(guī)律,探索函數(shù)的性質(zhì)做好準(zhǔn)備。

 。2)切莫急于呈現(xiàn)畫函數(shù)圖象的簡單畫法。首先,在探索具體函數(shù)形狀時,不能取得點太少,否則學(xué)生無法發(fā)現(xiàn)點分布的規(guī)律,從而猜想出圖象的形狀;其次,教師過早強調(diào)圖象的簡單畫法,追求方法的最優(yōu)化,縮短了學(xué)生知識探索的經(jīng)歷過程。所以,在教新知識時,教師要允許學(xué)生從最簡單甚至最笨拙的方法做起,漸漸過渡到最佳方法的掌握,達(dá)到認(rèn)識上的最佳狀態(tài)。

 。3)注意讓學(xué)生體會研究具體函數(shù)圖象規(guī)律的方法。初中階段一般采用兩種方法研究函數(shù)圖象:一是有特殊到一般的歸納法,二是控制參數(shù)法。

  函數(shù)是一個整體,各個具體函數(shù)是函數(shù)的特例,研究方法應(yīng)是相同的,通過類比和數(shù)形結(jié)合的方法,對比性質(zhì)的差異性,將具體函數(shù)逐步納入到整個函數(shù)學(xué)習(xí)中去,這也符合教材設(shè)計的螺旋式上升的理念。這樣自然使二次函數(shù)變得難著不難,水到渠成。

  關(guān)于待定系數(shù)法,首先要讓學(xué)生理解感受到待定系數(shù)法的本質(zhì):對于某些數(shù)學(xué)問題,如果已知所求結(jié)果具有某種確定的形式,則可引進(jìn)一些尚待確定的系數(shù)來表示這種結(jié)果,通過已知條件建立起給定的算式和結(jié)果之間的恒等式,得到以待定系數(shù)為元的方程或方程組,解之即得待定的系數(shù)。待定系數(shù)法在確定各種函數(shù)解析式中有著重要的作用,不論是正、反比例函數(shù),還是一次函數(shù)、二次函數(shù),確定函數(shù)解析式時都離不開待定系數(shù)法。因此我們要重視簡單的正比例函數(shù)、一次函數(shù)的待定系數(shù)法的應(yīng)用。要在簡單的函數(shù)中講出待定系數(shù)法的本質(zhì)來,等到了反比例函數(shù)和二次函數(shù)及綜合情況,學(xué)生已能形成能力,自如使用此方法,這時就是技巧的點撥。

初中數(shù)學(xué)教學(xué)設(shè)計9

  一、 內(nèi)容簡介

  本節(jié)課的主題:通過一系列的探究活動,引導(dǎo)學(xué)生從計算結(jié)果中總結(jié)出完全平方公式的兩種形式。

  關(guān)鍵信息:

  1、以教材作為出發(fā)點,依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會、參與科學(xué)探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關(guān)系。通過學(xué)生自主、獨立的發(fā)現(xiàn)問題,對可能的答案做出假設(shè)與猜想,并通過多次的檢驗,得出正確的結(jié)論。學(xué)生通過收集和處理信息、表達(dá)與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。

  2、用標(biāo)準(zhǔn)的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。

  二、學(xué)習(xí)者分析:

  1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識和技能:

  ①同類項的定義。

 、诤喜⑼愴椃▌t

 、鄱囗検匠艘远囗検椒▌t。

  2、學(xué)習(xí)者對即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:

  在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。

  三、 教學(xué)/學(xué)習(xí)目標(biāo)及其對應(yīng)的課程標(biāo)準(zhǔn):

  (一)教學(xué)目標(biāo):

  1、經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展符號感和推力能力。

  2、會推導(dǎo)完全平方公式,并能運用公式進(jìn)行簡單的計算。

  (二)知識與技能:經(jīng)歷從具體情境中抽象出符號的過程,認(rèn)識有理

  數(shù)、實數(shù)、代數(shù)式、防城、不等式、函數(shù);掌握必要的運算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并能運用代數(shù)式、防城、不等式、函數(shù)等進(jìn)行描述。

  (四)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題;嘗試從不同

  角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經(jīng)驗。

  (五)情感與態(tài)度:敢于面對數(shù)學(xué)活動中的困難,并有獨立克服困難

  和運用知識解決問題的成功體驗,有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解;能從交流中獲益。

  四、 教育理念和教學(xué)方式:

  1、教師是學(xué)生學(xué)習(xí)的組織者、促進(jìn)者、合作者:學(xué)生是學(xué)習(xí)的主人,在教師指導(dǎo)下主動的、富有個性的學(xué)習(xí),用自己的身體去親自經(jīng)歷,用自己的.心靈去親自感悟。

  教學(xué)是師生交往、積極互動、共同發(fā)展的過程。當(dāng)學(xué)生迷路的時

  候,教師不輕易告訴方向,而是引導(dǎo)他怎樣去辨明方向;當(dāng)學(xué)生登山畏懼了的時候,教師不是拖著他走,而是喚起他內(nèi)在的精神動力,鼓勵他不斷向上攀登。

  2、采用“問題情景—探究交流—得出結(jié)論—強化訓(xùn)練”的模式

  展開教學(xué)。

  3、教學(xué)評價方式:

  (1) 通過課堂觀察,關(guān)注學(xué)生在觀察、總結(jié)、訓(xùn)練等活動中的主

  動參與程度與合作交流意識,及時給與鼓勵、強化、指導(dǎo)和矯正。

  (2) 通過判斷和舉例,給學(xué)生更多機會,在自然放松的狀態(tài)下,

  揭示思維過程和反饋知識與技能的掌握情況,使老師可以及時診斷學(xué)情,調(diào)查教學(xué)。

  (3) 通過課后訪談和作業(yè)分析,及時查漏補缺,確保達(dá)到預(yù)期的

  教學(xué)效果。

  五、 教學(xué)媒體 :多媒體

  六、 教學(xué)和活動過程:

  教學(xué)過程設(shè)計如下:

  〈一〉、提出問題

  [引入] 同學(xué)們,前面我們學(xué)習(xí)了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結(jié)出結(jié)果與多項式中兩個單項式的關(guān)系嗎?

  (2m+3n)2=_______________,(-2m-3n)2=______________,

  (2m-3n)2=_______________,(-2m+3n)2=_______________。

  〈二〉、分析問題

  1、[學(xué)生回答] 分組交流、討論

  (2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,

  (2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。

  (1)原式的特點。

  (2)結(jié)果的項數(shù)特點。

  (3)三項系數(shù)的特點(特別是符號的特點)。

  (4)三項與原多項式中兩個單項式的關(guān)系。

  2、[學(xué)生回答] 總結(jié)完全平方公式的語言描述:

  兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;

  兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。

  3、[學(xué)生回答] 完全平方公式的數(shù)學(xué)表達(dá)式:

  (a+b)2=a2+2ab+b2;

  (a-b)2=a2-2ab+b2.

  〈三〉、運用公式,解決問題

  1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)

  (m+n)2=____________, (m-n)2=_______________,

  (-m+n)2=____________, (-m-n)2=______________,

  (a+3)2=______________, (-c+5)2=______________,

  (-7-a)2=______________, (0.5-a)2=______________.

  2、判斷:

  ( )① (a-2b)2= a2-2ab+b2

  ( )② (2m+n)2= 2m2+4mn+n2

  ( )③ (-n-3m)2= n2-6mn+9m2

  ( )④ (5a+0.2b)2= 25a2+5ab+0.4b2

  ( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2

  ( )⑥ (-a-2b)2=(a+2b)2

  ( )⑦ (2a-4b)2=(4a-2b)2

  ( )⑧ (-5m+n)2=(-n+5m)2

  3、小試牛刀

 、 (x+y)2 =______________;② (-y-x)2 =_______________;

 、 (2x+3)2 =_____________;④ (3a-2)2 =_______________;

  ⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;

  ⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.

  〈四〉、[學(xué)生小結(jié)]

  你認(rèn)為完全平方公式在應(yīng)用過程中,需要注意那些問題?

  (1) 公式右邊共有3項。

  (2) 兩個平方項符號永遠(yuǎn)為正。

  (3)中間項的符號由等號左邊的兩項符號是否相同決定。

  (4)中間項是等號左邊兩項乘積的2倍。

  〈五〉、冒險島:

  (1)(-3a+2b)2=________________________________

  (2)(-7-2m) 2 =__________________________________

  (3)(-0.5m+2n) 2=_______________________________

  (4)(3/5a-1/2b) 2=________________________________

  (5)(mn+3) 2=__________________________________

  (6)(a2b-0.2) 2=_________________________________

  (7)(2xy2-3x2y) 2=_______________________________

  (8)(2n3-3m3) 2=________________________________

  〈六〉、學(xué)生自我評價

  [小結(jié)] 通過本節(jié)課的學(xué)習(xí),你有什么收獲和感悟?

  本節(jié)課,我們自己通過計算、分析結(jié)果,總結(jié)出了完全平方公式。在知識探索的過程中,同學(xué)們積極思考,大膽探索,團結(jié)協(xié)作共同取得了進(jìn)步。

  〈七〉[作業(yè)] P34 隨堂練習(xí) P36 習(xí)題

  七、課后反思

  本節(jié)課雖然算不上課本中的難點,但在整式一章中是個重點。它是多項式乘法特殊形式下的一種簡便運算。學(xué)生需要熟練掌握公式兩種形式的使用方法,以提高運算速度。授課過程中,應(yīng)注重讓學(xué)生總結(jié)公式的等號兩邊的特點,讓學(xué)生用語言表達(dá)公式的內(nèi)容,讓學(xué)生說明運用公式過程中容易出現(xiàn)的問題和特別注意的細(xì)節(jié)。然后再通過逐層深入的練習(xí),鞏固完全平方公式兩種形式的應(yīng)用。為完全平方公式第二節(jié)課的實際應(yīng)用和提高應(yīng)用做好充分的準(zhǔn)備

初中數(shù)學(xué)教學(xué)設(shè)計10

  教學(xué)目標(biāo)

  1.知道什么是全等形、全等三角形及全等三角形的對應(yīng)元素;

  2.知道全等三角形的性質(zhì),能用符號正確地表示兩個三角形全等;

  3.能熟練找出兩個全等三角形的對應(yīng)角、對應(yīng)邊.

  教學(xué)重點

  全等三角形的性質(zhì).

  教學(xué)難點

  找全等三角形的對應(yīng)邊、對應(yīng)角.

  教學(xué)過程

  一.提出問題,創(chuàng)設(shè)情境

  1、問題:你能發(fā)現(xiàn)這兩個三角形有什么美妙的關(guān)系嗎?

  這兩個三角形是完全重合的

  2.學(xué)生自己動手(同桌兩名同學(xué)配合)

  取一張紙,將自己事先準(zhǔn)備好的三角板按在紙上,畫下圖形,照圖形裁下來,紙樣與三角板形狀、大小完全一樣.

  3.獲取概念

  讓學(xué)生用自己的語言敘述:全等形、全等三角形、對應(yīng)頂點、對應(yīng)角、對應(yīng)邊,以及有關(guān)的數(shù)學(xué)符號.

  形狀與大小都完全相同的兩個圖形就是全等形.

  要是把兩個圖形放在一起,能夠完全重合,就可以說明這兩個圖形的形狀、大小相同.

  概括全等形的準(zhǔn)確定義:能夠完全重合的兩個圖形叫做全等形.請同學(xué)們類推得出全等三角形的概念,并理解對應(yīng)頂點、對應(yīng)角、對應(yīng)邊的含義.仔細(xì)閱讀課本中"全等"符號表示的要求.

  二.導(dǎo)入新課

  將△ABC沿直線BC平移得△DEF;將△ABC沿BC翻折180°得到△DBC;將△ABC旋轉(zhuǎn)180°得△AED.

  議一議:各圖中的兩個三角形全等嗎?

  不難得出:△ABC≌△DEF,△ABC≌△DBC,△ABC≌△AED.

  (注意強調(diào)書寫時對應(yīng)頂點字母寫在對應(yīng)的位置上)

  啟示:一個圖形經(jīng)過平移、翻折、旋轉(zhuǎn)后,位置變化了,但形狀、大小都沒有改變,所以平移、翻折、旋轉(zhuǎn)前后的圖形全等,這也是我們通過運動的方法尋求全等的一種策略.

  觀察與思考:

  尋找甲圖中兩三角形的對應(yīng)元素,它們的對應(yīng)邊有什么關(guān)系?對應(yīng)角呢?

  (引導(dǎo)學(xué)生從全等三角形可以完全重合出發(fā)找等量關(guān)系)

  得到全等三角形的性質(zhì):全等三角形的對應(yīng)邊相等.全等三角形的對應(yīng)角相等.

  [例1]如圖,△OCA≌△OBD,C和B,A和D是對應(yīng)頂點,說出這兩個三角形中相等的邊和角.

  問題:△OCA≌△OBD,說明這兩個三角形可以重合,思考通過怎樣變換可以使兩三角形重合?

  將△OCA翻折可以使△OCA與△OBD重合.因為C和B、A和D是對應(yīng)頂點,所以C和B重合,A和D重合.

  ∠C=∠B;∠A=∠D;∠AOC=∠DOB.AC=DB;OA=OD;OC=OB.

  總結(jié):兩個全等的三角形經(jīng)過一定的轉(zhuǎn)換可以重合.一般是平移、翻轉(zhuǎn)、旋轉(zhuǎn)的方法.

  [例2]如圖,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的對應(yīng)邊和對應(yīng)角.

  分析:對應(yīng)邊和對應(yīng)角只能從兩個三角形中找,所以需將△ABE和△ACD從復(fù)雜的圖形中分離出來.

  根據(jù)位置元素來找:有相等元素,它們就是對應(yīng)元素,然后再依據(jù)已知的對應(yīng)元素找出其余的對應(yīng)元素.常用方法有:

  (1)全等三角形對應(yīng)角所對的.邊是對應(yīng)邊;兩個對應(yīng)角所夾的邊也是對應(yīng)邊.

  (2)全等三角形對應(yīng)邊所對的角是對應(yīng)角;兩條對應(yīng)邊所夾的角是對應(yīng)角.

  解:對應(yīng)角為∠BAE和∠CAD.

  對應(yīng)邊為AB與AC、AE與AD、BE與CD.

  [例3]已知如圖△ABC≌△ADE,試找出對應(yīng)邊、對應(yīng)角.(由學(xué)生討論完成)

  借鑒例2的方法,可以發(fā)現(xiàn)∠A=∠A,在兩個三角形中∠A的對邊分別是BC和DE,所以BC和DE是一組對應(yīng)邊.而AB與AE顯然不重合,所以AB與AD是一組對應(yīng)邊,剩下的AC與AE自然是一組對應(yīng)邊了.再根據(jù)對應(yīng)邊所對的角是對應(yīng)角可得∠B與∠D是對應(yīng)角,∠ACB與∠AED是對應(yīng)角.所以說對應(yīng)邊為AB與AD、AC與AE、BC與DE.對應(yīng)角為∠A與∠A、∠B與∠D、∠ACB與∠AED.

  做法二:沿A與BC、DE交點O的連線將△ABC翻折180°后,它正好和△ADE重合.這時就可找到對應(yīng)邊為:AB與AD、AC與AE、BC與DE.對應(yīng)角為∠A與∠A、∠B與∠D、∠ACB與∠AED.

  三.課堂練習(xí)

  課本練習(xí)1.

  四.課時小結(jié)

  通過本節(jié)課學(xué)習(xí),我們了解了全等的概念,發(fā)現(xiàn)了全等三角形的性質(zhì),并且利用性質(zhì)可以找到兩個全等三角形的對應(yīng)元素.這也是這節(jié)課大家要重點掌握的

  找對應(yīng)元素的常用方法有兩種:

  (一)從運動角度看

  1.翻轉(zhuǎn)法:找到中心線,沿中心線翻折后能相互重合,從而發(fā)現(xiàn)對應(yīng)元素.

  2.旋轉(zhuǎn)法:三角形繞某一點旋轉(zhuǎn)一定角度能與另一三角形重合,從而發(fā)現(xiàn)對應(yīng)元素.

  3.平移法:沿某一方向推移使兩三角形重合來找對應(yīng)元素.

  (二)根據(jù)位置元素來推理

  1.全等三角形對應(yīng)角所對的邊是對應(yīng)邊;兩個對應(yīng)角所夾的邊是對應(yīng)邊.

  2.全等三角形對應(yīng)邊所對的角是對應(yīng)角;兩條對應(yīng)邊所夾的角是對應(yīng)角.

  五.作業(yè)

  課本習(xí)題1

  課后作業(yè):《新課堂》

初中數(shù)學(xué)教學(xué)設(shè)計11

  一、教學(xué)目標(biāo):

 。1)學(xué)生在教師引導(dǎo)下,積極主動地經(jīng)歷探索三角形全等的條件的過程,體會利用操作、歸納獲得數(shù)學(xué)結(jié)論的過程。

 。2)掌握三角形全等的“邊邊邊”、“邊角邊”、“角邊角”、“角角邊”的判定方法,了解三角形的穩(wěn)定性,能用三角形的全等解決一些實際問題。

 。3)培養(yǎng)學(xué)生的空間觀念,推理能力,發(fā)展有條理地表達(dá)能力,積累數(shù)學(xué)活動經(jīng)驗。

  二、教學(xué)的重點與難點:

  重點:三角形全等條件的探索過程是本節(jié)課的重點。

  從設(shè)置情景提出問題,到動手操作,交流,直至歸納得出結(jié)論,整個過程學(xué)生不僅得到了兩個三角形全等的條件,更重要得是經(jīng)歷了知識的形成過程,體會了一種分析問題的方法,積累了數(shù)學(xué)活動經(jīng)驗,這將有利于學(xué)生更好的理解數(shù)學(xué),應(yīng)用數(shù)學(xué)。

  難點:三角形全等條件的探索過程,特別是創(chuàng)設(shè)出問題后,學(xué)生面對開放性問題,要做出全面、正確得分析,并對各種情況進(jìn)行討論,對初一學(xué)生有一定的難度。

  根據(jù)初一學(xué)生年齡、生理及心理特征,還不具備獨立系統(tǒng)地推理論證幾何問題的能力,思維受到一定的局限,考慮問題不夠全面,因此要充分發(fā)揮教師的主導(dǎo)作用,適時

  點撥、引導(dǎo),盡可能調(diào)動所有學(xué)生的積極性、主動性參與到合作探討中來,使學(xué)生在與他人的合作交流中獲取新知,并使個性思維得以發(fā)展。

  三、教學(xué)過程

  電腦顯示,帶領(lǐng)學(xué)生復(fù)習(xí)全等三角定義及其性質(zhì)。電腦顯示,小明畫了一個三角形,怎樣才能畫一個三角形與他的三角形全等?我們知道全等三角形三條邊分別對應(yīng)相等,三個角分別對應(yīng)相等,那麼,反之這六個元素分別對應(yīng),這樣的兩個三角形一定全等.但是,是否一定需要六個條件呢?條件能否盡可能少嗎?對學(xué)生分類中出現(xiàn)的問題,予以糾正,對學(xué)生提出的解決問題的不同策略,要給予肯定和鼓勵,以滿足多樣化的學(xué)生需要,發(fā)展學(xué)生個性思維。

  按照三角形“邊、角”元素進(jìn)行分類,師生共同歸納得出:

  1、一個條件:一角,一邊

  2、兩個條件:兩角;兩邊;一角一邊

  3、三個條件:三角;三邊;兩角一邊;兩邊一角

  按以上分類順序動腦、動手操作,驗證。

  教師收集學(xué)生的作品,加以比較,得出結(jié)論:

  只給出一個或兩個條件時,都不能保證所畫出的三角形一定全等。

  下面將研究三個條件下三角形全等的判定。

 。1)已知三角形的三個角分別為40°、60°、80°,畫出這個三角形,并與同伴比較是否全等。

  學(xué)生得出結(jié)論后,再舉例體會一下。舉例說明:

  如老師上課用的三角尺與同學(xué)用的三角板三個角分別對應(yīng)相等,但一個大一個小,很顯然不全等;

  再如同是:等邊三角形,邊長不等,兩個三角形也不全等。等等。

 。2)已知三角形三條邊分別是4cm,5cm,7cm,畫出這個三角形,并與同伴比較是否全等。

  板演:三邊對應(yīng)相等的兩個三角形全等,簡寫為“邊邊邊”或“SSS”。

  由上面的結(jié)論可知:只要三角形三邊的長度確定了,這個三角形的'形狀和大小就確定了。實物演示:由三根木條釘成的一個三角形框架,它的大小和形狀是固定不變的,三角形的這個性質(zhì)叫三角形的穩(wěn)定性。

  舉例說明該性質(zhì)在生活中的應(yīng)用

  類比著三角形,讓學(xué)生動手操作,研究四邊形、五邊性有無穩(wěn)定性

  圖形的穩(wěn)定性與不穩(wěn)定性在生活中都有其作用,讓學(xué)生舉例說明。

  題組練習(xí)(略)3 、(對有能力的學(xué)生要求把實際問題抽象成數(shù)學(xué)問題,根據(jù)自己的理解寫出推理過程。對一般學(xué)生要求口頭表達(dá)理由,并能說明每一步的根據(jù)。)

  教師帶領(lǐng),回顧反思本節(jié)課對知識的研究探索過程,小結(jié)方法及結(jié)論,提煉數(shù)學(xué)思想,掌握數(shù)學(xué)規(guī)律。

  在教師引導(dǎo)下回憶前面知識,為探究新知識作好準(zhǔn)備。

  議一議:

  學(xué)生分小組進(jìn)行討論交流。受教師啟發(fā),從最少條件開始考慮,一個條件;兩個條件;三個條件?經(jīng)過學(xué)生逐步分析,各種情況漸漸明朗,進(jìn)行交流予以匯總,歸納。

  想一想:

  對只給一個條件畫三角形,畫出的三角形一定全等嗎

 。慨嬕划嫞

  按照下面給出的兩個條件做出三角形:

 。1)三角形的兩個角分別是:30°,50°

  (2)三角形的兩條邊分別是:4cm,6cm

 。3)三角形的一個角為30,一條邊為3cm剪一剪:

  把所畫的三角形分別剪下來。比一比:

  同一條件下作出的三角形與其他同學(xué)作的比一比,是否全等。學(xué)生重復(fù)上面的操作過程,畫一畫,剪一剪,比一比。學(xué)生總結(jié)出:三個內(nèi)角對應(yīng)相等的兩個三角形不一定全等學(xué)生舉例說明

  學(xué)生模仿上面的研究方法,獨立完成操作過程,通過交流,歸納得出結(jié)論。鼓勵學(xué)生自己舉出實例,體驗數(shù)學(xué)在生活中的應(yīng)用.學(xué)生那出準(zhǔn)備好的硬紙條,進(jìn)行實驗,得出結(jié)論:四邊形、五邊形不具穩(wěn)定性。

  學(xué)生練習(xí)

  學(xué)生在教師引導(dǎo)下回顧反思,歸納整理。

初中數(shù)學(xué)教學(xué)設(shè)計12

  一、背景

  新課標(biāo)要求,應(yīng)讓學(xué)生在實際背景中理解基本的數(shù)量關(guān)系和變化規(guī)律,注重使學(xué)生經(jīng)歷從實際問題中建立數(shù)學(xué)模型、估計、求解、驗證解的正確性與合理性的過程。在實際工作中讓學(xué)生學(xué)會從具體問題情景中抽象出數(shù)學(xué)問題,使用各種數(shù)學(xué)語言表達(dá)問題、建立數(shù)學(xué)關(guān)系式、獲得合理的解答、理解并掌握相應(yīng)的數(shù)學(xué)知識與技能,這些多數(shù)教師都注意到了,但要做好,還有一定難度。

  二、教學(xué)片段

  在剛過去的這個學(xué)期,我上了一節(jié)“一元一次不等式組的應(yīng)用”。

  出示例題:小寶和爸爸、媽媽三人在操場上玩蹺蹺板,爸爸體重為72千克,坐在蹺蹺板的一端,體重只有媽媽一半的小寶和媽媽一同坐在另一端。這時,爸爸的一端仍然著地,后來小寶借來一副質(zhì)量為6千克的啞鈴,加在他和媽媽坐的一端,結(jié)果,爸爸被高高地蹺起。猜猜看,小寶的體重約多少千克?

  我問學(xué)生:“你們玩過蹺蹺板嗎?先看看題,一會請同學(xué)復(fù)述一下。”學(xué)生復(fù)述后,基本已經(jīng)熟悉了題目。我接著讓學(xué)生思考:他們?nèi)俗藥状诬E蹺板?第一次坐時情況怎樣?第二次呢?學(xué)生議論了一會兒,自主發(fā)言,很快發(fā)現(xiàn)本題中存在的兩種文字形式的不等關(guān)系:

  爸爸體重>小寶體重+媽媽體重

  爸爸體重<小寶體重+媽媽體重+一副啞鈴重量

  我引導(dǎo):你還能怎么判斷小寶體重?學(xué)生安靜了幾分鐘后,開始議論。一學(xué)生舉手了:“可以列不等式組!蔽医o出提示:“小寶的體重應(yīng)該同時滿足上述的兩個條件。怎么把這個意思表達(dá)成數(shù)學(xué)式子呢?”這時學(xué)生們七嘴八舌地討論起來,都搶著回答,

  我注意到一位平時不愛說話的學(xué)生緊鎖眉頭,便讓他發(fā)言:“可以設(shè)小寶的體重為x千克,能列出兩個不等式?墒墙酉聛砦揖筒恢懒!蔽衣犃诵闹幸粍,意識到這應(yīng)是思想滲透的好機會,便解釋說:“我們在初中會遇到許多問題都可以用類似的方法來研究解決,比方說前面列方程組”不等我說完,學(xué)生都齊聲答:“列不等式組。”全班12小組積極投入到解題活動中了。5分鐘后,我請學(xué)生板演,自己下去巡查、指導(dǎo),發(fā)現(xiàn)學(xué)生的解題思路都很清楚,只是部分學(xué)生對答案的表達(dá)不夠準(zhǔn)確。于是提議學(xué)生說說列不等式組解應(yīng)用題分幾步,應(yīng)注意什么。此時學(xué)生也基本上形成了對不等式方法的完整認(rèn)識。我便出示拓展應(yīng)用課件:

  一次考試共25道選擇題,做對一道得4分,做錯一道減2分,不做得0分。若小明想確?荚嚦煽冊60分以上,那么他至少要做對多少題?

  設(shè)置這道題,既有調(diào)查本節(jié)課效果的意圖,也想鞏固拓展一下學(xué)生的思維。沒料到相當(dāng)多學(xué)生對“至少”一詞理解不準(zhǔn)確,導(dǎo)致失誤。這正好讓我們的“本課小結(jié)”填補了一個空白——弄清題目中描述數(shù)量關(guān)系的關(guān)鍵詞才是解題的關(guān)鍵。

  三、反思

  本節(jié)課講完后,我感到一絲欣慰,看到孩子們躍躍欲試的學(xué)習(xí)勁頭,突然領(lǐng)悟到:教師的教學(xué)行為至關(guān)重要,成功的教學(xué),能開啟學(xué)生心靈的`窗戶,能幫學(xué)生樹立學(xué)習(xí)的自信心。

  本節(jié)課我有幾個深刻的感受:

  1、在課前準(zhǔn)備的時候,我就覺得不等式組的應(yīng)用是個難點。所以在課堂教學(xué)中設(shè)置了幾個臺階,這也正好符合了循序漸進(jìn)的教學(xué)原則。

  2、例題貼近學(xué)生實際,我在教學(xué)中有采用了更親近的教學(xué)語言,有利于激發(fā)學(xué)生的探究欲望。

  3、關(guān)注學(xué)生的學(xué)習(xí)狀態(tài),隨時采取靈活適宜的教學(xué)方法,師生互動,生生互動,課堂教學(xué)才更加有效。

  4、學(xué)生在學(xué)習(xí)后,確實感受到“不等式的方法”就像方程的方法一樣是從字母表示數(shù)開始研究解決的。這種方法可以幫助我們用數(shù)學(xué)的方式解決實際問題。

初中數(shù)學(xué)教學(xué)設(shè)計13

  教材與學(xué)情:

  解直角三角形的應(yīng)用是在學(xué)生熟練掌握了直角三角形的解法的基礎(chǔ)上進(jìn)行教學(xué),它是把一些實際問題轉(zhuǎn)化為解直角三角形的數(shù)學(xué)問題,對分析問題能力要求較高,這會使學(xué)生學(xué)習(xí)感到困難,在教學(xué)中應(yīng)引起足夠的重視。

  信息論原理:

  將直角三角形中邊角關(guān)系作為已有信息,通過復(fù)習(xí)(輸入),使學(xué)生更牢固地掌握(貯存);再通過例題講解,達(dá)到信息處理;通過總結(jié)歸納,使信息優(yōu)化;通過變式練習(xí),使信息強化并能靈活運用;通過布置作業(yè),使信息得到反饋。

  教學(xué)目標(biāo)

 、闭J(rèn)知目標(biāo):

 、哦贸R娒~(如仰角、俯角)的意義

  ⑵能正確理解題意,將實際問題轉(zhuǎn)化為數(shù)學(xué)

 、悄芾靡延兄R,通過直接解三角形或列方程的方法解決一些實際問題。

  ⒉能力目標(biāo):培養(yǎng)學(xué)生分析問題和解決問題的能力,培養(yǎng)學(xué)生思維能力的靈活性。

 、城楦心繕(biāo):使學(xué)生能理論聯(lián)系實際,培養(yǎng)學(xué)生的對立統(tǒng)一的觀點。

  教學(xué)重點、難點:

  重點:利用解直角三角形來解決一些實際問題

  難點:正確理解題意,將實際問題轉(zhuǎn)化為數(shù)學(xué)問題。

  信息優(yōu)化策略:

  ⑴在學(xué)生對實際問題的探究中,神經(jīng)興奮,思維活動始終處于積極狀態(tài)

  ⑵在歸納、變換中激發(fā)學(xué)生思維的靈活性、敏捷性和創(chuàng)造性。

 、侵匾晫W(xué)法指導(dǎo),以加速教學(xué)效績信息的順利體現(xiàn)。

  教學(xué)媒體:

  投影儀、教具(一個銳角三角形,可變換圖2-圖7)

  高潮設(shè)計:

  1、例1、例2圖形基本相同,但解法不同;這是為什么?學(xué)生的思維處于積極探求狀態(tài)中,從而激發(fā)學(xué)生學(xué)習(xí)的積極性和主動性

  2、將一個銳角三角形紙片通過旋轉(zhuǎn)、翻折等變換,使學(xué)生對問題本質(zhì)有了更深的認(rèn)識

  教學(xué)過程

  一、復(fù)習(xí)引入,輸入并貯存信息

  1.提問:如圖,在Rt△ABC中,∠C=90°。

  ⑴三邊a、b、c有什么關(guān)系?

 、苾射J角∠A、∠B有怎樣的關(guān)系?

  ⑶邊與角之間有怎樣的關(guān)系?

  2.提問:解直角三角形應(yīng)具備怎樣的條件:

  注:直角三角形的邊角關(guān)系及解直角三角形的條件由投影給出,便于學(xué)生貯存信息

  二、實例講解,處理信息:

  例1.(投影)在水平線上一點C,測得同頂?shù)难鼋菫?0°,向山沿直線 前進(jìn)20為到D處,再測山頂A的仰角為60°,求山高AB。

  ⑴引導(dǎo)學(xué)生將實際問題轉(zhuǎn)化為數(shù)學(xué)問題。

 、品治觯呵驛B可以解Rt△ABD和

  Rt△ABC,但兩三角形中都不具備直接條件,但由于∠ADB=2∠C,很容易發(fā)現(xiàn)AD=CD=20米,故可以解Rt△ABD,求得AB。

  ⑶解題過程,學(xué)生練習(xí)。

 、人伎迹杭偃纭螦DB=45°,能否直接來解一個三角形呢?請看例2。

  例2.(投影)在水平線上一點C,測得山頂A的.仰角為30°,向山沿直線前進(jìn)20米到D處,再測山頂A的仰角為45°,求山高AB。

  分析:

 、旁赗t△ABC和Rt△ABD中,都沒有兩個已知元素,故不能直接解一個三角形來求出AB。

 、瓶紤]到AB是兩直角三角形的直角邊,而CD是兩直角三角形的直角邊,而CD均不是兩個直角三角形的直角邊,但CD=BC=BD,啟以學(xué)生設(shè)AB=X,通過 列方程來解,然后板書解題過程。

  解:設(shè)山高AB=x米

  在Rt△ADB中,∠B=90°∠ADB=45°

  ∵BD=AB=x(米)

  在Rt△ABC中,tgC=AB/BC

  ∴BC=AB/tgC=√3(米)

  ∵CD=BC-BD

  ∴√3x-x=20 解得 x=(10√3+10)米

  答:山高AB是(10√3+10)米

  三、歸納總結(jié),優(yōu)化信息

  例2的圖開完全一樣,如圖,均已知∠1、∠2及CD,例1中 ∠2=2∠1 求AB,則需解Rt△ABD例2中∠2≠2∠1求AB,則利用CD=BC-BD,列方程來解。

  四、變式訓(xùn)練,強化信息

  (投影)練習(xí)1:如圖,山上有鐵塔CD為m米,從地上一點測得塔頂C的仰角為∝,塔底D的仰角為β,求山高BD。

  練習(xí)2:如圖,海岸上有A、B兩點相距120米,由A、B兩點觀測海上一保輪船C,得∠CAB=60°∠CBA=75°,求輪船C到海岸AB的距離。

  練習(xí)3:在塔PQ的正西方向A點測得頂端P的

  仰角為30°,在塔的正南方向B點處,測得頂端P的仰角為45°且AB=60米,求塔高PQ。

  教師待學(xué)生解題完畢后,進(jìn)行講評,并利用教具揭示各題實質(zhì):

  ⑴將基本圖形4旋轉(zhuǎn)90°,即得圖5;將基本圖形4中的Rt△ABD翻折180°,即可得圖6;將基本圖形4中Rt△ABD繞AB旋轉(zhuǎn)90°,即可得圖7的立體圖形。

 、埔龑(dǎo)學(xué)生歸納三個練習(xí)題的等量關(guān)系:

  練習(xí)1的等量關(guān)系是AB=AB;練習(xí)2的等量關(guān)系是AD+BD=AB;練習(xí)3的等量關(guān)系是AQ2+BQ2=AB2

  五、作業(yè)布置,反饋信息

  《幾何》第三冊P57第10題,P58第4題。

  板書設(shè)計:

  解直角三角形的應(yīng)用

  例1已知:………例2已知:………小結(jié):………

  求:………求:………

  解:………解:………

  練習(xí)1已知:………練習(xí)2已知:………練習(xí)3已知:………

  求:………求:………求:………

  解:………解:………解:………

初中數(shù)學(xué)教學(xué)設(shè)計14

  一教學(xué)目標(biāo)

  1.通過案例理解正比例函數(shù),能列出正比例函數(shù)關(guān)系式

  2.教會學(xué)生應(yīng)用正比例函數(shù)解決生活實際問題的能力

  二教學(xué)重點

  理解正比例函數(shù)的概念

  三教學(xué)難點

  利用正比例函數(shù)解決生活實際問題

  四教學(xué)過程

  【提出問題】

  1.《阿甘正傳》是一部勵志影片。片中阿甘曾跑步繞美國數(shù)圈,假設(shè)他從德州到加州行進(jìn)了千米,耗費了他150天時間。

 。1)阿甘大約平均每天跑步多少千米?

 。3)阿甘一個月(30天)的行程是多少千米?

  【生】列算式回答

  【師】點評總結(jié)

  2.寫出下列變量間的函數(shù)表達(dá)式

 。1)正方形的`周長l和半徑r之間的關(guān)系【進(jìn)一步抽象問題讓學(xué)生思考】

 。2)大米每千克四元,則售價y元與數(shù)量x(kg)的函數(shù)關(guān)系式是什么?

 。3)下列函數(shù)關(guān)系式有什么共同點?(小組合作)【分析共同點和不同點,找出規(guī)律】

 。1)y=200x(2) l=2∏r(3) m=

  【生回答,師點評】

  【引入新課】

  1、正比例函數(shù)的概念:一般地,形如y=kx (k≠0)的函數(shù),叫做正比例函數(shù),其中k叫做比例系數(shù).【板書概念,引導(dǎo)學(xué)生分析正比例函數(shù)的定義】

  2 、【例題講解】

  例1在同一坐標(biāo)系里,畫出下列函數(shù)的圖像:y==x y=3x

  解:【略】 【掌握函數(shù)圖像的畫法:列表,描點,連線】

  3、練習(xí)

  (1)已知正比例函數(shù)y=kx.當(dāng)x=3時y=6 。求k的值

  (2)一種筆記本每本的單價為3元。則銷售金額y元與銷售量x之間的關(guān)系式是怎樣的?當(dāng)銷售金額為360元時,則售出了多少本這種筆記本?

  五課外作業(yè)

  【反思】

  由于函數(shù)的概念比較抽象,學(xué)生不容易理解。而理解函數(shù)的概念是教學(xué)的重點。這節(jié)課首先通過實例,回顧函數(shù)的概念,其次抽象提出正比例函數(shù)關(guān)系式,由學(xué)生觀察得到特點,然后引出正比例函數(shù)的概念和特點,再通過練習(xí)加以鞏固,最后通過小組討論利用正比例函數(shù)解決生活中的問題。

初中數(shù)學(xué)教學(xué)設(shè)計15

  教材分析:

  一元二次方程根與系數(shù)的關(guān)系的知識內(nèi)容主要是以前一單元中的求根公式為基礎(chǔ)的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根與系數(shù)的關(guān)系,以及以數(shù)x1、x2為根的一元二次方程的求方程模型。然后通過4個例題介紹了利用根與系數(shù)的關(guān)系簡化一些計算的知識。

  學(xué)情分析:

  1.學(xué)生已學(xué)習(xí)用求根公式法解一元二次方程。

  2.本課的教學(xué)對象是九年級學(xué)生,學(xué)生對事物的認(rèn)

  識多是直觀、形象的,他們所注意的多是事物外部的、直接的、具體形象的特征。

  3.在教學(xué)初始,出示一些學(xué)生所熟悉和感興趣的東西,結(jié)合一元二次方程求根公式使他們在現(xiàn)代化的教學(xué)模式和傳統(tǒng)的教學(xué)模式相結(jié)合的基礎(chǔ)上掌握一元二次方程根與系數(shù)的關(guān)系。

  教學(xué)目標(biāo):

  1、知識目標(biāo):要求學(xué)生在理解的'基礎(chǔ)上掌握一元二次方程根與系數(shù)的關(guān)系式,能運用根與系數(shù)的關(guān)系由已知一元二次方程的一個根求出另一個根與未知數(shù),會求一元二次方程兩個根的倒數(shù)和與平方數(shù),兩根之差。

  2、能力目標(biāo):通過韋達(dá)定理的教學(xué)過程,使學(xué)生經(jīng)歷觀察、實驗、猜想、證明等數(shù)學(xué)活動過程,發(fā)展推理能力,能有條理地、清晰地闡述自己的觀點,進(jìn)一步培養(yǎng)學(xué)生的創(chuàng)新意識和創(chuàng)新精神。

  3、情感目標(biāo):通過情境教學(xué)過程,激發(fā)學(xué)生的求知欲望,培養(yǎng)學(xué)生積極學(xué)習(xí)數(shù)學(xué)的態(tài)度。體驗數(shù)學(xué)活動中充滿著探索與創(chuàng)造,體驗數(shù)學(xué)活動中的成功感,建立自信心。

  教學(xué)重難點:

  1、重點:一元二次方程根與系數(shù)的關(guān)系。

  2、難點:讓學(xué)生從具體方程的根發(fā)現(xiàn)一元二次方程根與系數(shù)之間的關(guān)系,并用語言表述,以及由一個已知方程求作新方程,使新方程的根與已知的方程的根有某種關(guān)系,比較抽象,學(xué)生真正掌握有一定的難度,是教學(xué)的難點。

  教學(xué)過程:

  板書設(shè)計:

  一元二次方程根與系數(shù)的關(guān)系如果ax+bx+c=0(a≠0)的兩根是x1,x2,那么x1+x2= ,x1x2= 。

  問題6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用嗎? ①二次項系數(shù)a是否為零,決定著方程是否為二次方程; ②當(dāng)a≠0時,b=0,a、c異號,方程兩根互為相反數(shù); ③當(dāng)a≠0時,△=b-4ac可判定根的情況; ④當(dāng)a≠0,b-4ac≥0時,x1+x2=,x1x2=。⑤當(dāng)a≠0,c=0時,方程必有一根為0。

  學(xué)生學(xué)習(xí)活動評價設(shè)計:

  本節(jié)課充分讓學(xué)生分析、觀察、提高了學(xué)生的歸納能力及推理論證的能力。

  教學(xué)反思:

  1.一元二次方程根與系數(shù)的關(guān)系的推導(dǎo)是在求根公式的基礎(chǔ)上進(jìn)行。它深化了兩根的和與積同系數(shù)之間的關(guān)系,是我們今后繼續(xù)研究一元二次方程根的情況的主要工具,必須熟記,為進(jìn)一步使用打下基礎(chǔ)。

  2.以一元二次方程根與系數(shù)的關(guān)系的探索與推導(dǎo),向?qū)W生展示認(rèn)識事物的一般規(guī)律,提倡積極思維,勇于探索的精神,借此鍛煉學(xué)生分析、觀察、歸納的能力及推理論證的能力

  3.一元二次方程的根與系數(shù)的關(guān)系,在中考中多以填空,選擇,解答題的形式出現(xiàn),考查的頻率較高,也常與幾何、二次函數(shù)等問題結(jié)合考查,是考試的熱點,它是方程理論的重要組成部分。

  4.使學(xué)生體會解題方法的多樣性,開闊解題思路,優(yōu)化解題方法,增強擇優(yōu)能力。力求讓學(xué)生在自主探索和合作交流的過程中進(jìn)行學(xué)習(xí),獲得數(shù)學(xué)活動經(jīng)驗,教師應(yīng)注意引導(dǎo)。

【初中數(shù)學(xué)教學(xué)設(shè)計】相關(guān)文章:

初中數(shù)學(xué)優(yōu)秀教學(xué)設(shè)計02-14

初中數(shù)學(xué)教學(xué)設(shè)計(精選6篇)07-20

初中數(shù)學(xué)教學(xué)設(shè)計15篇02-17

初中數(shù)學(xué)教學(xué)設(shè)計(15篇)03-24

初中數(shù)學(xué)教學(xué)設(shè)計 15篇05-17

初中數(shù)學(xué)教學(xué)設(shè)計 (15篇)05-17

初中數(shù)學(xué)《不等關(guān)系》教學(xué)設(shè)計模板07-23

初中數(shù)學(xué)課堂教學(xué)設(shè)計02-13

初中數(shù)學(xué)優(yōu)秀教學(xué)設(shè)計10篇02-17